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Abstract

Quorum sensing governs bacterial communication, playing a crucial role in regulat-
ing population behaviour. We propose a mathematical model that uncovers chaotic
dynamics within quorum sensing networks, highlighting challenges to predictability.
The model explores interactions between autoinducers and two bacterial subtypes,
revealing oscillatory dynamics in both a constant autoinducer submodel and the full
three-component model. In the latter case, we find that the complicated dynamics
can be explained by the presence of homoclinic Shilnikov bifurcations. We employ a
combination of normal-form analysis and numerical continuation methods to analyse
the system.

2020 Mathematics subject classification: primary 34C23; secondary 37G05, 37G15,
37C29, 37G20, 92B25.

Keywords and phrases: homoclinic bifurcation, normal forms, chaotic dynamics,
quorum sensing.

1. Introduction

Quorum sensing (QS)—also known as autoinduction—is a mechanism of regulation
of gene expression which allows communication in a cell population [28, 38]. In the
case of bacteria, this process is a density-dependent behaviour, which consists of
cell-to-cell communication through the release of chemical signal molecules known
as autoinducers. This communication enables a population to explore a given medium
and alter its behaviour in response to its own fluctuation, which occurs from changes
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in the number of species present in the community. Specifically, the basis of the
QS mechanism is the production and release of autoinducers, whose concentration
increases as a function of bacterial population density. When the population density
exceeds a threshold, the bacteria detect the autoinducers which then activate genes that
switch on a behavioural trait. Autoinducers located in the external medium diffuse and
bind with a specific protein within the bacteria. A protein-autoinducer complex is then
formed that attaches to a region of the bacteria’s DNA. This in turn regulates the
production of the autoinducers, enhancing a specific regulated cell-density behaviour
(see, for instance, [7, 8, 37]).

The QS phenomenon was first observed by Nealson and Hastings in 1970 in a
bioluminescent bacteria called Vibrio fischeri [31]. This bacterium forms a mutually
beneficial symbiotic relationship with some species of squid such as the Hawaiian
squid Euprymna scolopes. The V. fischeri live in the squid’s light organ which provides
nourishment, allowing the bacteria to proliferate. When the bacteria reach a high
population density the genes involved in bioluminescence are expressed. The light
produced allows the squid to mask its shadow and avoid predation [36]. Following
the discovery of the density-dependent bioluminescent behaviour of V. fischeri, other
species of bacteria have been discovered to employ a QS mechanism; for instance,
the bacterium Chromobacterium violeceum gives rise to the production of a purple
pigment [27]. Also, biofilms may present challenges and opportunities in the industry
setting as these may cause blockages in specialized machinery [26], gene expression
[34], inhibiting pathogen virulence [18, 40], and disrupting QS signalling [5, 10]. That
is, QS inhibitors function by blocking signal receptors or degrading autoinducers,
thereby altering bacterial gene expression and population dynamics [19, 33]. These
interventions have been shown to reduce biofilm formation and disrupt survival
pathways, indirectly increasing decay rates [30]. Furthermore, although the specific
strategy of combining QS inhibitors with periodic modulation of the decay rate
remains an area for future research, periodically varying bacterial decay rates could
provide an additional level of control by introducing fluctuating conditions that prevent
bacterial adaptation to constant stress. This strategy may exploit bacterial dynamics by
periodically altering environmental factors, such as nutrient availability or physical
conditions, which can exacerbate the vulnerabilities of bacterial populations and
inhibit resistance development. Alternating between higher and lower decay rates
could disrupt bacterial survival strategies, leading to a more effective control mech-
anism over time. Such temporal variability in decay rates could enhance the efficacy
of QS inhibitors by making bacterial populations more susceptible during periods of
transition, preventing long-term adaptation and resistance. That is, upon integrating
QS inhibitors into bacterial control strategies with periodic decay rate modulation,
their ability to modulate microbial behaviours can be exploited, advancing applications
in antimicrobial therapies and bioprocess management.

The QS phenomenon has been studied from deterministic as well as stochastic and
hybrid mathematical modelling approaches, which are inspired by many biologically
plausible perspectives. For instance, in the paper by Pérez-Velázquez et al. [32]
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a plant-pathogen population controlling virulence on leaf surfaces is investigated
by means of a continuous-time Markov process, where linear birth and logistic
death–migration population processes, along with an autocatalytic mechanism for
acyl homoserine lactone autoinducer concentration, are taken into account. Their
findings include that the QS mechanism and autoinducer diffusion follow an inversely
proportional relationship. Another interesting study can be seen in the paper by
Fredrick et al. [13]; there, extracellular polymeric substance (EPS) production is
modelled in a growing biofilm under various environmental conditions, yielding a
reaction-diffusion system where the diffusion coefficient is density-dependent. The
authors found that QS-induced EPS production permits a biofilm to switch from a
colonization state to a protection state, which is a crucial characteristic of QS. Even
further, in the paper by Kuttler at al. [22] an anomalous diffusion process is taken
into account, which captures a delayed maundering of substances as a consequence of
transcriptional features. On the other hand, a deterministic gene regulatory network
point of view is addressed in [6, 12, 14] by considering a QS pathway involving
multiple feedforward and negative feedback loops aside from transcription time delays
in a cancer drug realization scheme. A key result from their paper is the appearance of
Hopf bifurcations, other secondary oscillatory-induced bifurcations and a time-delay
threshold, which coordinate self-sustained oscillating features. This small sample of
approaches pays special attention to transcriptional time delay as well as activating and
deactivating crucial switches. Our area of focus is primarily directed towards the latter.

In this work, we propose a simple model which consists of features of a bacterial
population and its inherent autoinducer concentration interaction. In other words,
we assume that the population of bacteria is locally activated and inhibited by the
production of autoinducers. In order to capture the key qualitative ingredients of QS
mechanisms in bacteria, we follow a simplified approach. In so doing, we assume
that the autoinducers bind to receptors that enhance the expression of a particular
gene, and its production also directly depends on the bacteria population (for example,
see [25]). When a bacterium responds to an external stimulus by increasing the
amount of a cellular component, the process is up-regulated, and it is down-regulated
otherwise. To put it another way, the dynamics of the bacteria is regulated by both
autoinducers and growth of the bacteria population itself. Hence, the population is
considered to be composed of cell subpopulations in two different states: up-regulated
and down-regulated bacteria, namely motile m and static s, respectively, and the
concentration of autoinducers is given by q. As autoinducers are produced by both
subpopulations at a rate r (see [38]), and the bacteria can either switch or remain in
their category, we make the following assumptions.

(i) The growth rate of the motile bacteria population follows an autocatalytic
process and is proportional to the probability that motile bacteria switch on and
off in their current category. The response rate of motile bacteria to autoinducer
concentration is then given by k1 and is up-regulated by its own production
and down-regulated by the production of static bacteria; that is, the dynamics
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follows an activator-inhibitor-like behaviour, where m acts as the activator and
s as the inhibitor. We also assume that the media may be overpopulated, so γ is
a saturation parameter.

(ii) The production of static bacteria is assumed as a result of a cross-catalytic
reaction of motile bacteria; this interaction may be taken as an indirect
down-regulation process, which is modulated by k2.

(iii) The entire bacteria population is constantly produced at a rate (1 + ε)α,
where 0 < ε < 1 is the ratio between both bacteria subpopulation growth rates.
The autoinducers, motile and static bacteria decay at rates μ1, μ2 and μ3,
respectively.

Putting everything together, we obtain that the dynamical local interaction is
governed by the system

X :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̇ = r(m + s) − μ1q ,

ṁ =
k1qm2

s(1 + γm2)
+ α − μ2m

ṡ = k2qm2 + εα − μ3s .

, (1.1)

Essentially, model (1.1) captures the dynamical behaviour of QS, that is, the concen-
tration of autoinducers depends on the production by bacteria in both states. When
this concentration lies beyond a certain threshold, bacteria are expected to react in
a synchronized-like way, as has been reported in [20, 24, 35], for instance. We have
identified this feature by means of slowly varying a crucial parameter as can be seen
further in Section 3, and analyse the different dynamical scenarios of (1.1) to find
parameter regimes for steady-state long-term behaviour and the observed periodic
oscillations. However, we also find chaos which can be explained by the presence of
Shilnikov homoclinic bifurcations.

