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SUMMARY

Spatiotemporal analysis is an important tool to monitor changes of tuberculosis (TB)
epidemiology, identify high-risk regions and guide resource allocation. However, there are limited
data on the contributing factors of TB incidence. This study aimed to investigate the
spatiotemporal pattern of TB incidence and its associated factors in mainland China during
2005–2013. Global Moran’s I test, Getis-Ord Gi index and heat maps were used to examine the
spatial clustering and seasonal patterns. Generalized Linear Mixed Model was applied to identify
factors associated with TB incidence. TB incidence presented high geographical variations with
two main hot spots, while a generally consistent seasonal pattern was observed with a peak in
late winter. Furthermore, we found province-level TB incidence increased with the proportion of
the elderly but decreased with Gross Demographic Product per capita and the male:female ratio.
Meteorological factors also influenced TB incidence. TB showed obvious spatial clustering in
mainland China and both the demographic and socio-economic factors and meteorological
measures were associated with TB incidence. These results provide the related information to
identify the high-risk districts and the evidence for the government to develop corresponding
control measures.
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INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tubercu-
losis, is a devastating infectious disease worldwide

which most commonly affects lungs [1]. TB remains
one of the biggest threats due to the low detection and
cure rate, drug resistance, and coinfection with other
diseases. In 2015, there were 10·4 million new cases
and 1·8 million deaths of TB [2]. In China, the morbid-
ity andmortality ofTBhave remarkably declined under
the nationwide practice of a TB control programme
(directly observed treatment and short course chemo-
therapy, DOTS) since 1990 [3]. However, China was
still one of the 22 high-burden countries and accounted
for 10% of global TB cases in 2015 [2].
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Spatiotemporal analysis is an important tool to
monitor the changes of TB epidemiology, identify high-
risk regions and guide resource allocation. Some studies
have shown that the incidence of TB and many other
respiratory infectious diseases presents obvious sea-
sonal pattern, which is caused mainly by meteoro-
logical factors [4, 5]. Previous studies have focused on
temporal analyses of TB using ARIMA (autoregressive
integrated moving average) and Fourier series methods
[6–8]. However, the temporal patterns vary geographic-
ally and simple temporal analysis in one dimension is
insufficient to determine this heterogeneity. It is a
need to simultaneously analyse the temporal and spatial
variations.

Geographical information system (GIS) has been
widely applied into epidemiological studies. GIS-based
analysis is an efficient andvisualised technique to explore
the spatial distribution and spatial associations [9–11].
GIS-basedmethods can efficientlymanage geographical
data from various sources, including locations, distance
and areas [12]. It canprovide clear andvaluable informa-
tion for readers to understand and interpret data distri-
bution in a direct way. Another strength of GIS-based
methods is the ability of combing geographical data
with remote sensing data and traditional statisticalmeth-
odologies [13]. Recently, two studies in Japan and
Portugal reported obvious spatial clustering and sea-
sonal variations of TB based on theKulldorff’s scan sta-
tistics [14, 15]. The Moran’s I test and Getis-Ord index
are widely used to display the spatial distribution of
other infectious diseases [16, 17]. However, all these
methods are just used to show the spatial patterns and
seasonal variations. There is limited information on the
potential influencing factors like spatiotemporal pat-
terns. Some studies performed cross-sectional analysis
using linear, Poisson and logistic regression models
[18–20], which cannot control for the autocorrelation
within cities. Cao et al. [21] applied the Bayesian frame-
work to estimate the effect of province-level annual
meteorological measures on TB in mainland China.
However, results of Bayesian analysis are dependant
on priors, which may be chosen based on personal
experience. Generalized Linear Mixed Model
(GLMM) is an alternative way to estimate parameters
in multiple levels (e.g. within- and between-province
level). Particularly, the role of demographic and socio-
economic factors in spatial heterogeneity of TB inci-
dence need to be further studied and meteorological
effects may be confounded without adjusting for these
factors in the model. Such important province-level
demographical and socio-economic factor were not

analysed and controlled for in Cao’s study, which may
lead to a bias in estimating meteorological effects.
However, Cao et al. [21] observed that TB incidence
was negatively associated with annual wind but posi-
tively associated air pressure, but they did not consider
demographic and socio-economic factors which may
be associated with spatial heterogeneity of TB incidence
and confound the meteorological effects.

