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Dietary long-chain PUFA, both n-3 and n-6, have unique benefits with respect to CVD risk. The aim of the present study was to determine the

mechanisms by which n-3 PUFA (EPA, DHA) and n-6 PUFA (linoleic acid (LA), arachidonic acid (AA)) relative to SFA (myristic acid (MA),

palmitic acid (PA)) alter markers of inflammation and cholesterol accumulation in macrophages (MF). Cells treated with AA and EPA elicited

significantly less inflammatory response than control cells or those treated with MA, PA and LA, with intermediate effects for DHA, as indicated

by lower levels of mRNA and secretion of TNFa, IL-6 and monocyte chemoattractant protein-1. Differences in cholesterol accumulation after

exposure to minimally modified LDL were modest. AA and EPA resulted in significantly lower MF scavenger receptor 1 mRNA levels relative

to control or MA-, PA-, LA- and DHA-treated cells, and ATP-binding cassette A1 mRNA levels relative to control or MA-, PA- and LA-treated

cells. These data suggest changes in the rate of bidirectional cellular cholesterol flux. In summary, individual long-chain PUFA have differential

effects on inflammatory response and markers of cholesterol flux in MF which are not related to the n position of the first double bond, chain

length or degree of saturation.

n-6 Fatty acids: n-3 Fatty acids: Macrophages: THP-1 cells: Inflammation: Minimally modified LDL-induced cholesterol accumulation

Dietary fatty acids are thought to affect atherosclerotic lesion
progression, in part, through altering macrophage (MF) beha-
viour. With respect to long-chain PUFA, a-linolenic acid
(18 : 3n-3) can be converted to EPA (20 : 5n-3) and DHA
(22 : 6n-3) which are precursors of the 3-series eicosanoids.
Linoleic acid (LA; 18 : 2n-6) can be converted to g-linolenic
acid (18 : 3n-6) and arachidonic acid (AA; 20 : 4n-6) which are
precursors of the 2-series eicosanoids. The 3-series eicosanoids
are less pro-inflammatory than their 2-series counterparts. The
effect of dietary n-6 PUFA, including LA and AA, relative to
the very-long-chain n-3 PUFA, EPA andDHA, on inflammatory
biomarkers and CVD risk remains controversial(1).
In the aortic wall, MF play roles in both inflammation and

cholesterol accumulation(2). MF express scavenger receptors
that uptake modified lipoproteins through membrane-bound
MF scavenger receptor 1 (MSR1) and cluster of differen-
tiation 36 (CD36)(3). Increased expression of MSR1 and
CD36 results in increased uptake of modified lipoproteins(4).

Two important MF membrane receptors involved in choles-
terol efflux are ATP-binding cassette A1 (ABCA1) and sca-
venger receptor B class 1 (SR-B1). When MF cholesterol
influx is greater than efflux, cholesterol homeostasis in MF

is disturbed and cholesterol accumulates in the MF. Elevated
levels of albumin-bound NEFA are positively associated with
esterified cholesterol (EC) accumulation(5).

IL-6 and TNFa are major pro-inflammatory factors. Plasma
IL-6 and TNFa concentrations are positively associated with
CVD risk(6). Overexpression of the chemokine monocyte che-
motactic protein-1 (MCP-1) has been positively associated
with monocyte recruitment in fatty streaks(7). TNFa, IL-6
and MCP-1 have been used as biomarkers for CVD risk.
Some studies have shown that n-3 PUFA decrease inflamma-
tory response through binding and regulating NF-kB activity.
In contrast, SFA do not bind to NF-kB(8). There is limited
information on the impact of individual fatty acids on these
biomarkers.
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The aim of the present study was to determine the effect of
n-3 PUFA (EPA (20 : 5) and DHA (22 : 6)) and n-6 PUFA
(LA (18 : 2) and AA (20 : 4)) relative to two SFA, myristic
acid (MA; 14 : 0) and palmitic acid (PA; 16 : 0), on inflamma-
tory response and cholesterol accumulation in MF differen-
tiated from THP-1 cells.

