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ABSTRACT

The sensitivity of the ruin probability depending on the claim size distribution
has been the topic of several discussion papers in recent ASTIN Bulletins. This
discussion was initiated by a question raised by Schmitter at the ASTIN
Colloquium 1990 and attempts to make further contributions to this problem.
We find the necessary and sufficient conditions for fitting three given moments
by diatomic and diexponential distributions. We consider three examples
drawn from fire (large spread), individual life (medium spread) and group life
(small spread) insurance data, fit them with diatomics and diexponentials
whenever the necessary and sufficient conditions are met, and compute the ruin
probabilities using well known formulas for discrete and for combination of
exponentials claim amounts. We then compare our approximations with the
exact values that appeared in the literature. Finally we propose using diatomic
and diexponential claim distributions as tools to study the Schmitter prob-
lem.
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1. INTRODUCTION

Parametric representation of claim data and exact calculation of ruin probabil-
ities have a long history. In the classical work of CRAMER (1955, p. 43), the
following claim amount distribution was used to represent data from Swedish
non-industry fire insurance covering the years 1948-1951:

(1) p(x) = 4.897954e-^™Wx + 4.503(x + 6)~ZJ\ 0 < x < 500.

Exact ruin probabilities were computed by numerically solving

(2) W(u) = - f [\-P(y)]vr(u-y)dy + - [ [\-P(y)]dy,iu) = - f
c Jo

which was a nontrivial numerical task then (CRAMER 1955, p. 45). A modern
reference for the above integral equation is Exercise 12.11 in BOWERS et alii
(1986).
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A much easier numerial task even now is to approximate (1) by a
distribution for which there is a readily executable formula for its ruin
probabilities. In this paper, we choose our approximants from special types of
claim amount distributions in which there are recent interests: For combina-
tion of exponential distributions, there are the TACKLIND (1942) types formu-
las. See SHIU (1984), GERBER, GOOVAERTS and KAAS (1987), DUFRESNE and
GERBER (1988) (1989) (1991), and CHAN (1990). For discrete distributions
(mixture of atomic distributions), there are the TAKACS (1967) type formulas.
See BEEKMAN (1968), SHIU (1989) and KAAS (1991). In particular, we consider
the special cases of mixture of two atoms (diatomic) and of combination of two
exponentials (diexponential).

2. THREE MOMENT FIT FOR DIATOMIC AND
DIEXPONENTIAL DISTRIBUTIONS

2.1. Diatomic distributions

Proposition 1:

Given mean, variance, and third central moment written as fi, a2, and K3, there
is a unique diatomic fitting these moments. The locations of the two atoms
are

(3) {/u-x,

and the corresponding probabilities are:

(4)

where

(5)
2(T2

la

Clearly, x > 0 and y > 0. In addition, if the given /z > 0 and non-negative
atoms are desired, then one must have

(7) St^U*.

Proof:

A diatomic distribution has the routine parametrization by probabilities
A, I- A at atoms x], x2. Instead, we choose as the three parameters the mean
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fi and the locations of the two atoms expressed in (3). The equation of
mean = fi is equivalent to the probabilities at the atoms equal

x + y x+y

The equation of variance = a2 is equivalent to

(9) xy = o2.

a2

With y = — , the probabilities (8) can be rewritten as (4). Finally, the
x

equation of third central moment = K3 is equivalent to

o2(a2-x2) ,
(10) —V - = K\

x
which is a quadratic equation in x and has two solutions, one positive and one
negative in this case. The positive solution is (5). Use (9) to obtain (6).

To prove (7), observe that for fixed fi > 0 and a2, as K3 goes from the right
to the left on the real line, the corresponding p. — x goes also from the right to
the left. The value of «r3 for which fi — x = 0 is given by the right side of (7).

Q.E.D.

Remark: The third central moment equation (10) is best understood as

(11) y~x = —,
a

since (9) and (11) give a geometric interpretation of a2 and /c3 in terms of the
three points: the mean fi and the two atoms fi — x and fi+y. Equation (9) says
the standard deviation is the geometric mean of x and y. Equation (11) says
that the asymmetry as measured by y - x is fully responsible for the skewness
K3, after /c3 is properly scaled into K3/G2. The transformation of /u, x, y to k/u,
kx, ky would change skewness to &3/c3, but equation (11) would be scale
invariant.