The present paper is organized as follows. Throughout Section 2 we prove that the
model solutions are always nonnegative for feasible initial conditions. In Section 3
we take into consideration a constant autoinducer concentration and study the local
stability of a reduced system. This is followed in Section 4 by a bifurcation analysis
where the role of a key parameter triggers leading nonlinear events, namely Hopf
and Bogdanov–Takens bifurcations. Normal forms for both dynamical phenomena are
also computed. From there, a thorough numerical bifurcation analysis is performed
in Section 5 in the full system, where conditions on the Shilnikov homoclinic chaos
mechanism are found and numerically explored. Concluding remarks can be found in
Section 6.

2. Nonnegative solutions for realistic initial conditions

Model (1.1) is well-posed in the sense that every solution starting from a realistic
(positive) initial condition remains nonnegative. In what follows we see (1.1) as a
vector field defined on the set Ω := {(q, m, s) ∈ R3| q ≥ 0, m ≥ 0, s > 0}, and use the
following standard notation [2, 11] for its components:
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X(q, m, s) = X1(q, m, s)
∂

∂q
+ X2(q, m, s)

∂

∂m
+ X3(q, m, s)

∂

∂s
.

Let us study the behaviour of X in ∂Ω to show that Ω is invariant. Let us subdivide
∂Ω into the coordinate planes ∂Ω = ωqm ∪ ωqs ∪ ωms, where ωqm = {(q, m, s) ∈
R

3| q≥0, m≥0, s=0}, ωqs= {(q, m, s)∈R3| q≥0, m=0, s>0}, and ωms= {(q, m, s)∈
R

3| q = 0, m ≥ 0, s > 0}.
The restriction of (1.1) to the plane ωqs is

X(q, 0, s) = (rs − μ1q)
∂

∂q
+ α
∂

∂m
+ (εα + μ3s)

∂

∂s
.

Since α > 0, the vector field (1.1) on ωqs points towards the interior of Ω. Similarly,
the restriction of (1.1) to the plane ωms is

X(0, m, s) = r(m + s)
∂

∂q
+ (α − μ2m)

∂

∂m
+(εα + μ3s)

∂

∂s
.

Since r > 0, it follows that the vector field X in ωms points towards the interior of Ω.
On the other hand, system (1.1) is not defined on the plane ωqm. In order to analyse

the behaviour of (1.1) near ωqm, let us consider the time scaling t �→ st. In this way,
(1.1) becomes

X0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̇ = r(m + s)s − μ1qs,

ṁ =
k1qm2

1 + γm2 + αs − μ2ms,

ṡ = k2qm2s + εαs − μ3s2.

(2.1)

System (2.1) is topologically equivalent to (1.1) in Ω. Moreover, (2.1) is well defined
for s = 0 and, hence, it can be continually extended to the boundary plane ωqm ⊂ ∂Ω.
The restriction of (2.1) to the plane ωqm is

X0(q, m, 0) =
k1qm2

1 + γm2

∂

∂m
.

It follows that the (unique) solution of (2.1) with initial condition (q(0), m(0),
s(0)) = (q0, m0, 0) ∈ ωqm is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0,

m(t) =
−1 + k1q0m0t + γm2

0 +

√
4γm2

0 + (k1tq0m0 + γm2
0 − 1)2

2γm0
,

s(t) = 0.

(2.2)

As a consequence, the set ωqm is an invariant plane of (2.1) which consists of a
continuum of straight lines parallel to the m-axis parameterized by (2.2). Moreover,
both axes q = 0 and m = 0 consist of a continuum of equilibria.
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Let us now study the behaviour of orbits of (2.1) near the invariant plane ωqm. Let
us search for the solution of (2.1) with initial condition (q(0), m(0), s(0)) = (q0, m0, δ) ∈
int(Ω), with 0 < δ � 1 sufficiently small. Specifically, consider a solution of the form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q(t) = q0(t) + δq1(t) + O(δ2),

m(t) = m0(t) + δm1(t) + O(δ2),

s(t) = s0(t) + δs1(t) + O(δ2),

(2.3)

where (q0(t), m0(t), s0(t)) is the solution of (2.1) in the limit as δ→ 0 and, hence, it is
given by (2.2). In this way, (2.3) is expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q(t) = q0 + δq1(t) + O(δ2),

m(t) = m0(t) + δm1(t) + O(δ2),

s(t) = δs1(t) + O(δ2),

(2.4)

with

m0(t) =
−1 + k1q0m0t + γm2

0 +

√
4γm2

0 + (k1tq0m0 + γm2
0 − 1)2

2γm0
.

It follows that the higher-order terms of (2.4) must satisfy the initial conditions
(q1(0), m1(0), s1(0)) = (0, 0, 1) for n = 1, and (qn(0), mn(0), sn(0)) = (0, 0, 0) for n ≥ 2.
Substitution of (2.4) into (2.1) leads to the following differential equations for the O(δ)
terms of q(t):

δq̇1(t) = r(m0(t) + δm1(t) + · · · + δs1(t) + · · · )(δs1(t) + · · · )
− μ1(q0 + δq1(t) + · · · )(δs1(t) + · · · ) = δrm0(t)s1(t) − δμ1q0s1(t) + O(δ2).

Hence,

q̇1(t) = rm0(t)s1(t) − δμ1q0s1(t), q1(0) = 0. (2.5a)

Similarly,

ṁ(t) = ṁ0(t) + δṁ1(t) + O(δ2) =
k1q(t)m2(t)
1 + γm2(t)

+ αs(t) − μ2m(t)s(t).

For 0 < δ � 1 sufficiently small we have

ṁ0(t) + δṁ1(t) + O(δ2) =
k1q0m2

0(t)

1 + γm2
0(t)

+ δ

⎛⎜⎜⎜⎜⎝k1q1(t)m2
0(t)

1 + γm2
0(t)
−

2γk1q0m3
0(t)m1(t)

(1 + γm2
0(t))2

+
2k1q0m2

0(t)m1(t)

1 + γm2
0(t)

⎞⎟⎟⎟⎟⎠
+ δαs1(t) − δμ2m0(t)s1(t) + O(δ2).
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Thus,

ṁ1(t) =
k1q1(t)m2

0(t)

1 + γm2
0(t)
−

2γk1q0m3
0(t)m1(t)

(1 + γm2
0(t))2

+
2k1q0m2

0(t)m1(t)

1 + γm2
0(t)

+ αs1(t) − μ2m0(t)s1(t),

m1(0) = 0. (2.5b)

Likewise,

δṡ1(t) = k2(q0 + δq1(t) + · · · )(m0(t) + δm1(t) + · · · )2(δs1(t) + · · · ) + εα(δs1(t) + · · · )
− μ3(δs1(t) + · · · )2 = δk2q0m2

0(t)s1(t) + δεαs1(t) + O(δ2).

Hence,

ṡ1(t) = (k2q0m2
0(t) + εα)s1(t), s1(0) = 1. (2.5c)

The initial value problem (2.5) defines any solution of (2.1) starting at a distance
0 < δ � 1 from the invariant plane ωqm with accuracy O(1/δ). In particular, since
k2q0m2

0(t) + εα > 0, it follows from (2.5c) that s1(t) is an increasing function for every
t > 0. Hence, the component s(t) in (2.1) is increasing near the plane s = 0. Therefore,
no trajectory of (2.1) with initial condition in int(Ω) can reach the boundary plane ωqm

in (finite or infinite) positive time.
Since (2.1) is topologically equivalent to (1.1) in Ω, we conclude from the analysis

in this section that every trajectory of the original system (1.1) starting in Ω remains
nonnegative.

3. Constant autoinducer concentration

To shed light on the understanding of QS we now analyse the bacteria interaction
dynamics under the assumption of a constant autoinducer concentration q0 > 0. In
so doing, we have η1 = k1q0 and η2 = k2q0 as the motile and static bacteria response
rates, respectively. From (1.1), upon substituting the rescaled variables for the bacteria
population u = (η2/η1)m and v = (μ3η2/η

2
1)s as well as τ = μ3t for time, and the new

parameters

K = γ
(
η1

η2

)2
, b =

μ2

μ3
, a =

η2α

η1μ3
, e =

μ3ε

η1
, (3.1)

we obtain the following two-dimensional constant autoinducer system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u̇ = f (u, v), f (u, v) =

u2

v(1 + Ku2)
+ a − bu,

v̇ = g(u, v), g(u, v) = u2 + ae − v.
(3.2)

Notice that key parameters arise so that:

(i) K plays a saturation role;
(ii) b characterizes the bacteria decay rate; and
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(iii) a and e capture bacteria production-related roles as well as inversely and
directly proportional dependence of the constant autoinducer concentration and
decay rate variations, respectively. The latter shows that parameter product ae
only depends on the bacteria response to autoinducer capacities and production
of static subpopulation.

