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Survey researchers avoid using large multi-item scales to measure latent traits due to both the financial

costs and the risk of driving up nonresponse rates. Typically, investigators select a subset of available scale

items rather than asking the full battery. Reduced batteries, however, can sharply reduce measurement

precision and introduce bias. In this article, we present computerized adaptive testing (CAT) as a method

for minimizing the number of questions each respondent must answer while preserving measurement

accuracy and precision. CAT algorithms respond to individuals’ previous answers to select subsequent

questions that most efficiently reveal respondents’ positions on a latent dimension. We introduce the basic

stages of a CAT algorithm and present the details for one approach to item selection appropriate for public

opinion research. We then demonstrate the advantages of CAT via simulation and empirically comparing

dynamic and static measures of political knowledge.

1 Introduction

Survey researchers often avoid using large multi-item scales to measure latent traits on surveys.
In part, this reflects the high financial costs of long surveys. For most researchers, the primary cost
associated with public opinion research is the per-question fee charged by survey firms. Thus, there
are significant financial incentives for asking as few questions as possible when measuring any latent
trait or attitude.

However, the desire to avoid large batteries also reflects the higher rate of attrition and
nonresponse associated with lengthy and repetitive surveys. Numerous studies have shown that
longer surveys are associated with higher rates of unit nonresponse (e.g., Heberlein and
Baumgartner 1978; Yammarino, Skinner, and Childers 1991; Burchell and Marsh 1992;
Crawford, Couper, and Lamias 2001; Galesic and Bosnjak 2009), a greater likelihood of halting
an interview (e.g., Sheatsley 1983), and higher rates of item nonresponse (e.g., Anderson,
Basilevsky, and Hum 1983). Moreover, lengthy repetitive surveys increase the burden on
respondents who compensate by beginning to satisfice when selecting answers (Krosnick 1991,
1999), increasing use of “don’t know” responses (Krosnick et al. 2002), and providing generally
less informative responses (Herzog and Bachman 1981).

To avoid long batteries, researchers typically select a subset of available items to include on a
survey. For instance, in their study of the role of personality traits in determining political attitudes,
Gerber et al. (2010) rely on the Ten Item Personality Inventory (TIPI), a much reduced alternative
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to the 44-item Big Five Inventory (BFI) (Gosling, Rentfrow, and Swann 2003).1 Likewise, the
2008–2009 American National Election Study panel included only two items adapted from the
standard 18-item “need for cognition” scale (Cacioppo and Petty 1984). Indeed, developing reduced
versions of larger scales constitutes a whole genre of research in the fields of psychology, consumer
research, public opinion, and more.2 Yet, relying on reduced batteries can lower measurement
precision and introduce bias—especially for individuals on the extreme ends of a latent scale.

In this article, we propose an alternative to the creation of static reduced scales. We apply
computerized adaptive testing (CAT) to the field of public opinion surveys and introduce
software that will aid researchers to more accurately measure important latent traits using a
minimum number of question items. As its name suggests, CAT algorithms adapt dynamically
to measure latent constructs while minimizing the number of questions each respondent must
answer—similar to the functioning of the Graduate Record Examinations (GRE) prior to its
revision in 2011. The method is an extension to item response theory (IRT), and like IRT,
derives from the educational testing literature. Each question item is classified based on both its
average level of “difficulty” (its position on the latent dimension) and its capacity to discriminate
between respondents. CAT algorithms respond to individuals’ prior answers by choosing
subsequent questions that will place them on the latent dimension with maximum precision and
a minimum number of questions.

In the rest of this article, we review the basic elements of CAT algorithms and explain in detail
one approach to item selection and stopping rules appropriate for public opinion research. We then
evaluate, both theoretically and empirically, the advantages of CAT relative to traditional static
reduced batteries. First, we conduct a simulation study to show how CAT surveys can increase
precision and reduce bias relative to static scales. Second, using a convenience sample of Amazon
Mechanical Turk respondents, we conduct a survey experiment and compare the precision and
accuracy of CAT surveys to static scales of political knowledge. In both theory and practice, when
the two competing methods of measurement are compared on a common metric, CAT provides
improved precision and reduced bias.

