
J. Austral. Math. Soc. Ser. B 37(1995), 16-25

A NOTE ON THE CONVERGENCE OF HALLEY'S METHOD FOR
SOLVING OPERATOR EQUATIONS

SHIMING ZHENG1 and DESMOND ROBBIE2

(Received 9 October 1992; revised 28 January 1994)

Abstract

Halley's method is a famous iteration for solving nonlinear equations. Some Kantorovich-
like theorems have been given. The purpose of this note is to relax the region conditions
and give another Kantorovich-like theorem for operator equations.

1. Introduction

Three hundred years ago Halley [6] presented a famous iteration method of order
three for solving nonlinear equations. For real-valued functions, the method is usually
written as

/(**)//'(**) . _ n i
Xk+l~Xk l/0c)/"(*)' ' " • • '

2
This method is also called the method of tangent hyperbolas, as in Salehov and
Mertvetsova [7], because xk+x given above is the intercept with the x-axis of a hyper-
bola which is osculatory to the curve y = fix) at x = xk. A number of papers have
been written about Halley's method (for example, [l]-[7]). Davies and Dawson [5]
showed that the convergence of Halley's method is monotonic global when applied
to entire functions of genus 0 or 1, real for real arguments and having only real zeros.
G. Alefeld has given the following theorem.

THEOREM A [1]. Let fix) be a real-valued function of a real variable x, and let
f(xo)f'(xo) ^ 0 for some x0. Furthermore, let
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Define

ho = ~^l_lf(xo)f"(xo)'
2

and set
[x0, x0 + 2h0], h0 > 0,* - {Jo ' r • 2ho,xo], ho<O.

e Jo, let f have a continuous third derivative. Suppose that f does not change
sign in Jo and that with g(x) = f(x)/^/f'(x), we have

\g"(x)\ < Mo

and
2\ho\Mo < \g'(xo)\.

Then starting with x0 the feasibility of Halley's method is guaranteed. All xk are
contained in Jo, and the sequence {xk} converges to a zero x* of f (which is unique
in Jo).

Cuyt and Rail [4] discussed the computational implementation of the multivariate
Halley's method for solving nonlinear systems of equations. More generally, some
authors have considered Halley's method for solving operator equations in a Banach
space.

Let / : D c X - > Xbea twice Frechet differentiable map, where X is a Banach
space and D is an open and convex set in X. In this case Halley's method for solving
the operator equation

fix) = 0. (1)

is of the form

= xk-
= 0 , 1 , . . . w

Let S(x0, r) = [x : ||JC — *oll < r], S(x0, r) — [x : \\x — xo\\ < r}. For the case
when X is a real or complex space and / is triple differentiable and satisfies

\f"(x)\\ < Mu ||/'"(x)|| < Nu Vx € D, (3)

Salehov and Mertvetsova [7] and one of the authors [9] have given some Kantorovich-
like convergence theorems.
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THEOREM B [7]. Suppose that x0 G D satisfies the following conditions:

(1) \\f'(xo)-l\\ < Bo, | | JCi-*oll<»?i;
(2) Ai = Af,flb%<i;
(3) S(xo,2r,'0) C D;

Then there is a solution x* of {I) in S(x0, 2r}'0) and the Halley iteration converges to
x* and satisfies the estimation

I \x* - xk 11 < (2h'of-
1 ^ / 2 * - 1 , it = 1, 2 , . . . .

THEOREM C [9]. Suppose that xoe D satisfies the following conditions:

(1) ll/'Uor'll < Bo, ||/'(*o)-7(*o)ll < r,0;
(2) h0 = KBor)0 < \ with

/ 2Nj

(3) S(x0, (1 + 0o)>?o) C D, where

we conclude that

(i) jtt e 5(jtb, (1 +3)»?o)(it = 0, 1,.. .);
(ii) lim xk = x* e S(xo, (1 + ft)ij0), / ( * ' ) = 0;

(hi) HJC* - X k \ \ < (i * 1 ^ 1

Recently, Chen, Argyros and Qian [3] also gave a result on the convergence of Halley's
method, in which the conditions and the conclusions are almost all the same as those
of Theorem C except for the constant

instead of

y ' + 3B0(i - 5A

in the condition (2) of Theorem C.
The conditions of Theorems B and C are not comparable. For example, the function

/ (Y\ — r^_i_Av ^ v n
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satisfies the conditions of Theorem B but not Theorem C, and for the function

f2(x) = x2 - 3x + 2, x0 = 0

the opposite is true.
Several years ago, Smale presented first a new concept of point estimation theory.