Materials and methods

Cell culture

Human monocytic THP-1 cells (American Type Culture
Collection (ATCC), Manassas, VA, USA) were cultured
as previously described(9). Exogenous fatty acids complexed to
albumin at 100mM were added in Roswell Park Memorial
Institute (RPMI) 1640 medium containing 10% lipoprotein-
deficient fetal bovine serum to cells and incubated for 24 h. This
concentration mimics the physiological plasma concentration of
MA, PA and LA(10), but it is somewhat higher than AA, EPA
and DHA(11) normally observed in humans. Cell viability
was determined by trypan blue exclusion. Cellular protein
concentration was measured by the bicinchoninic acid method
(Pierce Inc., Rockford, IL, USA). Each experiment was
performed in three independent cell cultures.

Macrophage fatty acid analysis

MF lipid extraction and fatty acid analysis were performed as
previously described(12).

Secretion of inflammatory factors

Cells were treated with fatty acids in combination with
Escherichia coli lipopolysaccharide (Sigma, St Louis, MO,
USA) as previously described(13). TNFa, IL-6 and MCP-1
protein concentrations in the culture media were determined
using DuoSetw ELISA kits (R&D Systems, Minneapolis,
MN, USA).

Minimally modified low-density lipoprotein preparation

LDL was isolated from human plasma by sequential ultracen-
trifugation(14). Minimally modified LDL was prepared by
exposing human LDL to 2mM-CuSO4 for 5 h, and oxidation
was confirmed by measuring thiobarbituric acid-reactive sub-
stances. The standard protocol was to incubate MF with 40mg
protein/ml minimally modified-LDL and 100mM of individual
fatty acids for 24 h. Cellular lipid extraction, non-esterified
cholesterol and total cholesterol measurement were performed
as previously described(15). EC was calculated as the differ-
ence between total cholesterol and non-esterified cholesterol.

Real-time polymerase chain reaction

RNA was extracted from MF using an RNeasy mini kit
(Qiagen, Valencia, CA, USA). cDNA was synthesised from
RNA using SuperScripte P RT according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA). Primers
were designed using Primer Express version 2.0 (Applied Bio-
systems, Foster City, CA, USA). b-Actin was used as an
endogenous control. cDNA levels for the genes of interest

were measured by using power SYBR green master mix on
real-time PCR 7300 (Applied Biosystems, Foster City, CA,
USA). mRNA-fold change was calculated using the 22DDCT
method(16).

Protein extraction and Western blot

MF protein was extracted using radio-immunoprecipitation
assay (RIPA) kits (Santa Cruz Biotechnology, Inc., Santa
Cruz, CA, USA). Western blots were performed as previously
described(17) using cell lysate with the following primary
antibodies, MSR1 (Serotec, Raleigh, NC, USA), SR-B1
(Novus Biologicals, Littleton, CO, USA), ABCA1 (Novus
Biologicals, Littleton, CO, USA) and b-actin (Sigma,
St Louis, MO, USA). Signals were visualised by chemilumi-
nescence (Amersham Biosciences, Piscataway, NJ, USA)
and quantified using a GS-800 calibrated densitometer
(Bio-Rad, Hercules, CA, USA).

Statistical methods

ANOVA (PROC GLM) followed by Tukey’s post hoc test was
performed to compare multiple group means (SAS version
9.1; SAS Institute Inc., Cary, NC, USA). Differences were
considered significant at P,0·05. Results are presented as
mean values and standard deviations.

Results

Cell viability and fatty acid profile

Cell viability was greater than 91% for all fatty acids at
100mM (data not shown). The fatty acid profile of the MF

reflected that of the incubation medium, confirming that the
supplemental fatty acid was incorporated into the THP-1
cells (Table 1).