2 CAT and Traditional Dynamic Survey Techniques

2.1 Computerized Adaptive Testing

CAT algorithms are based on the notion that questions should be chosen for each respondent
based, in part, on what we know about them from previous responses. Ignoring prior information
leads us to waste valuable survey time asking respondents questions that are not revealing. Just as
we would not ask a simple algebra question to assess the mathematical aptitude of a theoretical
physicist, we should not ask survey respondents who have already correctly explained the
reconciliation process in the US Senate whether they know how many branches are in the
Federal Government. It is more informative to instead choose questions that reflect prior responses.
In the language of educational testing:

The basic notion of an adaptive test is to mimic automatically what a wise examiner would do. Specifically, if

an examiner asked a question that turned out to be too difficult for the examinee, the next question asked

would be considerably easier. This stems from the observation that we learn little about an individual’s ability

if we persist in asking questions that are far too difficult or far too easy for that individual. We learn the most

when we accurately direct our questions at the same level as the examinee’s proficiency (Wainer 1990, p. 10).

2.2 Relationship to Traditional Dynamic Surveys

In many ways, CAT is similar to branching survey techniques that have been used since the early
days of public opinion surveys. For instance, the standard American National Elections Study

1The 44-item battery is itself an effort to develop a shorter (and publicly accessible) alternative to the 240-item NEO
Personality Inventory-Revised.

2Just a few of the many recent examples of efforts to develop reduce scales in the literature include Podsakoff and
MacKenzie (1994), Stanton et al. (2002), Russell et al. (2004), Richins (2004), Matthews, Kath, and Barnes-Farrell
(2010), and Thompson (2012).
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measure of party identification asks whether respondents think of themselves as “a Republican, a
Democrat, an Independent, or what?” Interviewers then ask Democratic identifiers whether they
would call themselves a “strong Democrat.” However, there is no purpose in asking self-identified
Democrats if they would call themselves a “strong Republican.” Based on prior beliefs about
Democratic respondents and the nature of the “strong Republican” question, researchers know
that little information will be gained by administering the “strong Republican” item to Democratic
respondents.

CAT takes the logic behind these branching question formats and extends it to large survey
batteries containing dozens (if not hundreds) of potential items—far more items than can easily be
placed in a branching hierarchy. In essence, CAT algorithms use prior information about
respondents and question items to more quickly and accurately place survey takers on some
latent scale. Prior information about respondents is derived from their initial responses to items
in the battery. Prior information about the items is derived from pre-testing the questionnaire. This
establishes how specific questions relate to the latent scale of interest and provides the needed item-
level parameters for the CAT algorithm to operate.

Beyond simple branching formats, CAT is also clearly related to computer-assisted interviewing
techniques developed over two decades ago (Piazza, Sniderman, and Tetlock 1989; Sniderman et al.
1991). Like branching questionnaires, this approach allows for survey items to change based on a
respondent’s answers, experimental assignment, or any other criteria. Computer-assisted interviews
can respond in complex ways during the interview process in a manner pre-specified by researchers.

2.3 Relationship to Item Response Theory

While related to computer-assisted surveys, CAT algorithms derive from an entirely different
branch of research—educational testing. Computerized adaptive testing is itself an extension of
IRT (Lord and Novick 1968; Lord 1980; Embretson and Reise 2000; Baker and Kim 2004), which
has received considerable attention in recent years in political science (e.g., Clinton and Meirowitz
2001; Jackman 2001; Martin and Quinn 2002; Clinton and Meirowitz 2003; Clinton, Jackman, and
Rivers 2004; Bafumi et al. 2005; Poole 2005; Bailey 2007; Treier and Jackman 2008; Treier and
Hillygus 2009; Gillion 2012).

IRT is a general method for measuring latent traits using observed indicators, which are binary
or ordinal in most political science applications. CAT takes the IRT framework and extends it to
allow tests or surveys to be tailored to each individual respondent (Weiss 1982; Kingsbury and
Weiss 1983; Weiss and Kingsbury 1984; Dodd et al. 1995). Items are selected based on respondents’
answers to previously administered questions with the goal of choosing items that will be most
revealing. Numerous studies have shown that CAT tests outperform traditional static tests of
similar lengths (e.g., Weiss 1982; Weiss and Kingsbury 1984; Hol et al. 2007).