2.2. Diexponential distributions

Out of two exponentials with parameters 0 < fi < y, we adopt the convention
that the smaller of the two parameters is always named p, and call a distribution
with density function

(12) p(x) = APe'lix + (\-A)ye~?x f o r x > 0

a diexponential distribution when and only when A makes the above p{x) a
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(non-negative) density function over x > 0. The necessary and sufficient
conditions for A making p(x) a legitimate density function are:

(13) 0<A< 7

y-fi

7since A negative would lead to p(x) negative for large x, and < A would
y-p

lead to p(x) negative for small x. A member of this three parameter family
is traditionally called a mixture of two exponentials when 0 < A < 1 and a

y
combination of two exponentials when 1 < A < . Note that when B = y,

y-p
y

A = 0, or A = 1 it degenerates to a single exponential. When A = we
y-p

have p (0) = 0 and it becomes a two parameter family:

_ AIL
(14) p(x) = APe'^-APe A-\ X for x > 0, where 0 < P, 1 < A .

This distribution is the independent sum of two exponentials of parameter /?
and of parameter y and is usually parametrized as:

Py
(15) p { x ) = -^— ( e ~ f i x - e ~ y x ) f o r x > 0

y-p

- 7 pe-f* ye~ yx for x > 0

where 0 < ft < y.
How big is the family of diexponential distributions? Can a diexponential

always be found to fit up to the third moment? This question translates into
the solution of the following system of equations

(16)

(17)

A

P
A

P2

A

+

+

+

l-A

y

l-A

y2

l-A

E(X2)

2

E(X3)

We shall find that the answer is different from the case of diatomic
distributions where any /u, a2, and K3 would find a diatomic fit.
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ft

(22) tells us that we must have c = b = — , thus (iv) below is proved. We have
2

just proved most of part A in the following proposition.

Proposition 2:

A. Necessary and sufficient conditions for finding a fit: For a fixed n > 0,

(i) for a2 > n2,

if K > , then a mixture of exponentials with A < 1 fits,

4 _i_ -j 4

if K3 < , then there is no diexponential that fits;

(ii) for a1 = fi2,

4 _i_ o 4

if K3 = = 2/i3, then the fitting diexponential degenerates into
2fi

a single exponential (l/fi), any other value of /c3 has no diexponential
fit;

(iii) for — < cr2 < /u2,
2

4_i T 4

if 6/«72-4^3 + Vl8O2-<T2)3 < K3 < °

then a combination of exponentials with A > 1 fits,

4 I -3 4

if K3 < 6^(72-4/z3 + Vl8(//2-ff2)3 or - - - - - < K\

then there is no diexponential that fits;

(iv) for a2 = — ,
2

if K3 = 6 / w 2 4 / z 3 + V l 8 ( / / 2 J 2 ) 3 =

then the fitting diexponential degenerates into a single gamma (2, 2//f), any
other value of K 3 has no diexponential fit;

(v) for a2 < — , there is no diexponential that fits the given moments.
2
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APPROXIMATIONS OF RUIN PROBABILITY 241

B. The fit: When the three moments fi, a2, K2 satisfy the above conditions to
give a fitting diexponential, the appropriate parameters are:

y-fi

Proof:

The bounds for A:3 will be found naturally after we solve (16), (17), and (18)
and establish B. Substitute (19) into (17) and (18) and write everything in terms
of [i, b, and c. Solve the second moment equation for b and substitute this back
in to the third moment equation for c. This is a quadratic equation which we
solve to get solutions cx,c2- Substitute back to get bx,b2. With the algebraic
symmetry of b and c, it is not surprising that we found {c{, bt} and {c2, b2} are
the same set of two numbers. By the convention of /? < y, we name the smaller
number c and the bigger number b. The formulas in B are thus established.

The mysterious bounds in A are determined by studying (23). The fact that
(23) must give positive values leads to the question of when is the right side of
(23) zero:

which is a linear equation in K3. Solving for TC3 gives

The fact that (23) must not give complex numbers leads to the equation of
the expression under the square root sign in (23) equals zero:

which is quadratic in K3. The two roots for K3 are

Of the two roots, the one taking the + sign is bigger and determines the
boundary that K3 must not go below. Q.E.D.

3. RUIN PROBABILITIES FOR DIATOMIC AND

DIEXPONENTIAL DISTRIBUTIONS

The ruin probability formula for a discrete claim amount distribution has been
given by SCHMITTER (1990). See KAAS (1991, p. 136). For similar formulas see
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SHIU (1989). Proof for the atomic case and a reference to FELLER (1971) are
found in SHIU (1987). We list the ruin probability formula for diatomic claim
amounts below for use in Section 4:

(24) v(u)=l X (-z)

where z =

1+6 C*2 A;i!A:2!