Instead of the region conditions in the Newton-Kantorovich theorem, he obtained the
convergence of Newton's method for analytic maps from the data at one point. A
Smale-like theorem for Halley's method has been given as follows:

THEOREM D [10]. Suppose that f : X —»• X is an analytic map, where X is a real or
complex Banach space. Let

a = a(x, f) = py,

where x e X,
fi = P(.x,f) = \\f'{xT1f0c)\\

and

y = /(*,/) = sup / '

Ifa(x,f) < 3 — 2\/2, then Halley's iteration (2) with x0 = x is well defined and
there is a limit lim^oo xk = x* such that f(x*) = 0. The constant 3 - 2\/2 is the best
possible.

Moreover, the optimal error estimation has been given as well in Zheng [10].
In this note we give another Kantorovich-like theorem for operator equations. We

prove the following theorem.

THEOREM. Suppose that f : D C X -+ X satisfies

\\f'(xo)-
l[f"(x) - / " 0 < ) ] | | < N\\x - v| | , Wx,yeD (4)

and that x0 € D satisfies the following conditions:

; M, (5)

+ 8N, (6)

S = [x:\\x-xo\\<t;}cD,

where t* is the smaller positive zero of the real function

N M
(pit) = -t3 + —t2-t + n. (7)

o I
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Then the sequence [xk] generated by Halley's iteration is well defined, remains in S
and converges to a solution x* of(l) which satisfies the error estimation

where [tk] is the sequence produced by Halley's iteration for (p(t) with t0 = 0.

We see that in Theorems A, B and C the region conditions are concerned with the
second and third derivatives and the conditions about the initial point only concern
f(x) and its first derivative. However, in Theorem D, there is no region condition but
the data of all higher derivatives at the initial point are required. The conditions of
the theorem of this note are between these two sets of conditions. Our theorem has
a region condition concerning only the third but not the second derivative, and the
initial point conditions concern f(x0) and its first and second derivatives but not any
higher ones.

There are some maps and initial points such that the conditions of our theorem are
satisfied but those of Theorems B or C are not.

EXAMPLE 1. Let X = R, D = ( -1 , 1), x0 = 0, /,(*) = 7 + y - * + i-

If we consider Theorem B of Salehov and Mertvetsova with regard to example 1, then

This means that the conditions of Theorem B are not satisfied. If we consider instead
Theorem C of Zheng [9], or the result of Chen et al. [3], with regard to Example 1,
then

Thus the conditions there are not satisfied either. However, considering our theorem
in regard to Example 1, we have

so that
9 # y + ISNMr) + 6M2rj = 9.8304 < 3M2 + 8N = 12.48.

This shows that the conditions of our theorem are satisfied. Thus the theorem of this
note applies and the earlier results quoted do not.

Example 2 shows that the result of our theorem is not contained in Theorem D
above.

EXAMPLE 2. Let X = R, D = (-1,1), x0 = 0, /4(JC) = x3 + x2 - x + 0.2.
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Considering Theorem D in regard to Example 2, we have that

y(0, /4) = 1, a(0, /4) = P(0, f4) = 0.2 > 3 - 2V2 = 0.17157.

Thus the conditions of Theorem D are not satisfied. However, our theorem does apply
to Example 2, because we have

M = 2, N = 1, >? = 0.2,

giving
9WV + ISNMr) + 6M3r) = 17.16 < 3M2 + 8W = 20.

2. Some lemmas

We give some lemmas to prove the theorem.

LEMMA 1. Under the condition (5), the function <p(t) defined by (6) has three real
zeros.

PROOF. From (6) we see that

N
v'if) = Y

has two real zeros

-M + VM2 + 2N -M - -JM1 + 2N
t+ = > 0 and f_ = < 0.

N N

Since cp'(t+) = 0, t\ = 2-^1. Also

so

M

M 2 M 2
-rt\ - -t+ + t] = — ( 1 - Mt+) --t
0 J JN J

M 2N + M2

[3NM + M3 + 3N2rj - (2N + M2)3/2].
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Under the condition (5), it is easy to prove that

(3NM + M3 + 3N2r))2 < (2N + M2)\

Therefore <p(f+) < 0. Finally, it is clear that <p(—oo) = —oo, <p(0) > 0, <p(oo) = oo,
and so the lemma is proved.

The following lemma 2 can be proved using the result of Davies and Dawson [5].

LEMMA 2. Under the condition [6], the sequence {tk} produced by Halley's iteration
for (p{t),

to = 0 ,

* t l <p(h)<p"(tk)

2 <p'(.tk)
2

is monotonic increasing and convergent to the smaller positive zero t* of<p(t).