In China, there were some studies conducted in a
single city or small territories [22, 23], in which envir-
onmental and socio-economic gradients are limited to
detect the related factors of spatial patterns of TB.
Recently, Cao et al. [21] found the spatial patterns
of TB in mainland China were linked to meteoro-
logical factors. Amongst potential contributing fac-
tors of TB, socio-economic factors are modifiable
but underexplored in China, strengthening the import-
ance of identifying socio-economic factors of TB and
quantifying the effects in China.

This study aimed to investigate the spatial clustering
patterns and seasonal variations of TB across different
provinces and study years. This study also intended to
analyse the demographic, socio-economic as well as
meteorological factors associated with TB incidence
in the whole mainland China during 2005–2013.

METHODS

Study sites

The present study included a total of 31 provinces in
mainland China (excluding Taiwan, Hong Kong and
Macao). China is the largest country in population
and ranks the third in area in the world. There are
temperate, subtropical and tropical climates and vari-
ous economic situations in the 31 provinces.

Data source

In mainland China, the TB Information Management
System has been established and operated by CCDC
(Chinese Centre for Disease Control and Prevention)
since 2004. It is mandatory to report every single TB
case through this on-line system. The monthly
reported all-forms TB cases from January 2005 to
December 2013 in each of 31 provinces of mainland
China were obtained from the Data-centre of China
Public Health Science (http://www.phsciencedata.cn/).
This study included all reported TB cases including
HIV-positive TB patients. The data in 2004 were
excluded due to the large number of missing data in
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some provinces at the beginning of the implementa-
tion of the monitoring system. National Bureau of
Statistics of China provided yearly demographic and
socio-economic data for each provinces during 2005–
2013, including population (100 000 persons), Gross
Demographic Product (GDP) per capita (10 000
RMB), the proportion of the elderly (%), the ratio
of male to female (M:F ratio, 1%), number of doctors
per 1000 persons, number of inpatient beds per 1000
persons, the proportion of people with high education
(college or above, %), and population density (persons
per square kilometres).

Monthly meteorological data for each province dur-
ing the study period were obtained from the China
Meteorological Data Sharing Service System (http://
data.cma.cn/). Average meteorological measures can
provide more easily interpreted results in a policy
context and are more familiar to the public.
Therefore, they are widely used as indicators of
meteorological factors in studies of meteorological
effects on infectious diseases [5, 24]. The monthly
average temperature (°C), duration of sunshine
(hours), precipitation (mm), average wind speed (m/s),
average atmospheric pressure (hPa) and average
relative humidity (%) were included in this study.

Statistical analysis

We used GIS to present the spatial pattern of annual
TB incidence in 31 provinces during 2005–2013. The
Global Moran’s I test was used to determine whether
there is any spatial autocorrelation nationally. The
Global Moran’s I test has been employed frequently
to investigate spatial clustering of infectious diseases
[25, 26].

The Global Moran’s I index is

I = n
S0

∑n
i=1

∑n
j=1 wi,jZiZj∑n
i=1 Z

2
i

(1)

where Zi = (xi − �X ), wi,j is the spatial weight between
feature i and j, and n is the total number of features.

S0 =
∑n

i=1

∑n

j=1

wi,j (2)

Z statistic is the standardisation of Moran’s I:

Z = I − E(I )������
V (I )√ . (3)

Previous literature pointed out that it is less sensi-
tive to the spatial weight matrix and thus more popu-
lar than Kulldorff’s spatial scan statistic [27].

Getis-Ord Gi index was performed to detect the hot
spot of TB incidence at province level, by testing
whether there is any significant correlation between
a province and its neighbouring provinces [27].

To examine the seasonal pattern of TB incidence,
the heat maps were used to show monthly variations
of TB incidence by province and by year [5]. This
approach could quantify and visualise the seasonality
after adjusting for the sampling differences across pro-
vinces and over years by dividing yearly cases for each
province and averaging cases of all the provinces for
each year.