(u-klxl-kzx2) +

(1+0)1*

The theory of ruin probability for mixture and combination of exponentials
is well known. See SHIU (1984), DUFRESNE and GERBER (1988), (1989), (1991),
and CHAN (1990). In the case when there are only two exponentials, the
adjustment coefficient equation

Mx(r)-l

is quadratic and has solutions:

1
P+y-—-— +

1

n(\+6) j i+e
(25) R,r2 =

and

(26)

where C{, C2 are found by the Tacklind formula (r{ = R):
2 2 ft —

(27) Ck = n -^-11 ?-^k=l,2.
i+k rt—rk i=i Pi

4. DIATOMIC AND DIEXPONENTIAL AS APPROXIMANTS

In this section, we study three claim amount distributions and compute ruin
probabilities of approximating diatomics and approximating diexponentials
with matching first three moments and compare the approximations with the
exact values of y/(u). In the first example (Cramer's fire) the claim amount
distribution has a large spread, none of the approximations is very close to the
exact value. Along with the first example we discuss the run-off error problem
encountered in the Takacs type formulas. In the second example (Reckin,
Schwark, and Snyder's individual life) the claim amount distribution has a
medium spread, both the diatomic and the diexponential give good approxima-
tions. In the third example (Mereu's group life) the claim amount distribution
has a small spread, the diatomic gives an excellent approximation, but the
spread is so small that there is no diexponential fit.
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Example 1: We consider Cramer's fire insurance data, the one mentioned in
the introduction. In the following table, the exact values of y/ (u) for 6 = 0.3,
and the values by the Cramer-Lundberg approximation are taken from
CRAMER (1955, p. 45). The values by the Beekman-Bowers approximation are
taken from BEEKMAN (1969, p. 279). The ruin probability formula for diatomic
claims, (24), leads to convergence problems when u is large. Our exprience
echoes with that reported in SEAH (1990, § 4). For values of u close to and above
30 times fi, run-off errors take over and we obtain probabilities less than zero
or greater than one. These problematic values are indicated by ** below. In
Table 1, the approximating diatomic has atoms {.7657175616, 181.1382584}
and probabilities {.9987011192, .001298880855} as found by (3), (4), (5), and (6).

The approximating diexponential has - = 60.75201696, — = .6552147239,
P 7

and A = .005737165094 as found by (23) and (19).

TABLE 1

CRAMERS FIRE INSURANCE

(i=l, a2In1 = 42.20323069, K3/<J3 = 27.69286626

11

20
40
60
80
100

y/(u)

.5039

.3985

.3280

.2757

.2346

CL

.4524

.3904

.3370

.2909

.2511

BB

.5140

.4079

.3369

.2812

.2369

diatom.

.4133
**
•*

**

**

diep.

.4666

.4010

.3447

.2962

.2546

<W)

0.898
0.980
1.027
1.055
1.070

BBM")

1.020
1.028
1.027
1.020
1.010

dia./y/(u)

0.820
**
**
**
**

die./if/(u)

0.926
1.006
1.051
1.074
1.085

Example 2: In this example, we consider the individual life insurance data
from RECKIN, SCHWARK, and SNYDER (1984). This claim amount distribution
was studied as Example 3 in SEACH (1990), from where we took the exact
values of y/{u). The claim amount X is discrete with support
{1,2,3,4,5,7,8,10,12,13,15,16} and probabilities (in order) {.5141, .3099, .0639,
.0220, .0194, .0096, .0276, .0036, .0041, .0019, .0013, .0226}. Since the claim
amount distribution is dispersed enough, we have a diexponential fit by (i) of
Proposition 2.