3.1. Number of steady states As the understanding of interactions between motile
and static bacteria is the backbone of the communication mechanism via autoinducers,
we examine the circumstances affecting the way subpopulations coexist or go extinct.
Hence, we first look for positive steady states. Suppose that nullclines of (3.2) satisfy

v =
u2

(1 + Ku2)(bu − a)
, (3.3a)

v = u2 + ae, (3.3b)

for u, v > 0. Notice that (3.3b) defines a convex parabola with vertex at (0, ae), and
(3.3a) has an asymptote at u = a/b. For values of u < a/b, the corresponding v-values
are negative, which is not biologically meaningful. Now, we find that the nullcline
(3.3a) can be recast as a smooth function of u, which is positive and possesses critical
points for u > a/b as v′(u) = 0 is held. In so doing, we get that −2a + b(u − Ku3) = 0
must be satisfied. This yields, as a consequence of Descartes’ rule of signs, the
existence of two positive roots such that a/b < u�1 < u�2 as a, b, K > 0, where the lower
value corresponds to a local minimum and the higher one to a local maximum. Thus,
from both expressions in (3.3), we get that there are at most three positive steady states.
This is schematically illustrated in Figure 1 for a system defined later in (3.5) which is
equivalent to (3.2) in the interior of the first quadrant and is well defined along the axis
v = 0. These sketches provide sensitive evidence that two saddle-node bifurcations
may occur as two steady states are created by varying appropriate parameters (see
panels (a) and (c), where the nullclines are tangent).

3.2. Local stability of positive steady states We now pay attention to the local
stability of positive steady states (u∗, v∗) in (3.2). The Jacobian matrix of (3.2) at
(u∗, v∗) is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2u∗

v∗(1 + Ku2
∗)2
− b −

u2
∗

(1 + Ku2
∗)v2
∗

2u∗ −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3.4)

where, by setting J := 2u∗/[v∗(1 + Ku2
∗)

2], the trace is given by tra(J) = J − b − 1,
and the determinant by det(J) = b − (1 − u2

∗/[v∗(1 + Ku2
∗)])J . Notice that the entries

J12, and J22 of (3.4) are negative, while J21 is positive. Hence, local stability features
depend on whether the first entry J11 = J − b is greater or less than 1 as follows from
the Hartman–Grobman theorem [17]. This is summarized as follows.
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(a) (b)

(c) (d)

FIGURE 1. Nullcline sketches for key parameter values of e, where b > K > a. Panels (a) and (c) show
three steady states, two of which are positive (within first quadrant) and the third is the origin; in (b)
three positive steady states are depicted; and (d) shows only one positive steady state. Panels (a) and (c)
correspond to scenarios approximately at two saddle-node bifurcations. Here f̃ (u, v) = 0 and g̃(u, v) = 0
stand for u̇ = 0 and v̇ = 0 in (3.5), respectively.

PROPOSITION 3.1. Let J := 2u∗/[v∗(1 + Ku2
∗)

2]. Then the local stability of a positive
steady state (u∗, v∗) of (3.2) is as follows.

(1) It is locally asymptotically stable ifJ < b + 1 and b > (1 − u2
∗/[v∗(1 + Ku2

∗)])J .
(2) It is a repeller if J > b + 1 and b > (1 − u2

∗/[v∗(1 + Ku2
∗)])J .

(3) It is a saddle point if b < (1 − u2
∗/[v∗(1 + Ku2

∗)])J .

We now analyse the dynamical behaviour in the neighbourhood of the origin.

3.3. Dynamics near the origin Despite vector field (3.2) being defined on
D = {(u, v) ∈ R2| u ≥ 0, v > 0}, a solution with v = 0 corresponds to absence of static
bacteria, which is a feasible biological scenario. In consequence, similarly to (2.1), we
consider a map t �→ t/v to get

Y0 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u̇ = f̃ (u, v) , f̃ (u, v) =

u2

1 + Ku2 + av − buv,

v̇ = g̃(u, v) , g̃(u, v) = u2v + aev − v2,
(3.5)

which is topologically equivalent to (3.2) and can be continually extended to the
boundary axis v = 0.

PROPOSITION 3.2. The origin of (3.5) is a repeller.
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PROOF. Since the eigenvalues of the Jacobian matrix at the origin are λ1 = 0 and
λ2 = ae > 0, with associated eigenvectors v1 = (1, 0)t and v2 = (1/e, 1)t, respectively,
it follows that there exists a centre manifold

Wc = {(u, v) | v = h(u) := a2u2 + O(u3), |u| < δ},

for δ > 0 sufficiently small [17]. Since Wc is invariant one must have

g̃(u, h(u)) ≡ h′(u)f̃ (u, h(u)),

for every (u, v) ∈ Wc. It follows from this identity that a2 = 0 and h(u) = O(u3). Hence,
the dynamics of (3.5) restricted to Wc is equivalent to ẋ = x2 + O(x3). Therefore, the
origin of (3.5) is a repeller. �

4. Bifurcation analysis in the two-dimensional system

We now perform a numerical exploration with MATCONT [16] in order to identify
the most relevant bifurcations when parameters e or b are varied slowly. Upon varying
b, different bacteria decay rate scenarios are explored; meanwhile, variations of e
reveal the impact of having several response rates as well as different production rates.
We focus our analysis on the way bacteria decay rates coordinate the emergence of
oscillations.

Figure 2 depicts bifurcation diagrams of system (3.2) for parameters e and b. In
Figure 2(a), two saddle-node (SN) points are identified at e1 and e2, where the system
possesses only one unstable or stable steady state for e < e1 and e > e2, respectively,
and three coexisting equilibrium points for e1 < e < e2. Note that the case e = e1
corresponds to the nullcline arrangement in Figure 1(a); the scenario with e1 < e < e2
relates to Figure 1(b); the case e = e2 corresponds to Figure 1(c); and e > e2 is
associated with Figure 1(d). On the other hand, in Figure 2(b), after setting e = 3,
two SN points are shown at b1 and b2 in addition to a Hopf point (denoted by H, for
simplicity) at b3. In both panels of Figure 2, the black curves represent asymptotically
stable equilibria, the discontinuous branch between the two SN points is a saddle point,
and the upper dashed curve is a repeller. This Hopf bifurcation is supercritical as the
first numerically computed Lyapunov coefficient is negative. Hence, for b3 < b < b4 a
stable limit cycle arises and coexists with the stable equilibrium at the lower branch.
This paves the way for the emergence of synchronizing dynamics under suitable initial
conditions, as a result of the limit-cycle branch that originates from the H point
and terminates at the lightly dashed saddle branch at b4, suggesting the potential
occurrence of homoclinic orbits.

A two-parameter continuation is conducted following Figure 2 to investigate
how the bifurcations evolve with the simultaneous variation of both parameters. As
parameters e and a are slowly varied from the SN points in Figure 2(a), a cusp point
(CP) and a Bogdanov–Takens point (BT) are observed; see Figure 3. Additionally, the
two-parameter continuation with respect to both b and e, starting from the H point,
reveals a Bogdanov–Takens bifurcation as the organizing centre of the dynamics, as
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(a) (b)

FIGURE 2. Bifurcation diagrams for bifurcation parameters e and b. Dashed and solid curves correspond
to unstable and stable steady states, respectively, where heavily dashed branches gather repeller steady
states while saddle steady states are collected by lightly dashed branches, and the solid grey branch
consists of stable limit cycles. (a) With b = 1.4 and a = 0.042 fixed, we identify two saddle-node (SN)
points located at e1 ≈ 1.948551 and e2 ≈ 3.497398. (b) Upon fixing e = 3 and a = 0.042, we find two SN
points at b1 ≈ 1.128239 and b2 ≈ 1.512641 as well as a Hopf (H) point at b3 ≈ 1.168852 which terminates
at b4 ≈ 1.239672. Parameter value for K = 0.043.