Effect of fatty acids on cholesterol accumulation and
expression of genes involved in cholesterol flux in
macrophages

All fatty acids significantly increased the EC content in MF

compared with control cells (Table 1). EC accumulation was
highest in the EPA- and AA-treated cells relative to the
other fatty acid-treated MF. Nonetheless, the differences in
the EC component of cells were modest, ranging from 15 to
25% of the total cholesterol. No significant effect of fatty
acid treatment on MF total or non-esterified cholesterol con-
tent was observed.

mRNA levels of both MSR1 and ABCA1 were 2- to 3-fold
lower in the cells treated with AA and EPA compared with
control, MA- or PA-treated cells. This pattern was similar in
LA- and DHA-treated cells, although to a lesser extent. The
response of CD36 and SR-B1 was more modest than MSR1
and ABCA1 to the individual fatty acids. In contrast, exposure
of MF to PUFA did not significantly alter the amount of SR-
B1, CD36 or MSR1 protein compared with control or SFA,
and only slightly lowered ABCA1 protein compared with
MA- and PA-treated cells (data not shown). These data
suggest that the effect of exposing MF to minimally modified
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LDL was to alter the rate of cholesterol flux with little effect
on net accumulation.

Effect of individual fatty acids on inflammatory factor
secretion and mRNA levels in stimulated macrophages

Relative to control, MA and PA, MF exposed to AA and EPA
resulted in lower levels of TNFa, IL-6 and MCP-1 in the cul-
ture medium (Fig. 1). Of note, the relationship between
inflammatory factor secretion and their mRNA levels was con-
sistent for cells treated with AA and EPA relative to the other
cells but not with DHA (Fig. 1).

Discussion

There has been a lack of consistency in the literature as to the
nature and relative potency of the n-6 and n-3 PUFA families,
as well as the individual fatty acids within each family, on
their ability to modulate the inflammatory response and
aortic lesion formation(18). This is the first study to address
this issue in an isolated cell system.

AA and EPA resulted in the lowest in vitro inflammatory
response in MF relative to the other fatty acids assessed. The
inflammatory factors IL-6 and TNFa and the chemokine

MCP-1 have relatively short half-lives in plasma(19). Their sus-
tained concentrations depend on new protein synthesis. In the
present study we observed that the inhibitory effect of AA and
EPA relative to the other fatty acids on the secretion of inflam-
matory factors was associated with lower mRNA levels of
these inflammatory factors, suggesting that AA and EPA may
have altered protein synthesis at the transcriptional level.
Since some PUFA and their metabolites can regulate NF-kB
activity, we speculate that the altered expression of these inflam-
matory factors may have been mediated by NF-kB(8).

In vivo, desaturases and elongases convert a fraction of diet-
ary LA to g-linolenic acid and AA. Both g-linolenic acid and
AA modulate the inflammatory state. In the present study, as
suggested by the fatty acid profile of the MF, there was
little conversion of LA to AA, which may explain why there
was little effect of LA on IL-6 secretion. The fatty acid profile
of the MF post-treatment also suggested little conversion of
EPA to DHA and retro-conversion of DHA to EPA. This
result is consistent with a previous report(13).

MF play a major role in the uptake of modified LDL and
deposition in the intimal layer of the arterial wall. In response
to exposure of the fatty acid-treated MF to modified LDL
there were modest differences in EC accumulation but no
net change in total cholesterol concentration. Nevertheless,

Table 1. Fatty acid composition (mol %) and cholesterol content (mg/100 mg protein) of macrophages differentiated from THP-1 cells*

(Mean values and standard deviations)

Control MA PA LA AA EPA DHA

Fatty acid Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

SFA 46·08b,c 3·35 59·64a 1·16 54·46a,b 1·73 31·95e 0·79 36·23d,e 0·87 36·17d,e 1·31 42·60d 7·44
12 : 0 0·42b,c 0·07 0·54a,b 0·08 0·31c 0·06 0·23c 0·04 0·31c 0·03 0·28c 0·02 0·61a 0·12
14 : 0 3·58b,c 0·51 20·35a 0·37 3·10b,c 0·36 2·67c 0·18 3·42b,c 0·23 3·53b,c 0·31 4·15b 0·51
16 : 0 29·26b 2·25 29·05b 0·14 39·48a 1·76 21·01c 0·51 24·29b,c 0·73 24·73b,c 1·08 28·75b 5·09
18 : 0 11·17a 1·35 8·10b,c 0·53 10·42a,b 0·44 7·26c 0·06 7·49c 0·06 6·80c 0·19 8·08b,c 1·77