Since its initial inception in the late 1970s, CAT has been extended in a number of directions to
allow for refinements such as content balancing (van der Linden 2010), informative priors (van der
Linden 1999), response times (van der Linden 2008), multidimensionality (Segall 2010),
nonparametric assumptions (Xu and Douglas 2006), and more (van der Linden and Pashley
2010). CAT is widely used in the fields of educational testing, psychology (e.g., Waller and Reise
1989; Forbey and Ben-Porath 2007), and (to a much lesser extent) marketing (Singh, Howell, and
Rhoads 2007). However, CAT methods have rarely been applied in the measurement of public
opinion. Moreover, we are aware of no instances of its use in published political science research.
The purpose of this article, therefore, is to introduce the details of the CAT technique to the
political science community, give guidance as to how it can be fruitfully incorporated into the
study of public opinion, and provide a clear empirical demonstration of the significant advantages
available from adopting and adapting this methodology.

2.4 Relative Advantages of CAT Surveys

CAT differs from more familiar methodologies, such as branching questionnaires, in two important
ways. First, CAT is able to easily deal with much longer dynamic batteries than is feasible using
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traditional methods. For example, a dynamic battery that asks each respondent only 11
dichotomous items would require the pre-specification of over 210 ¼ 1024 possible branchings.

Second, CAT methods assume that the branching procedure is not something determined in
advance by researchers. Rather, questions are chosen “online” as the survey is completed to
maximize a pre-specified objective function. Item selection is therefore extremely formalized and
directly embedded in the mathematics of the scaling procedure that translates survey responses into
the latent trait space of interest. Indeed, the method assumes researchers are not interested in
answers to the questions per se, but only in accurately estimating respondents’ positions on the
latent scale. One distinct advantage of CAT, therefore, is that choices about the ordering of
questions need not be justified by researchers, as item selection is explicitly determined by available
data in a theoretically motivated manner. The disadvantage is that researchers must gather
calibration data in advance in order to specify the item parameters.

A hypothetical example can demonstrate the basic advantages of the CAT framework. Consider
a survey battery that contains 40 items. As a running example, assume that these items are factual
questions about the United States and international politics designed to measure political
knowledge. Let us assume that there is space for five items and that all questions are dichotomous
indicators (i.e., answers are either correct or incorrect).

One advantage of CAT is that it allows researchers to include a larger number of question
combinations. On a large national survey, scholars typically choose just one subset of these

items. However, in our example there are actually
40
5

� �
¼ 658,008 possible reduced batteries we

could include. A five-item adaptive battery would allow us to include at least 16 question
combinations, while a ten-item battery would include 512.3 Moreover, using informative priors,
response times, and other refinements, CAT would allow us to theoretically include the entire
collection of potential question combinations in the latent question-item space.4

A second and more important advantage is that CAT allows us to ask better question
combinations chosen to reveal the most information about each respondent. With both adaptive
and static batteries, we will be able to partition respondents into 25 ¼ 32 categories based on their
response profiles. For fixed batteries, however, many of these potential response profiles are rarely
(if ever) observed. Individuals who recognize the name of the Chief Justice of the Supreme Court
are extremely unlikely not to recognize the Vice President. CAT, however, makes it far more likely
that we will observe the full range of potential response profiles, as it chooses questions that
respondents are expected to answer either correctly or incorrectly with roughly equal probability.

Finally, this added precision comes with no expense in terms of survey time, as each respondent
is still asked only five questions. This advantage may be particularly important on national
probability samples, where there are real and significant financial incentives to keep batteries
short. It may also be important in situations where response rates are extremely sensitive to
survey length such as interviews of political elites.