FIGURE 3. Two-parameter continuation. The solid curve corresponds to the SN locus. A CP point is
located at (e, a) ≈ (1.723644, 0.123118) and a BT point at (e, a) ≈ (2.490826, 0.066303). Other parameter
values: b = 1.4 and K = 0.043.

shown in Figure 4. Upon taking Proposition 3.2 into account, the parameter space of
interest for b and e can be divided into the following regions:

(I) Stable steady state. This region, though disconnected, exhibits a stable steady
state, while the origin remains unstable. For values of b close to zero, the
positive steady state is a stable node. As b increases slightly, this state
transitions into a stable focus, driven by a shift from negative real eigenvalues
to complex eigenvalues with negative real parts.

(II) Oscillation dynamics. The emergence of positive, stable periodic solutions
plays a critical role in shaping the synchronized dynamical behaviour of
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FIGURE 4. Two-parameter continuation for parameters b and e. Four possible scenarios are categorized
as follows. I: Stable steady state, where the population converges to a positive population density. IIa:
Oscillation dynamics, where the bacteria approach a periodic solution. IIb: Oscillation dynamics and
stable steady state (bistability), exhibiting oscillation dynamics and a stable node. The bold dashed curve
captures homoclinic nonlinear transitions (hom). III: Stable steady state, where no periodic solutions arise
as orbits asymptotically converge to a steady state. IV: Two stable steady states (bistability), where there
are two stable steady states, a node and a focus, which are separated by a saddle point. The remaining
parameters are set to a = 0.042 and K = 0.043.

bacterial populations. This phenomenon may stem from strong inter-bacterial
communication. Notably, the lower SN dashed curve divides this region
into two distinct subregions: in subregion (IIa), self-sustained oscillations
dominate, whereas in subregion (IIb) (bistability), a stable steady state coexists
with a limit cycle.

(III) Stable steady state. No limit cycle is observed on the right-hand bold dashed
curve associated with the homoclinic bifurcation originating from the BT
point.

(IV) Two stable steady states (bistability). This region contains three steady states:
a stable node and a stable focus, separated by a saddle point. Consequently, the
population converges to one of these two stable states depending on the initial
conditions.

Notice that Figure 4 also shows that the larger the value of e, the smaller the range
of values of b that can sustain oscillations. In other words, as e exceeds a certain
value no synchronizing dynamics are possible, no matter the value of b. Parameter
e plays a bacteria production role in the model. It is directly proportional to the rate
of static bacteria production and inversely proportional to the constant autoinducer
concentration. This could indicate that the oscillatory dynamics of the population is
dependent on the interaction between the decay and production rates of the bacteria or
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(a) (b) (c)

FIGURE 5. A solution sample for time-dependent parameter b: (a) a solution with b linearly ranging from
b = 1 to b = 3 with e = 1 fixed; (b) a solution with parameter b going backwards from b = 3 to b = 1 with
e = 1 fixed; (c) parameter b linearly increases from b = 1.0 to b = 1.5 with e = 1.5 fixed. Initial conditions
are set to (u, v) = (0.5, 0.5). Other parameter values: a = 0.042 and K = 0.043.

the decay rates and the autoinducer concentration. The latter scenario will be explored
in Section 5.

4.1. Hysteresis and synchronization Now, as we have found such key dynamical
events, which are characterized by parameters b and e, related to autoinducers
concentration and bacterial decay rates, as can be seen in (3.1), we illustrate these
transitions by considering a time-dependent variable b = b(t).

4.1.1. Linearly varying b The model shows hysteresis as b is varied linearly back
and forth. For instance, in Figure 5(a) we fix e = 1.0 and continuously vary linearly
from b = 1.0 to b = 3.0. As can be seen, the solution decays in oscillatory fashion
for values of b small enough (region I); then, as b crosses a corresponding Hopf
bifurcation value, the solution amplitude starts increasing approaching a stable limit
cycle (region II); then it finally approaches a stable steady state after the homoclinic
bifurcation (regions III and I). In Figure 5(b), parameter b is traversed backwards,
which yields a solution that remains in a stable node steady state throughout the
first two regions it crosses (regions I and III). As it reaches the oscillation dynamics
region, the solution spikes and approaches a limit cycle (subregions IIa, b). Finally, the
solution begins to show a decaying amplitude oscillatory behaviour (region I).

Notice that in Figure 5(b), the solution’s behaviour is rather dissimilar to that
when b increases (see Figure 5(a)), which indicates the existence of hysteretic-like
features in the system as b is varied back and forth. In other words, the solutions
depart from and return to the same initial state, exploring different dynamical regimes
depending on the parameter pathways. These solutions exhibit both oscillatory and
nonoscillatory behaviours with distinct characteristics, suggesting a robust feature
of the system’s interaction. This resilience may be interpreted biologically as the
bacteria population’s ability to preserve functionality despite external and internal
perturbations, as highlighted in, for example, [21]. Varying b from b = 1.0 to b = 3.0
and back illustrates how the dynamics of the solution changes for different bacteria
decay rates for a constant value of e. When b values are close to 1, the decay rates of
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FIGURE 6. A sample solution for e = 1.0 and b varying between 1 and 3 at different frequencies.
Parameter b(t) is depicted by the dotted curve for A = 2, B = 1 and ϕ = 3π/2. The solution is shown
for three different frequency values as is shown in each panel. Other parameter values: a = 0.042 and
K = 0.043.

constant and static bacteria are similar. As b grows, the difference between the decay
rates of the bacteria increases.

On the other hand, observe that in Figure 5(c), parameter e = 1.5 is kept fixed and
b varies from b = 1.0 up to b = 1.5 and remains at this value as the solution converges
to a periodic solution (regions I and IIa). This periodic behaviour shows that the
concentration of motile bacteria slightly rises before the static bacteria concentration
and that its exponential decay is faster than that of the static population.

4.1.2. Periodically varying b The bifurcation diagram in Figure 4 highlights the
critical role of parameter b in the emergence of oscillatory behaviour, reflecting the
impact of time-dependent variations in bacterial decay rates. We therefore proceed
to illustrate crucial consequences as b varies periodically back and forth between
b = 1.0 and b = 3.0 in a given period of time for a fixed e value. In doing so, we
will gain insight into the effect of bacteria decay rates that vary in time. We consider
an interval given by t ∈ [0, 2000] and a periodic decay rate parameter given by
b(t) = A + B sin(ωt + ϕ), where A and B determine parameter bounds and ω and ϕ
are the frequency and phase at which b varies. Figure 6 shows three scenarios for b
varying at different frequencies. These simulations suggest that, in order to observe
meaningful dynamics, the value of ω must be small. For small ω, the solution will
indeed show oscillations with a significantly small amplitude, but as the value of
ω increases, the solution will behave as a constant state intermittently disrupted by
spikes over time. In Figure 6 the solutions for ω = 0.010, 0.027 and 0.044 are depicted.
For ω = 0.010, we see that as b starts to increase, the solution oscillates regularly. As
b(t) varies periodically the solutions alternate between periodic behaviour, oscillatory
decay, and constant. That is, as b increases and the solution enters the oscillation region
in Figure 4, the amplitude of the oscillations increases to remain constant. Notice that,
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TABLE 1. Parameter values used in Section 4.

a b e K

[0, 0.15] [0.5, 3] [0, 5] 0.043

as b starts to decrease, the solution becomes constant until it re-enters the oscillation
region, when it spikes. This is characterized by the valley-like windows; see the upper
panel. When ω = 0.027 and 0.044 we see that, as parameter b takes decreasing values,
the solution spikes as b enters the oscillation region. However, as ω increases, the
stable spiral behaviour lasts less time, until it is no longer present in the solution. These
sudden spikes in the solution indicate excitatory dynamics in the system. The previous
results convey that the dynamics of the two-dimensional system (3.5) is sensitive to
fast varying parameter b, which suggests that the time scale at which the bacteria decay
rates change has a rather direct impact on the possible emergence of synchronization
dynamics.

4.2. Andronov–Hopf bifurcation in the two-dimensional system We now pro-
ceed to compute the normal forms for the Hopf bifurcation as is crucial for the
dynamical shaping for the distinguished parameter values of Table 1.