20 : 0 0·33a 0·03 0·25b 0·02 0·35a 0·03 0·16c 0·01 0·17c 0·01 0·16c 0·00 0·17c 0·04
22 : 0 0·28a 0·04 0·17b,c,d 0·02 0·22a,b 0·02 0·10e 0·02 0·13c,d,e 0·02 0·19b,c 0·02 0·12d,e 0·02
24 : 0 1·03a 0·15 0·58b,c 0·04 0·57b,c 0·08 0·45c 0·06 0·42c 0·06 0·49b,c 0·02 0·73b 0·17

MUFA 39·78a 2·75 30·13b 2·24 34·31b 1·31 20·54c 2·06 21·18c 1·70 20·47c 1·29 20·59c 1·91
16 : 1n-9 1·02a 0·17 0·76a,b 0·10 0·81a,b 0·10 0·66b 0·03 0·76a,b 0·11 0·77a,b 0·04 0·71b 0·06
16 : 1n-7 4·54a,b 1·20 4·45a,b 0·83 4·72a 0·67 1·89c 0·26 2·62b,c 0·58 2·81a,b,c 0·42 2·73b,c 0·43
18 : 1n-9 22·99a 1·09 16·23c 0·79 19·02b 0·15 11·62d 0·93 11·96d 0·56 11·53d 0·40 11·86d 1·17

18 : 1n-7 10·07a 1·02 7·99b 0·88 8·69a,b 0·68 5·59c 0·65 5·18c 0·36 4·60c 0·18 4·83c 0·37
20 : 1n-9 0·70a 0·08 0·44b 0·04 0·65a 0·11 0·38b,c 0·03 0·24c,d 0·04 0·18d 0·04 0·20d 0·03
24 : 1n-9 0·46 0·33 0·26 0·07 0·42 0·20 0·39 0·24 0·42 0·34 0·57 0·46 0·26 0·23

PUFA 14·14b 3·94 10·23b 1·65 11·24b 2·63 47·51a 2·80 42·59a 2·56 43·35a 2·55 36·80a 8·74
n-6 PUFA 11·36b 2·97 8·18b 1·34 8·86b 2·05 45·13a 2·51 40·57a 2·13 8·28b 1·13 8·25b 1·84
18 : 2 2·73b 0·44 1·91b 0·24 1·95b 0·20 36·79a 2·17 2·12b 0·24 1·96b 0·09 1·91b 0·15

18 : 3 0·16 0·14 0·22 0·17 0·24 0·04 0·23 0·13 0·39 0·13 0·43 0·12 0·20 0·05
20 : 3 1·59b 0·47 1·09b 0·22 1·38b 0·62 2·00a,b 0·02 3·55a 0·98 1·20b 0·29 1·64b 1·00
20 : 4 5·99b 1·64 4·33b 0·65 4·51b 1·01 4·60b 0·34 24·39a 1·33 3·88b 0·46 4·11b 0·84
22 : 2 0·30 0·19 0·22 0·07 0·34 0·28 0·53 0·14 0·26 0·28 0·21 0·23 0·03 0·02
22 : 4 0·50c 0·11 0·37c 0·01 0·41c 0·05 0·89b 0·07 9·49a 0·30 0·54b,c 0·03 0·32c 0·02
22 : 5 0·09b 0·08 0·03b 0·02 0·03b 0·01 0·07b 0·05 0·37a 0·10 0·05b 0·03 0·04b 0·03