Spearman rank correlation was utilised to analyse
the correlation between potential explanatory factors
of TB incidence. We conducted the GLMM to exam-
ine the effects of meteorological, demographic, and
socio-economic factors on TB incidence [28]. The
monthly number of TB cases was assumed to follow
the Poisson distribution. Therefore, we constructed a
Poisson regression model with the log population
term as an offset to control for population variations
across provinces and over study duration. Considering
the correlations of TB occurrences among people
within the same province and large differences in the
magnitudes of economic level and meteorological
environment among provinces, we treated province
as a random effect. Season (spring: March–May, sum-
mer: June–August, autumn: September–November,
and winter: December–February) as an indicator vari-
able and linear and quadratic terms of year were con-
sidered to control for the seasonality and trend of TB
occurrence, respectively. The residual spatial autocor-
relation was controlled by including the latitude and
longitude [29]. All the explanatory factors were deter-
mined in the final model by a stepwise backward dele-
tion test [30]. The final model can be specified as
follows:

log(E(Yit)) = offset(log( popij)) + ai
+ sexij + oldij + gdpij + tempit
+ windit + pressit + humidit + season

+ year + year2 + longitudei
(4)

where popij is the population of province i (i= 1, 2, . . .,
31) in year j (j = 2005, 2006, . . ., 2013) and ai is the
random intercept for the province i. Yit is the number
of TB cases in province i in month t (t= 1, 2, . . .,96).
The sexij, oldij and gdpij indicate yearly M:F ratio, the
proportion of the elderly, and GDP per capita in prov-
ince i in year j, respectively. The tempit,windit,pressit
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and humidit represent monthly mean temperature,
wind speed, atmospheric pressure and relative humidity
in month t in province i, respectively. The excess risk
(ER) percentage of TB incidence with the 95%
confidence interval were calculated for all explanatory
variables. We did the sensitivity analyses by adding a
quadratic term of longitude and excluding the quad-
ratic term of year to check whether therewas non-linear
association between longitude and TB occurrence and
whether a linear trend was enough to control for the
long-term trend in TB incidence in study period
(Supplementary Table S1). The Global Moran’s I test,
Getis-Ord Gi index analysis and visualised maps of
TB incidenceweremade based onArcGIS software ver-
sion 10.1. The heat map and the Poisson mixed model
based on ‘lme4’ package were conducted in R language
version 3.3.2.

RESULTS

A total of 9 597 884 TB cases were reported in main-
land China from January 2005 to December 2013,
with an average annual incidence of 80·3 cases per
100 000 persons and an annual mortality rate of
23·50 deaths per 10 000 000 persons (Fig. 1). A grad-
ually decreasing trend in incidence and mortality
was observed during the study period of 2005–2013.
The average annual incidence of TB for the 31 pro-
vinces is presented in Fig. 2. There were obvious spa-
tial variations of TB incidence in mainland China,
with the highest incidence in Xinjiang, Guizhou and
Hainan.

There were consistently high spatial autocorrela-
tions of TB incidence with the Global Moran’s

I index ranging from 0·255 to 0·410 (P < 0·001) in
each year from 2005 to 2013. The average annual inci-
dence of TB during the study period also had a sign-
ificant spatial autocorrelation (Z = 5·761, P < 0·001)
(Table 1).

The hot spot analysis illustrated two main hot spots
(provinces with high TB incidence clustered) and one
cold spot (provinces with low TB incidence clustered)
in the study duration in mainland China (Fig. 3). The
hot spots dominantly clustered in Northwest
(Xinjiang, Qinghai, Tibet, and Yunnan) and central
China (Hunan). That is, these provinces had signifi-
cantly higher TB incidence than other surrounding pro-
vinces. The hot spots gradually transferred from central
China to the Northwest during the study period. None
of the hot spots in central China were statistically sign-
ificant at the 0·05 level since 2010. The cold spots stably
clustered in the provinces located in East China, includ-
ing Beijing, Tianjin, Hebei and Jiangsu.

