
Two infinite integrals

By G. N. WATSON.

{Received 22nd February, 1938. Bead Uh March, 1938.)

The infinite integrals

F(X, B)= — f eiXoosh( — dt,
277 Jo coshi + cos 8

o + cos a

in which A is positive and — TT < 6 < -n were encountered by Kottler1

in a problem in the theory of diffraction. They have more recently
been studied by Copson and Ferrar2, who obtained the remarkably
simple Fourier series

F (A, 6) = ~ S e-*"-*A<J)(A) Binn6,

in which h™ (A) denotes a " cu t Bessel function" of the third kind;
this expansion is valid when — \TT<d<\n; when \IT <\6\<TT, the
term £e~iAcO3" sgnfl has to be added to the expansion on the right.

This series is very elegant, but very slowly convergent, since, for
fixed A and large n, we have

' AW (A) = —. e-*»*' cos inn + 0 f-I
nm i \n2

Expansions better adapted for computation can be found3.

1 F. Kottler, Ann. der Physik, 71 (1923), 457-508.
2 E. T. Copson and W. L. Ferrar, these Proceedings (2), 5 (1938), 159-168.
3 (Added in proof, 15th August, 1938.) I take this opportunity of making two

remarks : (i) Prof. Copson has pointed out to me that, in the actual physical problem
discussed by Kottler, no more is required than the approximate behaviour of F(\. 6)
and of G (A, 6) when X is small and also when A is large ; I must, therefore, admit that,
for the purposes of this problem, the Copson-Ferrar formulae are completely adequate
and my own formulae contain superfluous and irrelevant information, (ii) Mr Ferrar
has informed me that Dr Artur Erdelyi has written to him to point out that it is easy
to derive a finite integral representing F (X, 6) by means of Kottler's differential
equation, and hence to obtain the expansion of F(X, 6) for small values of A.
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TWO INFINITE INTEGRALS 175

The clue to the problem of obtaining such expansions is the
initial use of expansions which are power series in s inJ0; it will
appear tha t such expansions are convergent when sin2j0 < 1, i.e. when
6 is not an odd multiple of n; moreover, these expansions can be
modified so as to exhibit the behaviour of F (A, 8) and G (A, 8) when 8
approaches these exceptional values.

I t is evident tha t

2 1 = | sin2"|6> sin2Ar+2f6>
cosh t + cos 8 = cosh 2 ^-s in 2 £0 ~ n = 0 c o s h 2 n + 2 ^ + cosh2 A'+2^ ( cosh 2 ^ - s in 2 i0 ) '

and so

Now

r pi\cosht ,]f

C O S h 2 * + 2 ^ (COSh 2 ^ •

> 0,
COS2\d

as N -> <x> provided that 6 is not an odd multiple of 77; we have thus
proved that

S sin2»+]i0
Jn

fii\ cosh tf]fe f
and, in a similar manner, we can prove that

o>.\ cosli

G (A, 8) =

in the same circumstances.
We shall write these expansions in the forms

F (A, 8) = I cos |0 S /„ (A) sir

0 (A, 8) = I cos |0 S gn (A) sii

where

and, after remarking that
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176 G. N. WATSON

we proceed to obtain expansions for /„ (A) and gn (A) in the form of
ascending series of powers of A and log A.

We begin by taking the formula1

e'A {iJ0 (A) - Yo (A)} = — fO exp (2iA cosh2J0 dl
•n J o

and integrating it n + 1 times from 0 to A; we indicate this operation
bv the symbol

Q\
There is no substantial difficulty in justifying the inversion of

the order of the operations of passage to the limit and (n + l)-ple
integration in the following analysis, in which Rummer's second
formula2

i^L ; 2tA)

has been used to simplify the integrand:
x

o
dX

eix lim

= lim
SUIV7T

— jf jd _ „; l _ 2v; 2iX)

|
(_(»+ 1)!

2 ; 2*A)

2~2l'A»+1 J « r (J - v + m) (2iA)'H 2 A + J
1)! T ( l - 2V + m)

v + \ + m) 2

1 See my Theory of Bessel functions (Cambridge, 1922), 170.
2 See my Theory of Bessel functions, 191.
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We now calculate this limit by l 'Hospital 's rule in the usual way,
by differentiating the denominator sin v-n and differentiating the rest
of the expression with respect to v, and then put t ing v = 0; the result
of this process is

+ 7ri—2 log 2A}
1 (m - TO - J) (2i\y

{W*W*~+> ml {m-n-1)1 ^0»—>-**<*» ~
+ 2ip(m + 1) + 77i — 2 log|A};

and so we have proved that

+ id — 2 log JA}.
We now consider

dA —
LJo -1 77 Jo

and we evaluate i t by carrying out the integrat ions with respect to A
under the ^-integral sign; the first of these inversions of order of
integration is the only one which requires any but the simplest tes t
to justify i t , since the original integral (unlike the subsequent
integrals) is no t absolutely convergent, and, in fact, is not even
convergent when A = 0; the actual details of justifying this inversion
are left to the reader. We thus get

dX\ —
(, J 7T J Q

fl ( Ofl A \ '

e x p (^tA COSH nt) — 2u ; Y (It

By comparing the two expressions which have been obtained for

(2i)n+1 \\d\\ ea{iJ0(\) — Yo (A)},

we now infer that1

1 The labour of computing fn (A) by means of this expansion is comparable with
the labour of computing Bessel functions of the second kind.
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178 G. N. WATSON

" ( n - m ) I (2»

V ^ i m!(m w 1 ) !

and so we have obtained an expansion for F (A, 6) in the somewhat
complicated form

n = 0

! | r(m-»-t)(2iA)-.
77 TO=B+i « i ! (m — n — 1 ) !