n-3 PUFA 2·79b 0·98 2·05b 0·31 2·38b 0·58 2·39b 0·97 2·02b 0·47 35·08a 1·44 28·55a 7·68
18 : 3 0·23a,b 0·02 0·15b 0·01 0·14b 0·04 0·15b 0·01 0·14b 0·04 0·33a 0·09 0·16b 0·06
20 : 5 0·80b,c 0·36 0·59c 0·19 0·84b,c 0·43 0·86b,c 0·96 0·38c 0·14 18·75a 1·43 3·34b 1·85
22 : 5 0·51c 0·16 0·40c 0·01 0·43c 0·08 0·61b,c 0·11 0·65b,c 0·07 14·92a 0·34 1·07b 0·17
22 : 6 1·24b 0·50 0·91b 0·11 0·98b 0·11 0·77b 0·20 0·85b 0·22 1·07b 0·31 23·98a 6·36

TC 1·36 0·19 1·41 0·32 1·43 0·34 1·39 0·03 1·42 0·10 1·50 0·07 1·21 0·07
FC 1·29 0·19 1·22 0·34 1·25 0·31 1·24 0·00 1·16 0·10 1·20 0·05 1·03 0·06

EC 0·07c 0·01 0·19b 0·04 0·18b 0·03 0·15b 0·03 0·27a 0·01 0·30a 0·02 0·18b 0·01

MA, myristic acid; PA, palmitic acid; LA, linoleic acid; AA, arachidonic acid; TC, total cholesterol; FC, non-esterified cholesterol; EC, esterified cholesterol.
a–e Mean values within a row with unlike superscript letters were significantly different (P,0·05).
* Each experiment was performed in three independent cell cultures.
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relative to MA and PA, AA and EPA, and to a lesser extent
LA and DHA, significantly lowered the mRNA levels of
MSR1 and ABCA1, and ABCA1 protein levels, suggesting
alternations in cellular cholesterol flux. In addition to these
findings, differential expression and activities of acyl-CoA:
cholesterol acyltransferase and cholesteryl ester hydrolase
may have led to the observed differences in MF EC accumu-
lation. Furthermore, incubating MF with LDL enriched with
different fatty acids v. fatty acids bound to albumin has been
shown to differentially affect EC hydrolysis and cellular
cholesterol efflux(20,21), which could also account for the
present results.

The lack of clear influence of the position of the first double
bond from the methyl end of the acyl chain on inflammatory
factor release and mRNA expression was somewhat unex-
pected(22). Previous work has demonstrated that fish oil, con-
taining both EPA and DHA, reduced secretion of
inflammatory factors in lipopolysaccharide-stimulated mono-
nuclear cells(23). Nevertheless, few studies have directly com-
pared EPA with DHA. Although peritoneal MF isolated from
C57BL/6 mice fed fish oil containing different ratios of
EPA:DHA were reported to exhibit reduced secretion of
TNFa and IL-6, and this reduction was greater in those
mice fed fish oil containing the highest ratio of EPA:DHA(24).

Fig. 1. Effect of individual fatty acids on the secretion (A, C, E; expressed as ng inflammatory factor/mg cell protein) and mRNA levels (B, D, F; expressed as fold

change relative to control (Con)) of TNFa (A and B), IL-6 (C and D) and monocyte chemotactic protein-1 (MCP-1) (E and F) in macrophages (MF) differentiated

from THP-1 cells. MF were pretreated with 100mM-fatty acids for 2 h. Thereafter lipopolysaccharide was added at 1mg/ml, and the cells were incubated for an

additional 24 h. MA, myristic acid; PA, palmitic acid; LA, linoleic acid; AA, arachidonic acid. Values are the means of three independent experiments, with standard

deviations represented by vertical bars. a,b,c,d Mean values with unlike letters were significantly different (P,0·05).
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In summary, relative to control and SFA, PUFA had an
inhibitory effect on transcriptional levels of inflammatory fac-
tors in and their secretion from MF differentiated from THP-1
monocytes. AA and EPA had a more pronounced effect than
LA and DHA. These data suggest that individual long-chain
PUFA have differential effects on lipopolysaccharide-stimu-
lated inflammatory response and transporters of cholesterol
flux in MF which are not related to the n position of the
first double bond, chain length or degree of saturation.
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