Heat maps show the median rate of TB incidence in
each month of the year across 31 provinces. It revealed
generally consistent seasonal patterns of TB across
mainland China (Fig. 4a). In northern and southern
provinces, TB cases showed an annual peak in late
winter to spring (January–May) and a trough in
early winter (December), except for a moderately
low point found in February (Fig. 4a). The empirical
peaks were in late winter for Northern and Southern
provinces. Figure 4b showed the heat map of monthly
median incidence of TB in the whole study area by
year. A similar seasonality pattern was observed in
each year from 2005 to 2008, but the seasonality
was relatively ambiguous and the peak amplitudes
decreased dramatically after 2009 (Fig. 4b).

The descriptive statistics of potential influencing fac-
tors for each province are shown in Supplementary
Table S2. The results of bivariate Spearman correlation
analyses (Supplementary Table S3) showed there were
high correlations between GDP, doctors numbers,
beds numbers and high education; population density
and mean atmospheric pressure; temperature, water
vapour and precipitation; relative humid and sun
hour; relative humidity, precipitation and water
vapour; (Spearman ρ > 0·6, P < 0·001). Highly corre-
lated variables were not simultaneously included in
the model to avoid collinearity and subsequent biases
in parameters estimates.

The GLMM revealed significant effects of demo-
graphic, socio-economic and meteorological factors
on TB incidence (Table 2). The TB incidence decreased
with theM : F ratio while increased with the proportion

Fig. 1. The annual incidence rate and mortality of TB by
year in mainland China in 2005–2013.
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of the elderly. TB incidence decreased 1·75% (ER%=−
1·75%, 95% CI −1·96% to −1·54%) associated with
each 10 000 RMB increase in GDP per capita.
Besides, mean temperature, wind speed and atmos-
pheric pressure had consistently negative effects on
TB incidences, while relative humidity was positively
associated with TB. There was a higher incidence risk
of TB in spring (ER%= 24·80%, 95% CI 24·48–
25·12%) and summer (ER%= 8·06%, 95% CI 7·65–
8·48%) compared with that in winter. And autumn
had a 6·05% decrease (ER%=−6·05%, 95% CI
−6·30% to 5·79%) in TB incidence than winter. A non-
linear trend in TB incidence was found in China during
2005–2013. Additionally, TB incidence was higher in
provinces at a higher longitude (ER%= 4·56%, 95%
CI 1·67–7·53%).

DISCUSSION

TB is still a major infectious disease in mainland China
with around one million cases per year. We found sign-
ificant spatial clusters of TB incidence in mainland
China. The number of hot spots increased during the
study period, which was in line with the previous
study in Beijing, China [22]. This is reasonable that
neighbouring provinces may have effects on each
other through the population morbidity, and through

sharing similar dietary, living habits and environmental
conditions. On the other hand, a remarkable geo-
graphic inequality in TB incidence was observed. The
economic polarisation promoted the clustering of cities
in terms of TB incidence, and the differentials seem to
become more obvious. The areas with a high TB
incidence clustered in Northwest China, possibly due
to underdeveloped economic conditions, poor health
care, and ignorance of necessary prevention
knowledge [31]. Fortunately, the epidemic has been
controlled well in central China since 2010 due to a ser-
ies of TB control policies andmeasures implemented by
the local authorities, including TB-related health edu-
cation for residents, periodical training for medical
staff, the newly established clinics, free treatment for
TB patients, and the improved monitoring or supervi-
sion system. Cold spots clustered around the Yangtze
River delta, where developed economy, advanced
health care, and the widespread awareness of
TB-related knowledge were in favour of TB control.
Intense surveillance and sufficient health resources
should be allocated to the hot spots provinces to narrow
down health inequality nationally and reduce the
flow-out infected cases to neighbouring cities.