TABLE 2.1

i//(u) BY SEAH FOR RSS 'S INDIVIDUAL LIFE INSURANCE DATA

(i = 2.2896, <j2/fi2 = 1.43257300, /c3/<r3 = 3.60560786

u = 0
u= 10
« = 20
«=30
w = 40
«=50

0=.l

.909091

.644361

.469129

.341528

.248408

.180700

6 = .2

.833333

.450722

.254324

.143813

.081101

.045752

6=3

.769231

.334890

.152965

.070341

.032173

.014725

0=.4

.714286

.260412

.099371

.038430

.014735

.005654

0=.5

.666667

.209732

.068466

.022840

.007526

.002482
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TABLE 2.2

(DIATOMIC APPROXIMANT)/y/(w) FOR RSS'S DATA

The approximating diatomic has atoms {1.580450117, 12.887964915} and probabilities {.9372389245,
.06276107517} as found by (3), (4), (5), and (6).

u = 0
M=10
M = 20

w=30
M = 4 0

w=50

0=.l

1
1.013
1.003
1.001
1.001
1.001

0 =.2

1
1.029
1.007
1.000
0.999
0.997

0=.3

1
1.045
1.012
0.996
0.992
0.988

0 = .4

1
1.060
1.015
0.990
0.982
0.974

6 = .5

1
1.073
1.018
0.981
0.968
0.957

TABLE 2.3

(DIEXPONENTIAL APPROXIMANT)/^(M) FOR RSS'S DATA

The approximating diexponential has - = 5.448377581, - = 1.930653556, and A = .1020393986
9 y

as found by (23) and (19).

« = 0
«=10
w = 20
M = 3 0

w = 40
«=50

0=.l

1
0.997
0.994
0.995
0.996
0.998

0=.2

1
0.984
0.985
0.991
1.000
1.009

0=.3

1
0.966
0.979
0.997
1.022
1.048

0=.4

1
0.947
0.978
1.016
1.066
1.119

0=.5

1
0.928
0.984
1.047
1.132
1.224

Example 3: In this example, we consider the group insurance data from
MEREU (1972). This claim amount distribution was studied as Example 2 in
SEAH (1990), from where we took the exact values of y/(u). The claim amount
X is discrete with support {4,6,8,10,12,14,16,20,25} and probabilities (in order)
{.15304533960, .07882237436, .11199119040, .10432698260, .09432769021,
.10925807990, .09727308107, .18073466720, .07022059474}.

TABLE 3.1

y/(u) BY SEAH FOR MEREU'S GROUP LIFE INSURANCE DATA

ft = 12.61243786, o2jfi2 = 0.25079144, K3/ff3 = 0.30556145

= .25 = .5 0=.75 = . l

u = 0
u = 25
« = 5 0
u = 75
« = 100

.8

.433995

.222739

.114114

.058463

.666667

.232316

.072766

.022685

.007072

.571429

.141606

.030113

.006349

.001339

.5

.094198

.014607

.002236

.000342
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TABLE 3.2

(DIATOMIC APPROXIMANT)/y/(u) FOR MEREUS GROUP LIFE INSURANCE DATA
The approximating diatomic has atoms {7.187946466, 19.96691435} and probabilities {.5755141225,
.4244858774} as found by (3), (4), (5), and (6).

0= .25 1= .5 > = .75

u=25
«=50
u = 75
u= 100

0.9995
1.0003
1.0000
0.9997

0.9992
1.0004
0.9978
0.9962

0.9986
0.9988
0.9929
0.9888

0.9977
0.9962
0.9857
0.9795

The diatomic approximant is producing excellent values! Since the variance
is quite small, there is no diexponential fit as indicated by Proposition 2, (v).
Note that because the approximating claims distribution has the same mean
and variance as the orignial, the non-ruin probabilities are overestimated as
well.

5. THE SCHMITTER PROBLEM

The Schmitter problem asks: Given 8, u, /i, a2, and the range [0, b], is there a
distribution with support on [0, b] which would maximize the ruin probability
y/(u)l See BROCKETT, GOOVAERTS, and TAYLOR (1991) and KAAS (1991).
Schmitter's conjecture of diatomic being the one giving the extremal ruin
probabilitity inspires us to use diatomics as approximants. The conjecture,
however, has been disproved by KAAS (1991).

The general question is the stability of y/(u) when p(x) is under perturba-
tion. Schmitter specialized to the question of extreme value of y/(u) for fixed 6,
u, fi, a2, and range [0, b]. We would ask another specialized question: Find the
extreme value of y/(u) for fixed 6, u, /u, a2, and K3. Like the Schmitter problem,
our question may not have a complete solution. Our question is related to the
practical problem: When the true claim amount distribution is represented by
the sample, which is a discrete distribution, or is parametrized, for example, as
a mixture of exponentials, how robust is the ruin probability? In this paper we
have found computational tools to address the stability of y/(u) when p(x) is
diatomic or diexponential with first three given moments.
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