Let (U, V) ∈ R2
+ be the positive coordinates of an equilibrium of (3.2) in the first

quadrant. Then the set of equations f (U, V) = 0 and g(U, V) = 0 define implicitly a
locally invertible transformation given by Ψ : Λ −→ R4

+,

(U, V , b, K) �→ (a, e, b, K) :=
(
U(b(1 + KU2)V − U)

V + KU2V
,

(V − U2)(V + KU2V)
U(b(1 + KU2)V − U)

, b, K
)

,

(4.1)

inΛ := {(U, V , b, K) ∈ R4
+ | b(1 + KU2)V − U > 0, V − U2 > 0}. Then the vector field

(3.2) in parameter space Λ has the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′ =

x2

y + Kx2y
+

U(b(1 + KU2)V − U)
V + KU2V

− bx ,

y′ = x2 + V − U2 − y ,
(4.2)

where, for convenience, we use the notation (x, y) to designate the state variables, and
we denote x′ = dx/dt, y′ = dx/dt. System (4.2) is C∞-equivalent to (3.2) in parameter
space Λ. Moreover, the (positive) equilibrium coordinates appear now as the explicit
parameters (U, V). In what follows in this section, we will give conditions such that
(4.2) undergoes a generic Hopf bifurcation at (U, V) (see [17, 23] for more details).
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The Jacobian matrix of (4.2) at (U, V) is

J(U, V) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b +

2U
(1 + KU2)2V

−U2

(1 + KU2)V2

2U −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.3)

The trace T and determinant D of J(U, V) are given by

T = T(U, V , b, K) = −1 − b +
2U

(1 + KU2)2V
, D = det[J(U, V)] = (V + KU2V)−2D̂

where

D̂ = D̂(U, V , b, K) = 2U3 + 2KU5 − 2UV + bV2 + 2bKU2V2 + bK2U4V2.

Whenever T = 0 and D > 0, the eigenvalues of J(U, V) are purely imaginary and
nontrivial. Moreover, since we have partial derivative Tb(U, V , b, K) = −1 < 0, the
Hopf bifurcation in (4.2) is generically unfolded by parameter b. In particular, it
follows from there that the equation T(U, V , b, K) = 0 implicitly defines the function

b(U, V , K) = −1 +
2U

(1 + KU2)2V
.

We now calculate the first Lyapunov quantity [17, 23] in order to determine
genericity conditions. We follow the derivation in [17] and move the equilibrium
(U, V) of the system (4.2) to the origin via the translation x �→ x + U, y �→ y + V to
obtain the equivalent system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′ = U

(
b − U

V + KU2V

)
− b(U + x) +

(U + x)2

V + y + K(U + x)2(V + y)
,

y′ = 2Ux + x2 − y .
(4.4)

In particular, the Jacobian matrix of (4.4) at the equilibrium (0, 0) coincides with
J(U, V) in (4.3). Upon substituting the function b(U, V , K) into J(U, V), we get

JH(U, V) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

−U2

(1 + KU2)V2

2U −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

with TH := tra [JH(U, V)] ≡ 0 and det[JH(U, V)]=DH :=D|T=0 = (2U3 − V2 − KU2V2)/
(1 + KU2)V2.

If DH > 0, then v1 = (1/2U, 1)t and v2 = (−w/2U, 0)t are the generalized eigenvec-
tors of JH(U, V), where w =

√
DH . The change of coordinates (x, y)t �→ [v1 v2](x, y)t,

where t stands for transpose, allows us to express system (4.4) with TH = 0 in the form(
x′

y′

)
=

(
0 −w
w 0

) (
x
y

)
+

(
P(x, y)
Q(x, y)

)
, (4.5)

https://doi.org/10.1017/S1446181125000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000100


[17] Multiple local and global bifurcations and their role in QS dynamics 17

where

P(x, y) =
1

4U2 x2 − w
2U2 xy +

w2

4U2 y2 (4.6a)

and

Q(x, y)

=
−16KU7 − 8K2U9 − 2UV2 + V3 + 3KU2V3 + 3K2U4V3

4U2(V + KU2V)3w
x2

+
K3U6V3 + 8U5(−1 + KV) + 2U3V(4 + 3KV)

4U2(V + KU2V)3w
x2

+
−4KU5 + 2UV − V2 − 3KU2V2 − 3K2U4V2 − K3U6V2 − U3(4 + 6KV)

2U2(1 + KU2)3V2 xy

+
(−2U + 6KU3 + V + 3KU2V + 3K2U4V + K3U6V)w

4U2(1 + KU2)3V
y2

+
12K2U8 + 4K3U10 − 4KU6(−3 + KV) + V2(1 + 2KV)

2U(V + KU2V)4w
x3

+
U4(4 − 8KV − 3K2V2) − 2U2V(2 + KV + K2V2)

2U(V + KU2V)4w
x3

+
4K2U6 − 2V(1 + 3KV) + 2KU4(4 + 3KV) + U2(4 + 4KV + 6K2V2)

2U(1 + KU2)4V3 x2y

+
(1 − 2K(U2 − 3V) − 3K2(U4 + 2U2V))w

2U(1 + KU2)4V2 xy2 +
K(−1 + KU2)w2

U(1 + KU2)4V
y3

+ O(||(x, y)||4),

in a Taylor expansion near (x, y) = (0, 0).
System (4.5), equations (4.6) and w =

√
DH allow us to use the derivation in [17]

for the direct calculation of the first Lyapunov quantity L1. In so doing, we obtain the
expression

L1 =
1

64w2(1 + KU2)6U4V5 l1,

where

l1 = −32K3U14 + 16K4U13V2w2 + 2U2V3(2 + 3KV2(w − 1)w)(1 + w2)

− 2UV4(1 + w2)2 + V5w(−1 + w − w2 + w3)

− 4U3V3(−1 + (1 + 6KV)w2 + 6KVw4) + 4K3U11V2(16w2 + K(V + 7Vw2))

+ U4V2(−24KV(1 + w2) − 8(3 + w2) + 15K2V3w(−1 + w − w2 + w3))

+ 4U6V(12 + 9K2V2(1 + w2) + 4KV(3 + w2) + 5K3V4w(−1 + w − w2 + w3))
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+ K2U12(−96 − 48KV + K4V5w(−1 + w − w2 + w3))

+ 6KU10(−16 − 8KV + K4V5w(−1 + w − w2 + w3))

+ U8(−32 + 48KV + 24K2V2(3 + w2) + 15K4V5w(−1 + w − w2 + w3))

− 4U5V2(−4w2 − 4KV(1 + w2) + 3K2V2(−1 + w4))

+ 2K2U9V2(48w2 + 8K(V + 5Vw2) + 3K2V2(1 + 6w2 + 5w4))

+ 8KU7V2(8w2 + 3K(V + 3Vw2) + K2V2(2 + 7w2 + 5w4)).

Thus, we have obtained the following result.

THEOREM 4.1. Let (U, V , b, K) ∈ Λ be such that TH = 0, DH > 0 and l1 � 0. Then
(4.2) undergoes a codimension-1 Hopf bifurcation at the equilibrium (U, V). In partic-
ular, if l1 < 0 (respectively, l1 > 0), the Hopf bifurcation is supercritical (respectively,
subcritical), and a stable (respectively, unstable) limit cycle bifurcates from (U, V)
under suitable parameter variation.

Whenever condition l1 � 0 in Theorem 4.1 does not hold, the Hopf bifurcation
of (4.2) at (U, V) is degenerate. The actual codimension of this singularity—and
the stability of further limit cycles that bifurcate—is determined by the sign of the
so-called second Lyapunov quantity L2 (see, for instance, [23]). However, since the
transformation (4.1) is invertible in the parameter set Λ, numerical evidence suggests
that l1 < 0 for representative parameter values in Table 1 and, hence, the bifurcating
limit cycle is stable. Furthermore, bifurcation theory ensures that the existence and
stability of this stable periodic orbit persist for an open set of parameter values in the
region T(U, V , b, K) > 0, that is, when the focus at (U, V) is unstable [17, 23].

4.3. Bogdanov–Takens bifurcation in the two-dimensional system We now give
conditions such that our model undergoes a Bogdanov–Takens bifurcation under
suitable parameter variation at a positive equilibrium. We prove the existence of a
germ of a BT bifurcation and show that our system (under certain conditions) is locally
topologically equivalent to a normal form of the BT bifurcation. We refer to [23] and
the references therein for the derivation of the genericity and transversality conditions
that need to be verified during this proof.