TB incidence showed consistent seasonality in 31
provinces in mainland China with a peak in late win-
ter to spring. Similar seasonality was also observed in

Fig. 2. The average annual incidence of TB by province in mainland China in 2005–2013.
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several other countries, such as USA and Mongolia [4,
32]. This peak is mainly driven by meteorological fac-
tors and the weather-associated human behaviours. In
cold seasons, having less outdoor activities may lead
to indoor crowdedness and air pollution, and the
deficiency of vitamin D intake through sun exposure

[33, 34], contributing to the TB transmission and
increasing the infection risk. In winter, the relatively
weak immune system may lead to higher reactivation
rate of the latent TB. A latent period of approximately
3–8 weeks for TB infection and the delay in diagnosis
and notification may explain that the peak started in
late winter rather than at the beginning of cold season.
However, Douglas et al. [33] and Leung et al. [23]
observed a major peak in summer in UK and Hong
Kong. This may be related to the seasonal immigrants
in these countries, but the potential mechanism needs
to be explored further. This seasonality of TB inci-
dence was closely associated with meteorological fac-
tors. Temperature had negative effects on TB
incidence, supported by other research in Nigeria
and North India [7, 35]. High temperature may
restrain the development of TB via affecting people’s
blood pressure, aspiration and biological vitality to
increase the infection rate [36]. Also, the recombinant
strain of Mycobacterium can stop growing and
even could be destroyed when temperature exceeded
37 °C [37]. Consistent with previous research [38, 39],
we found TB incidence increased with relative

Table 1. Global Moran’s I index for TB incidence in
mainland China in 2005–2013

Year Moran’s I index* Z statistic P value

2005 0·387 5·481 <0·001
2006 0·367 5·288 <0·001
2007 0·385 5·523 <0·001
2008 0·328 4·785 <0·001
2009 0·367 5·326 <0·001
2010 0·399 5·704 <0·001
2011 0·410 5·815 <0·001
2012 0·365 5·299 <0·001
2013 0·255 3·827 <0·001
Annual average 20·391 5·634 <0·001

* The Global Moran’s I index represents the spatial autocor-
relation of TB incidences among provinces.

Fig. 3. The hot spot analysis of TB incidence in mainland China in 2005–2013.
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humidity. High relative humidity may provide a
favourable environment for Mycobacterium to be
attached to ambient particulates and stay in the air
for a long time. Additionally, high relative humidity
can exert profound effects on immunity-oriented pro-
blems through restricting the metabolism rate. Few
studies examined the association between wind
speed, atmospheric pressure and TB. In this study,
we found wind and atmospheric pressure were protect-
ive factors of TB, consistent with the findings reported
by Cao et al. [21]. Low speed of wind may contribute
to the spread of Mycobacterium floating in the wind,
but the high wind speed could decrease TB incidence
by releasing people’s susceptibility to extreme weath-
ers and accelerate the air ventilation. Danet et al.
[40] found an unhealthy effect of high atmospheric

pressure on the occurrence of coronary events.
However, Cao et al. [21] observed that TB incidence
was negatively associated with annual wind but posi-
tively associated with air pressure, but they did not
consider demographic and socio-economic factors
which may confound the estimates of meteorological
effects since these factors were found to be associated
with TB incidence in our study.

We observed theM:F ratiowas negatively associated
with TB incidence. An early study in 1952 in England
and Wales also reported an increased TB incidence
with the proportion of females [41]. However,
Neyrolles and Quintana-Murci [42] pointed out a
higher TB incidence in males, mainly because of higher
rate of tobacco use. These differences in males and
females had a close relation with sex steroids and the

Fig. 4. Heat maps of TB incidence by province and by year in 2005–2013. (a) Seasonality of TB incidence standardised
by the annual TB incidence for 31 provinces listed by their latitudes from the top to the bottom; and (b) the seasonality of
TB incidence for each year in mainland China.
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antimycobacterial immune responses [42]. Onozuka
and Hagihara [43] and Randremanana et al. [11] did
not find sex differences in the TB incidence in Japan
and Antananarivo, Madagascar, respectively. Khaliq
et al. [20] illustrated young females (under 24 years
old) had higher TB notification than young males, but
there was an opposite situation for older age groups.