LEMMA 3. Under the conditions of the theorem, if \\x — xo\\ < t+, where t+ > 0 is
the positive zero oftp'it), then the inverse f'(x)~l exists and

\\f'(x)-lf'(x0)\\<-l/cp\\\x-x0\\),

\\f'(xo)-
lf"(x)\\<<p"(\\x-xo\\).

PROOF. From the proof of Lemma 1 we see that, when \\x — xo\\ < t+,

<p\\\x - JColl) = y II* - *ol|2 + M||JC - *bl| - 1 < 0.

Thus, under the conditions of the theorem, we have

-xo)+ f f'(xoy
l[f"(xo + t(x- xo)) - f"(xo)]dt(x - xo)||

Jo

From the Mean Value Theorem we obtain

= f'(x0) + [ f"(x0 + t(x- xo))dt(x - x0),
Jo

= I + f'(xo)-
lf"(xo)(x - x0)

/ fixoy^fixo + t(x- x0)) - f"(xo)]dt(x - x0).
o
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By the Neumann Lemma, the inverse [f'(xo)~lf'(x)]~l = f'(x)~l f'(x0) exists and

1 1
: 1 — A^||JC — JCOII - f ||JC — JColl2 ~ ~^(| |Jc-Jfol l ) '

It is clear that

||/'(jro)-7"WII < ll/'(*o)-7"(*b)ll + ll/'(*o)-'[/"(jfo) - /"Mill
<M + N\\x-xo\\=<p"(\\x-xo\\).

And so the lemma is proved.

3. The proof of the theorem

We want to prove that for all nonnegative integers k, xk e 5 = {x : \\x —xo\\ < t*},
f'(xk)~

l exists and

ll/'(*b)~7(**)ll <?('*). (ID

\\f'(xky
lf'(x0)\\ < -=i- , (12)

\\nxo)-
lf"(xk)\\<<p"(tk), (13)

\\xk+i -xk\\ <tk+i -tk. (14)

First we show that (14) must hold when (11)—(13) hold. In fact, from (11H13) we
obtain

fo)7(jft)ll ^ T

and

U'(xk)-
lf(xt)\\ < ||/'te)-7'Uo)llll/'(^o)-7"te)ll < -^7?

Hence, using the monotonicity of {tk} from Lemma 2, we have

||/(**)7te)/W

By the Neumann Lemma, the inverse of

= I- \f'(xk)-
lf"(xk)f'(xk)-

lf(xk)
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exists and

1

2 ?'fe)2

Then (14) follows from (2) and (15).
Now we prove (11)—(13). It is clear that they hold for k = 0. And then as we have

seen, (14) must hold. Suppose that (11)—(13) are true for k < n. Then

\\xn+i -xo\\< tn+l - t o = tn+i < /* < t+,

that is, xn+i € S. From Lemma 3 we see that f'(xn+l)~
l exists and (12), (13) hold for

k = n + 1. From (2) we have

0 = /(*„) + /'(*„)(*.+, - xn) - ^f"(xn)f'(xn)-
1f(xn)(xn+l - xn)

= f(xK) + /'(*„)(*„+, - xn) + -f"(xn)(xn+i - xnf

~f"(Xn)f'(Xn)-
l[f{xn) + f'(xa)(xH+l ~ Xn)](Xn+l - Xn)

= /(*„) + f'(xn)(xn+1 - xn) + -f"(xn)(xn+i - xnf

-\f"(xn)f'(xnrlf"(xn)f'(xn)-lf(xn)(xn+l - xnf.

Therefore

where

An = f(xn + i) ~ f(Xn) - f'(xn)(xn+i - Xn) ~ -f"(xn)(xn+i - Xn)
2

/ ! - u)[f"(xn+u{xn+i - *„)) - f"{xn)]du{xn+l -xnf,
Jo

Bn = ^f"(xn)f'(xn)-
lf"(xn)f'(xn)-

Xf(xn)(xn+l-Xn)
2.

It can be shown in a similar way that

Whenu e [0, 1],

\\xn + u(xn+{ - xn) - JCQII < tn + w(fn+i - tn) < rn+1 < r* <
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From Lemma 3 we have

Wf'ixoy'AJ <N f (I- u)udu(tn+l - tn)
3 = ^r(tn+l - tn)\ (17)

Jo o

Hence

that is, (11) is true for k = n + 1. Thus (11)-(13) hold for all k = 0, 1, . . . , and so
(14) also holds. Therefore, the limit, lim xk = x*, exists. Letting k -*• oo in (11),

k-KX>

we obtain f(x*) = 0. The error estimation follows from (14) and the proof of the
theorem is completed.
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