When we interchange the order of the summations in this repeated
series, we get

e ' c o s £ 0 « (2iX)m » (w — m)! si
( > } 2VTT 0 m! r ( » m

" (2iX)mm~1 T(m — n - \) sin2"+1

! ( 1 !2\/773
 m = ] ml n=0 (m-n-1)1

X {2>p(m — n) — 2ifj (2m —2n) + ifi (m -\- 1) + |T7& — log|A}.

This interchange needs justification, and the justification follows
by proving that the pair of repeated series on the right of the last
equation are absolutely convergent. For the former, the series of
moduli to be considered is

™ (n — m)\ sin2n§0
'OT=o ml n=m F(n— m + #)

81 sin 101 S I 2iX Im sin2"'"118
= ! ±—!_ S ! ! s_ < oo

COS \8 . s/rr m=o ml
provided that — 77 < 8 < n. For the latter, we use the inequalities

1 (K -\- i.)

|0(ifc+ 1 ) | ^ * + 1 , ( * = 0 , 1, 2, . . . . ) ;

and the series of moduli to be considered is
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(m - » - i) | sin8**1 ifl I . ta . . . „ . ,
' ri --1 {20 (m — ») — 20 (2»i — 2n)m! n = 0 (m —n—1)!

+ ^(m+l) + jwi
oo 2tA "•

^ S ' j!-(m-vA0(2m + 4m + m + 1 + JTT + | log JA I)

< oo .

Actually it is clear that we have

FIX d)= 6e . e £ £
^ 2TT 2 V ^ 3 m=i m! n = 0 (m — » — 1 ) !

X {20 (m — w) — 20 (2m — 2TI) + 0 (m + 1) + \ni - log |A},

and that the second expression on the right is an integral function of
6 when 6 is regarded as a complex variable, while, if A is regarded as
a complex variable, it is a one-valued analytic function of A through-
out the A-plane when this plane has a cut along the negative half of
the real axis.

In particular, we have

F (A, v - 0) = £e*\ F (A, - n + 0) = - |eiX.

For purposes of computation when A is positive and 6 lies between
± 77, it is probably best to use the expansion

F (A, 6) = I cos \6 S /„ (A) sin2R+1 \B,
n=0

provided that 6 is not very near ^ 77. I t is unnecessary to compute
all the functions /n(A) which are required by means of the power
series; it is sufficient to compute /0 (A), to observe that

and to use the recurrence formula

(2TI + l)/n(A) = (2» + 4iA)/n_! (A) - 4iA/H_2(A), (n = 1, 2, 3, . . . . )

in order to compute /i(A), /2(A), . . . . This recurrence formula is
easily proved by differentiating

sinh \t exp (2iA cosh2^)

with respect to I, rearranging the result and then integrating.
We next deal with G (A, 8) in a similar manner, by starting with

the formula

exp (2iA cosh2 j£) cosh \t dt = —-—— = -—- 2 — ,
y (f77A) v (fTfA) m=o ml

IT
77 J 0
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180 G. N. WATSON

and integrating it n + 1 times from 0 to A. The details of the work
are somewhat simpler than the corresponding details for F (A, 6),
and we get

S {2iXr = e^ 2
! V(i^)o -J V ( i ^ ) m=o TO! Vd^A) m=o m! r (m + n-}--i})

dX \ — exp(2iA cosh2 \l) cosh ̂ d<
0 J 7T J 0

2 P__L_ / /o-i U2 1A V (2iA)mCOSh2»^ u

= — I — -^exp (2iA c o s h J | i ) — L y at
77 Jg cosh~"+ j t y m=o TO! I

= el9nW T s — n \ , ,
yiT m=o m\ (n — m)\

so that1

9n \A) = —;
yj-n m=0 m\(n — m)\ + V(JwA) ,»=«+i (m - » - 1)! T (m

and hence

e^; | r (m - n - \) (2iX)

When we rearrange this repeated series, we get

v ' y
 2 V »-o (m-n- 1)!

so long as 8 is real and not an odd multiple of TT.
This result shows, in particular, that

G (A, TT - 0) = G (A, - it + 0) = ^eiX,

and also that G (A, 0) defines an analytic function of A, regarded as a
complex variable, in the A-plane cut along the negative half of the
real axis, just like F (A, 6).

In conclusion I remark that it is an easy matter to obtain
asymptotic expansions for /„ (A) and gn (A) when A is large, in the
manner indicated by Copson and Eerrar for F{X, 6); it also seems to

1 The recurrence formula for <jn (A.) is
2n<jrn(A) = (2n - 1 + 4tA).9n_1(X) - 4tA<jrn_2(A), (n = 1, 2, 3, ).
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be worth pointing out that, even when A is not small, the series

1 1 e-

which they mention as arising formally in the investigation of F (A, 8),
has its terms (qua functions of n) of such a magnitude that it is
completely useless.

THE UNIVERSITY, BIRMINGHAM.
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