For the sake of clarity, it is convenient to state the dependence of the vector field
(3.2) on parameters b and K explicitly. Hence, throughout this section we denote
X : R4

+ −→ R2
+,

X(x, y; b, K) =

(
x2

(1 + Kx2)y
+ α − bx, x2 + αε − y

)
,

where we use notation (x, y) for the state variables. Also, let us denote the Jacobian
matrix of X with respect to the variables (x, y) by
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∂X
∂(x, y)

(x, y; b, K) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−−2x + by + 2bKx2y + bK2x4y

(1 + Kx2)2y
− x2

(1 + Kx2)y2

2x −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Step 1. We verify that the system may exhibit a singularity with a double zero
eigenvalue and geometric multiplicity 1.

LEMMA 4.2. Consider the set

ΩBT = {(x, y) ∈ R2
+ | − 2x5 + y3 > 0, 2x3 − y2 > 0, −2x5 + y3 − x3y > 0,

(x2 − y)(2x5 + x3y − y3) > 0, 4x5 − x3y − 6x2y2 + 4y3 � 0}.

Then there is a positive equilibrium (U, V) ∈ ΩBT of (3.2) and there are positive
parameter values

(b∗, K∗) =
(−2U5 + V3

2U5 ,
2U3 − V2

U2V2

)
∈ R2

+ such that
∂X
∂(x, y)

∣∣∣∣∣
(U,V;b∗,K∗)

is nilpotent.

PROOF. In order to prove this lemma, we look for solutions (x, y, b, K) of the algebraic
system

x2

(1 + Kx2)y
+ α − bx = 0, (4.7a)

x2 + αε − y = 0, (4.7b)

tra
[
∂X
∂(x, y)

(x, y; b, K)
]
= 0, (4.7c)

det
[
∂X
∂(x, y)

(x, y; b, K)
]
= 0, (4.7d)

with (x, y) ∈ ΩBT , b > 0 and K > 0. Solving for b and K in (4.7c)–(4.7d) leads to

b =
−2x5 + y3

2x5 > 0 and K =
2x3 − y2

x2y2 > 0.

Substitution of (b, K) in (4.7a)–(4.7b) and solving for (α, ε) leads to

α =
−2x5 + y3 − x3y

2x4 and ε =
2x4(x2 − y)

2x5 + x3y − y3 . (4.8)

In particular, notice that α > 0 and ε > 0, since (x, y) ∈ ΩBT . The map (x, y) �→ (α, ε)
defined by (4.8) has a Jacobian matrix given by

https://doi.org/10.1017/S1446181125000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000100


20 M. Harris, V. Rivera–Estay, P. Aguirre and V. F. Breña–Medina [20]

∂(α, ε)
∂(x, y)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 +

y
2x2 −

2y3

x5 −x3 − 3y2

2x4

2x3(2x7 + 5x5y − x3y2 − 6x2y3 + 4y4)
(2x5 + x3y − y3)2

−6x9 + 6x6y2 − 4x4y3

(2x5 + x3y − y3)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which has the determinant

det
[
∂(α, ε)
∂(x, y)

]
=

4x5 − x3y − 6x2y2 + 4y3

x(2x5 + x3y − y3)
.

Therefore, since det[∂(α, ε)/∂(x, y)] � 0, the inverse function theorem ensures that
system (4.8) is locally invertible. Then the solution of (4.7) is given by (x, y, b, K) =
(U, V , b∗, K∗) ∈ R4

+, where (U, V) is locally defined by the inverse map of (4.8), and

b∗ =
−2U5 + V3

2U5 , K∗ =
2U3 − V2

U2V2 .

Hence, at (b, K) = (b∗, K∗) the equilibrium (U, V) of the system (3.2) has a Jacobian
matrix given by

∂X
∂(x, y)

(U, V; b∗, K∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − 1

2U
2U −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.9)

with a double zero eigenvalue. In particular, note that (4.9) is not the null matrix. The
corresponding generalized eigenvectors of (4.9) are given by

v1 =

( 1
2U

, 1
)t

and v2 = (1,−1 + 2U)t . (4.10)

It follows that (4.9) is nilpotent and that the double zero eigenvalue has geometric
multiplicity 1. This completes the proof. �

Step 2. We now state the following transversality condition of a Bogdanov–Takens
bifurcation.

LEMMA 4.3. Let (U, V , b∗, K∗) be as in Lemma 4.2 and consider the map
Ψ : R4 → R4,

(x, y, b, K) �→
(

x2

(1 + Kx2)y
+ α − bx, x2 + αε − y, T , D

)
,

where T and D are the trace and determinant of the matrix (∂X)/(∂(x, y))(x, y; b, K),
respectively. Then the map Ψ is regular at (x, y, b, K) = (U, V , b∗, K∗).
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PROOF. The 4 × 4 Jacobian matrix DΨ = DΨ(x, y; b, K) of the map Ψ is

DΨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b − 2Kx3

(1 + Kx2)2y
+

2x
(1 + Kx2)y

−x2

(1 + Kx2)y2 −x
−x4

(1 + Kx2)2y2

2x −1 0 0

2 − 6Kx2

(1 + Kx2)3y
−2x

(y + Kx2y)2 −1
−4x3

(1 + Kx2)3y
8Kx4 + 2K2x6 − 2y + 6x2(1 + Ky)

(1 + Kx2)3y2

−4x3 − 4Kx5 + 2xy
(1 + Kx2)2y3 1

−2(x5 + Kx7 − 2x3y)
(1 + Kx2)3y2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After some calculations, we have

det[DΨ(x, y, b, K)] =
2x5

(y + Kx2y)4 F(x, y, b, K)

with

F(x, y, b, K) = −2Kx5 − 9xy + by2 + 2bKx2y2 + bK2x4y2 + x3(10 + Ky).

In particular, straightforward substitution and algebraic simplification leads to

F(U, V , b∗, K∗) = −2U
V2 (4U5 − U3V − 6U2V2 + 4V3) � 0 ,

since (U, V) ∈ ΩBT . It follows that det[DΨ(U, V , b∗, K∗)] � 0, which ensures that the
map Ψ is regular at (x, y, C, Q) = (U, V , b∗, K∗). �

Step 3. We now construct a change of coordinates to transform X(x, y; b, K) into a
normal form of the Bogdanov–Takens bifurcation; we refer to [23] once again.

LEMMA 4.4. Let (U, V , b∗, K∗) be as in Lemma 4.2 and consider the following
auxiliary expressions:

G1 = 8U10 − 2U8V − 4U5V3 − 3U3V4 + 2V6 , G2 = 2U5 + 3U3V − 2V3 .

If G1 � 0 and G2 � 0, then there exists a smooth, invertible transformation of
coordinates, an orientation-preserving time rescaling, and a reparametrization such
that, in a sufficiently small neighbourhood of (x, y, b, K) = (U, V , b∗, K∗), system (3.2)
is topologically equivalent to a normal form of the codimension-2 Bogdanov–Takens
bifurcation.

PROOF. Let us set up the equilibrium (U, V) ∈ ΩBT of (3.2) to the origin via the
translation x �→ x + U, y �→ y + V to obtain the equivalent system

Y :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′ = α + (x + U)

(
−b +

(x + U)
(1 + K(x + U)2)(y + U)

)
,

y′ = αε + (x + U)2 − y − V .
(4.11)
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In particular, the Jacobian matrix of (4.11) at the equilibrium (0, 0) at the bifurcation
point (b∗, K∗) coincides with (∂X)/(∂(x, y))(U, V; b∗, K∗) in (4.9).

Let P = [v1, v2] be the matrix whose columns are v1 and v2; see (4.10). Next,
consider the following change of coordinates:(

u
v

)
= P−1

(
x
y

)
.

Then the vector field given by

J = P−1 ◦ Y ◦ P

is C∞-conjugated to Y in (4.11).
Taking a Taylor expansion of J(u, v; b, K) with respect to (u, v) around (u, v) = (0, 0)

and evaluating at (b, K) = (b∗, K∗), we obtain(
u̇
v̇

)
=

(
0 1
0 0

) (
u
v

)
+

1
2

(
a20u2 + 2 a11uv + a02v2 + O(||(u, v)||3)
b20u2 + 2 b11uv + b02v2 + O(||(u, v)||3)

)
,

where we have

a20 =
1

4U10V
(8U10 − 16U11 + 4U9V − 4U5V3 + 8U6V3 − 3U3V4 + 6U4V4.