We found TB incidence increased with the propor-
tion of the elderly, which is supported by previous
studies [35, 44]. For the elderly, the poor physical situ-
ation with other chronic diseases and weak immune
system make them vulnerable to be infected with
TB. For example, previous studies reported an
extremely higher incidence of AIDS (acquired immu-
nodeficiency syndrome) in the elderly than in young
people, associated with a higher TB incidence [45,
46]. Also, MacLaughlin and Holick [47] found that
the elderly produced less vitamin D in their skins,
which was an important factor to prevent the TB.
Additionally, the M. tuberculosis could be reactivated
with increasing age under appropriate condition. A
molecular biology study reported this may occur
even after 33 years since infection [48]. Therefore,
the likelihood of TB infection and the incidence of
active TB increase definitely with age.

In this study, we found a negative association
between province-level GDP per capita and TB inci-
dence, indicating that the local economic development
is beneficial to the control of TB. Similar results were
observed for other infectious diseases [49, 50]. People
live in impoverished cities may have less access to
TB-related knowledge and health care services,
which leads to a higher risk of TB infection.

Reducing poverty is essential for ending the global
TB epidemic and the elimination of TB.

This study has several limitations. First, although the
official surveillance system of TB has been established
since 2004 in China and each case is required to be
reported, the potential under-reported cases are
inevitable. Meanwhile, among all TB cases reported,
only 40·26% were bacteriologically confirmed and the
others were clinically diagnosed cases. Some infections
such as non-tuberculousmycobacteriawhich have some
similar clinical symptoms with TB may be misdiag-
nosed as TB. Second, in this ecological study, we
found several socio-demographic and economic factors
associated with TB. However, the longitude variable
was statistically significant in the model, indicating
that the observed variables cannot explain adequately
the spatial differences in TB in mainland China.
There are some other risk factors, such as individual,
social, clinical and behavioural factors associated with
TB incidence that were not considered due to the
unavailability of data. Third, the inherent limitation
in GIS-based methods may cause the uncertainty of
results, such as different weights, study unit and esti-
mate methods. In the present study, we used
GIS-based method just to visually explore the spatial
patterns of TB and further constructed a GLMM to
determine factors associated with the spatiotemporal
variations. Finally, this national analysis utilised the
monthly TB data of 31 provinces in mainland China,
but further studies with higher resolution in spatial
and temporal dimensions, such as daily data at the
city level, would provide more comprehensive and pre-
cise information of TB and socio-economic gradients to

Table 2. Percentage change (%) in risk of TB incidence in mainland China, 2005–2013

Variables Excess risk (%) Z statistic P value

M : F ratio (1%) −0·35 (−0·39, −0·32) −20·32 <0·001
Proportion of the elderly (%) 0·86 (0·73, 0·99) 12·90 <0·001
GDP per capita (10 000 RMB) −1·75 (−1·96, −1·54) −16·32 <0·001
Temperature (°C) −0·77 (−0·79, −0·75) −79·41 <0·001
Wind speed (m/s) −1·94 (−2·11, −1·77) −21·57 <0·001
Atmospheric pressure (hPa) −0·92 (−0·94, −0·90) −75·01 <0·001
Relative humidity (%) 0·06 (0·05, 0·07) 15·09 <0·001
Winter (reference) – – –

Spring 24·80 (24·48, 25·12) 169·99 <0·001
Summer 8·06 (7·65, 8·48) 39·64 <0·001
Autumn −6·05 (−6·30, −5·79) −45·42 <0·001
Year −3·91 (−3·99, −3·83) −91·96 <0·001
Year × year −0·07 (−0·08, −0·06) −12·07 <0·001
Longitude (°) 4·56 (1·67, 7·53) 3·46 <0·001
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better understand the spatiotemporal patterns of TB
incidence and the influencing factors.

In conclusion, TB incidence generally peaked in late
winter and spatially clustered with two hot spots and
one cold spot in mainland China. Both demographic
and socio-economic factors and meteorological mea-
sures were associated with TB incidence. This study
would help gain a better understanding of the spatio-
temporal patterns of TB and provide valuable informa-
tion for government or related health organisations to
initiate corresponding measures before seasonal peaks
of TB incidence and to identify priority TB control
objects for the population and regions with high inci-
dence risk such as the elderly and those with low socio-
economic conditions.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268817001133
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