+ 2V6 − 4UV6),

b20 =
1

4U10V
(8U10 − 2U8V − 4U5V3 − 3U3V4 + 2V6),

b11 =
1

2U9V
(−4U9 + 8U10 − 2U8V + U4V3) − 1

2U9V
(4U5V3 + 3U3V4 − 2V6).

If b20 � 0 and a20 + b11 � 0, then the theory of normal forms for bifurcations
[23] ensures that our system fulfils the necessary genericity conditions to undergo a
codimension-2 Bogdanov–Takens bifurcation. In particular, condition G1 � 0 ensures
that b20 � 0. Furthermore, after some algebraic manipulation one obtains a20 + b11 =

−V2G2/4U10.
In summary, Lemmas 4.2 and 4.3, and inequality G1G2 � 0 ensure that the

genericity and transversality conditions of a codimension-2 Bogdanov–Takens normal
form are satisfied. Hence there exist a smooth, invertible transformation of coordi-
nates, an orientation-preserving time rescaling, and a reparameterization such that,
in a sufficiently small neighbourhood of (x, y,α, k) = (U, V , b∗, K∗), system (3.2) is
topologically equivalent to one of the following normal forms of a Bogdanov–Takens
bifurcation (see, for instance, [23]):⎧⎪⎪⎨⎪⎪⎩

ξ̇1 = ξ2 ,

ξ̇2 = β1 + β2ξ2 + ξ
2
2 ± ξ1ξ2 ,

(4.12)

where the sign of the term ξ1ξ2 in (4.12) is determined by the sign of
(a20 + b11)b20. �
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The next theorem is a straightforward consequence from the findings in Lem-
mas 4.2, 4.3 and 4.4, as can be seen in [17, 23], and it summarizes the main result
in this section.

THEOREM 4.5. Let (U, V , b∗, K∗) be as in Lemma 4.2 and consider the quantities
G1 and G2 defined in Lemma 4.4. Then if (b, K) = (b∗, K∗), system (3.2) undergoes
a codimension-2 Bogdanov–Takens bifurcation at (x, y) = (U, V).

5. Bifurcation and chaos in the three-dimensional system

As seen from the rescaled parameters in (3.1), parameters e, b and a capture the
bacterial population’s response to autoinducers at constant concentration, as well as
the decay rates of both bacterial subpopulations. Based on this, we analyse the effects
of slowly varying the static bacteria’s response to autoinducer presence and motile
bacteria’s saturation parameter, while the autoinducer concentration changes according
to its dynamic production. Thus, to understand the emerging global behaviour,
we perform a bifurcation analysis of system (2.1) using AUTO [9], allowing both
parameters k2 and γ to vary slowly. The other parameters remain fixed in their typical
values as in Table 2, except for μ1 = 0.2 and μ2 = 0.7. Figure 7 shows the bifurcation
diagram in the (k2, γ) plane. There curves of saddle-node (LP) and supercritical Hopf
(labelled HB in this section) bifurcation meet at a BT point. Also, a curve of Shilnikov
homoclinic bifurcation (hom) emerges from the point BT. A codimension-2 Belyakov
point (Bc) on the curve hom marks the onset of chaotic dynamics. To the right of Bc,
the homoclinic bifurcation is simple; and to the left of Bc, the homoclinic bifurcation
is chaotic. More concretely, one can find horseshoe dynamics in return maps defined
in a neighbourhood of the homoclinic orbit. The suspension of the Smale horseshoes
forms a hyperbolic invariant chaotic set which contains countably many periodic orbits
of saddle type. The horseshoe dynamics is robust under small parameter perturbations;
hence, the chaotic dynamics persist if the homoclinic connection is broken (see [17,
23]). A second codimension-2 point B+ and also called a Belyakov point, lies on curve
hom for smaller values of both k2 and γ. At the point B+, the steady state associated
with the homoclinic orbit has repeated stable eigenvalues. On the segment of hom
to the right of B+, the homoclinic orbit converges to a saddle focus (that is, it has a
complex pair of stable eigenvalues); and on the segment to the left of B+, the same
equilibrium is a real saddle (that is, the stable eigenvalues are real).

The bifurcation picture in Figure 7 is just a partial representation of the full
complexity one may encounter in this region of parameter space. Indeed, the saddle
periodic orbits may also undergo further bifurcations such as period-doubling and
torus bifurcations [17, 23]. Moreover, the presence of the chaotic Shilnikov homoclinic
bifurcation and of the Belyakov points Bc and B+ implies a very complicated structure
(not shown) of infinitely many saddle-node and period-doubling bifurcations of
periodic orbits as well as of subsidiary n-homoclinic orbits [1, 3, 4, 15, 39]. Moreover,
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TABLE 2. Parameter values used in Section 5.

γ k1 k2 r α ε μ1 μ2 μ3

[0, 3.5] 0.07 [0, 0.25] 0.4 0.01 0.1 [0, 2.5] [0, 2.5] 0.5

FIGURE 7. Bifurcation diagram of (2.1) in the (k2, γ) plane. Shilnikov homoclinic chaos can be found
near the homoclinic bifurcation (dashed) curve hom along the left-hand segment from the Belyakov point
Bc; curves in grey and black correspond to loci of LP and HB points, respectively.

for each of these subsidiary n-homoclinic orbits, the system exhibits countably many
horseshoes as in the original homoclinic scenario.

The Belyakov points Bc and B+ in Figure 7 divide the curve hom in three segments.
We now fix parameters (k2, γ) at selected points on each of these segments (labelled �,
� and ◦, respectively) and allow parameters μ1 and μ2 to vary. The resulting picture
is shown in Figure 8 in the top row, while suitable enlargements are presented in the
bottom row. While the resulting bifurcation scenarios shown in Figure 8 are slightly
different from one another, the main ingredients organizing complicated dynamics
(such as Belyakov points and homoclinic chaos) remain a common feature in each case.
In particular, in the three cases, the bifurcation curves corresponding to the scenario
of Figure 7 are those occurring for lower values of μ2 in Figure 8. The second curve
LP (which is present for larger values of μ2) and associated bifurcation phenomena are
not present in Figure 7. The Hopf bifurcation curve hom in Figure 8 is now separated
into two segments by a degenerate Hopf point GH from which a saddle-node curve of
periodic orbits (LPC) emerges. The curve of homoclinic bifurcation hom now contains
further codimension-2 resonant (R) and Belyakov (B−) points. While a single stable
cycle bifurcates from B− (and no extra bifurcations occur), the full picture near the
points R includes period-doubling bifurcations and a curve of 2-homoclinic bifurcation
(not shown) emanating from the codimension-2 points. Of particular interest is the case
in panels (c) where the curve hom terminates at a BT point located on the second curve
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FIGURE 8. Bifurcation diagram of (2.1) in the (μ1, μ2) plane. Bottom row images are enlargements of
selected regions in the top figures. Parameter values k2 and γ correspond to those at the points �, � and
◦ along the homoclinic bifurcation curve hom in Figure 7. The other parameter values remain fixed as in
Figure 7.

LP. Also, from this BT point a subcritical Hopf bifurcation emerges. In particular, this
HB curve is very close to the saddle-node curve; these two curves meet at a zero-Hopf
bifurcation point (ZH); see, for instance, [23]. The exact dynamical features which
appear in phase space for parameter values near a ZH point depend on higher-order
terms in a normal-form approach, which is beyond the scope of this work. It suffices to
say that this codimension-2 point is often related to the emergence of invariant tori and
chaotic invariant sets [17, 23]. For higher values of μ2 and lower values of μ1, another
(non chaotic) homoclinic bifurcation curve makes a sharp turn near the point ZH.

Finally, Figure 9 shows bifurcation diagrams in the (k2, γ) plane with values of
μ2 = 1 (in panel (a)), and μ2 = 1.4 (in panel (b)). The resulting bifurcation diagrams are
similar to that in Figure 7, but with higher values of μ2. In Figure 9 the HB curve has
a degenerate Hopf point GH, from which a saddle-node curve of cycles LPC emerges.
All in all, upon comparing Figures 7 and 9, an increase in parameter μ2 produces
extra bifurcations that favour chaotic behaviour. Indeed, the hom curve in Figure 7
is now chaotic along its entire length. Also, in Figure 9(b), an increase of μ2 favours
the emergence of a ZH point. However, the bifurcation sets are “pushed” towards lower
values of k2 and larger values of γ as μ2 is increased; compare the scale of the variables
in Figures 7 and 9.

Sample solutions for autoinducer concentration and bacterial population, along
with their corresponding phase orbits, are presented in Figure 10 for representative k2
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FIGURE 9. Bifurcation diagrams of (2.1) in the (k2, γ) plane. Parameter values are as in Figure 7, except
μ2 = 1 in (a), and μ2 = 1.4 in (b).

(a) (b) (c)

FIGURE 10. Samples of time solutions (upper panels) and corresponding phase orbits (lower panels) of
system (2.1). (a) Damped oscillatory solution with a stable focus for γ = 2.5; (b) oscillatory periodic
solution with a stable limit cycle for γ = 2; (c) spike-like periodic solution near a homoclinic orbit for
γ = 1.8. Initial conditions are chosen close to the saddle point. Parameter values: k2 = 0.1535, μ1 = 0.2,
μ2 = 0.7, with remaining parameters as listed in Table 2.

and γ parameter values from Figure 7. The stable focus shown in column (a) undergoes
a bifurcation into a limit cycle in column (b) as the parameter γ crosses the HB curve.
The oscillation period further increases as γ approaches the hom curve, as illustrated
in column (c).

This transition is evident in the time solutions displayed in the upper panels, where
the crests and valleys of the autoinducer concentration correspond to the peaks and

https://doi.org/10.1017/S1446181125000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000100


[27] Multiple local and global bifurcations and their role in QS dynamics 27

troughs of the bacterial population over time. In column (a), the amplitudes of both
q and m + s decay over time, eventually stabilizing at a steady state. In contrast,
columns (b) and (c) demonstrate a progression in oscillatory behaviour, with the period
lengthening and culminating in a spike-like periodic pattern right until the formation
of the homoclinic orbit.

The bifurcation diagrams in Figures 8 and 9 reveal that the dynamical richness and
complexity of the system are not exclusively determined by the parameters k2 and
γ. Decay rate parameters also play a pivotal role in shaping the system’s behaviour.
Specifically, chaotic regions and their intricate features are not restricted to the (k2, γ)
plane but can also emerge through the gradual variation of other system parameters,
highlighting the multidimensional nature of the dynamics. In particular, whenever
parameters approach sufficiently close to the hom curve in its chaotic regime,
one might expect the stable periodic motion to undergo multiple saddle-node and
period-doubling phenomena (not shown in the bifurcation diagrams) and, ultimately,
encounter regions in phase space where chaos exists. However, the chaotic solutions
cannot be directly accessed through standard time integration from initial conditions
due to the saddle-like nature of the hyperbolic set, which prevents it from acting as an
attractor. A chaotic trajectory may be reached from the stable manifold of the saddle
invariant set. A nearby orbit spends a long time “visiting” the chaotic invariant set until
it manages to escape and converge to an attracting object. Furthermore, these chaotic
regions in phase space are typically confined to a small neighbourhood surrounding the
homoclinic curve, making the identification and characterization of transient chaos
particularly challenging. The detailed exploration of these chaotic sets lies beyond
the scope of the present work. For an in-depth theoretical and numerical analysis and
further insights into the dynamics of these regions, the reader is referred to [1].

6. Discussion

Analysing the effect of autoinducers on bacterial populations is crucial due to
their key role in the QS mechanism. We presented a model that demonstrates the
interaction between autoinducers and two subtypes of bacteria. A thorough analysis
of this model revealed parameter sets that lead to oscillation dynamics in both the
constant autoinducer submodel and the full three-component model. The study was
performed with a combination of both rigorous normal-form analysis and numerical
continuation methods. Upon analysing the full system, we were able to understand how
autoinducer concentrations interact with bacterial populations and influence bacterial
communication triggered by these interactions.

The constant autoinducer system (3.5) shows that parameter e is inversely propor-
tional to the autoinducer concentration q0, indicating that changes in e can impact
response rates and production rates on the population. Exploring additional parameters
revealed that parameter b, related to bacteria decay rates, leads to a family of limit
cycles via Hopf bifurcation. By conducting two-parameter numerical continuation
on parameters b and e, the (b, e) plane was divided into four regions based on their

https://doi.org/10.1017/S1446181125000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000100


28 M. Harris, V. Rivera–Estay, P. Aguirre and V. F. Breña–Medina [28]

dynamical events. It was observed that no synchronizing behaviour occurs for high
values of e, suggesting that oscillatory behaviour may not occur below certain critical
shallow threshold autoinducer concentration; this discovery agrees with QS features
already recognized in some previous work [20, 24, 35].

Furthermore, as can be seen from Proposition 3.1, when

J = b/(1 − u2
∗/[v∗(1 + Ku2

∗)]),

notice that tra(J) = [(b + 1)u2
∗ − v∗(1 + Ku2

∗)]/[v∗(1 + Ku2
∗) − u2

∗] and det(J) = 0, which
suggest that other nonlinear events may trigger synchronizing behaviour on the
bacterial population not only by means of a Hopf bifurcation. To fully understand
such an implication and, in consequence, the impact of autoinducer dynamics on the
population, we analysed the three-dimensional system and identified k2 and γ as key
parameters for synchronizing dynamics. Through Hopf bifurcations, self-sustained
oscillations were observed to emerge. A two-parameter continuation analysis revealed
that these parameters play a role in the emergence of additional oscillatory behaviour
and robust synchronization properties in the population. From Section 5, the identi-
fication and mapping of homoclinic bifurcations in the model are crucial for under-
standing the dynamic behaviour of autoinducer concentration and bacterial population
interactions. The sample solutions presented in Figure 10 illustrate how the system
transitions from a stable focus to oscillatory behaviour through a Hopf bifurcation as
the parameter γ crosses the HB curve. As γ approaches the homoclinic bifurcation,
the increasing oscillation period signifies a critical shift in system dynamics, leading
to complex behaviours such as spike-like periodic patterns. This progression highlights
the importance of recognizing homoclinic bifurcations, as they serve as pivotal points
that can influence different types of oscillatory behaviour.

Moreover, it was observed that a Shilnikov homoclinic bifurcation branch originates
from a Bogdanov–Takens point, leading to a Belyakov point Bc that separates simple
and chaotic behaviour along the homoclinic curve. Another Belyakov point B+ marks
the boundary between real saddle and saddle-focus steady states. By conducting
a two-parameter continuation along three pivotal points on the homoclinic curve,
varying parameters μ1 and μ2 (equivalent to parameter b in the constant autoin-
ducer system), intricate dynamics were revealed resulting in resonant and additional
Belyakov points. Additionally, a zero-Hopf point appears in a Hopf curve intersecting
a nearby saddle-node curve. These findings support chaotic dynamics as infinitely
many saddle-node, period-doubling orbits and n-homoclinic orbits—accompanied by
countably many horseshoes for all n ∈ N—come to birth as well as invariant tori and
invariant chaotic sets. In spite of all this rich dynamics, accessing chaotic solutions
is hindered by the saddle-like nature of the hyperbolic set. Moreover, these chaotic
regions are confined to a small neighbourhood around the homoclinic curve. All this
prevents direct access to chaotic orbits through standard simulations.

The QS model examined in this study depicts synchronized oscillatory dynamics
in bacterial populations, potentially exhibiting synchronizing characteristics. This
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behaviour is not only influenced by the presence of an autoinducer concentration
threshold, but also underscores how elevated autoinducer levels drive pronounced
peaks in bacterial population dynamics. Understanding these transitions not only
enhances our comprehension of the underlying biological processes but also aids
in predicting system behaviour under varying conditions, ultimately contributing to
more effective modelling and control strategies in microbial systems. However, to
fully understand the global picture of the QS mechanism, migration dynamics and
time delays should also be considered. The inclusion of a time delay is crucial as it
influences the dynamics of autoinducer reception and emission, indicating that bacteria
do not react instantaneously to autoinducers (for example, see [29]). These aspects will
be addressed in future research.
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