3 Computerized Adaptive Testing Algorithms

3.1 Intuition

Having reviewed the basic motivation for applying CAT algorithms, in this section we provide
additional details about one implementation of the method appropriate for public opinion research.
CAT is designed for application in the context of a large survey battery or psychometric scale whose
validity has already been established. That is, the method assumes that there is actually some latent
trait to be measured and that each of the candidate items are appropriate indicators of that trait.

3The response profiles can be modeled with a binary tree, where each node is a question and the branches correspond to
correct/incorrect answers. The root node is the first question asked and the leaf nodes of this tree correspond to the
number of response profiles we can obtain with the adaptive survey. In the five-item case, we have a tree of height 5 and
thus 24 possible response profiles. In the ten-item case we have 29.

4We focus in this article only on the simplest version of CAT. Implementation and analysis of adaptive algorithms that
leverage prior information and response times for survey research remains a task for future research.
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Potential applications in political science include large psychometric batteries (e.g., Gosling,
Rentfrow, and Swann 2003), batteries on issue positions designed to place respondents into an
ideological space (Treier and Hillygus 2009; Bafumi and Herron 2010), or a listing of forms of
political participation respondents may have engaged in over the past year (Gillion 2012).

CAT may be particularly useful in instances where researchers care about individuals who are
“extreme” along some dimension of interest. This might include political activism (e.g., Verba et al.
1995), racial attitudes (e.g., Feldman and Huddy 2005), political knowledge or sophistication
(e.g., Zaller 1992), or political ideology (e.g., Bafumi and Herron 2010).

CAT is a method for taking a large population of potential items and selecting among them to
efficiently place respondents on some latent scale such as ideology, political knowledge, or activism.
Roughly speaking, the algorithm chooses items that are most likely to produce the most precise and
accurate estimate of respondents’ position on a latent factor.

Ceteris paribus, CAT achieves this goal by choosing items with larger discrimination parameters.
That is, it prefers items that are most revealing about respondents once they have answered.
Second, ceteris paribus, CAT will choose items whose difficulty parameters are “close” to the
current estimate of the respondent’s ability parameter. The algorithm prefers questions that it
estimates the survey taker has a roughly equal chance of answering correctly and incorrectly.
Additional intuition regarding how CAT chooses among available items is provided in our
simulated example below.

3.2 Algorithm Essentials

A general overview of a basic CAT algorithm is fairly straightforward, although there are a wide
array of increasingly complex implementations in the literature (van der Linden and Pashley 2010).
The essential elements of computerized adaptive tests are shown in Table 1 (Segall 2005, 4).

First, estimates (�̂j) are generated for each respondent’s position on the latent scale of interest
(�j). Before the first item is administered, this estimate is based on our prior assumptions about �j.
One option is to assume a common prior for all respondent’s, �j � �ð�Þ. An alternative is to use
previously collected data points, yj, to specify an informative prior, �j � �ð�jjyjÞ (van der Linden
1999). For example, when administering a battery measuring political ideology it may be
appropriate to assume that strong Democrats are more liberal than strong Republicans. In
either case, after the initial item in the CAT battery is administered, yj will include responses to
items that have already been administered and answered.

Second, the subsequent question item is selected out of the available battery. CAT chooses the
item that optimizes some pre-specified objective function. Multiple criteria appear in the literature,
including maximum Fisher information (MFI), maximum likelihood weighted information
(MLWI), maximum expected information (MEI), minimum expected posterior variance
(MEPV), and maximum expected posterior weighted information (MEPWI) (Choi and Swartz
2009, 421).5 It is also possible to choose constrained optimization approaches to ensure, for
instance, that scales balance items that are negatively and positively worded.

In general, these criteria aim to choose items that will result in accurate and precise measures.
Moreover, all of these item-selection criteria lead to similar results after a modestly large number of
items (i.e., n � 30). However, there are significant differences in measurement quality when the
number of items that can be asked is more limited (van der Linden 1998). In this article, we have
chosen to focus on the MEPV criterion because (1) we feel it is the most intuitive and
mathematically motivated approach, and (2) it is among the criteria that previous research has
shown performs well with a small number of questions.

The third stage of the algorithm is to administer the chosen item and record the response.
Fourth, the algorithm checks some stopping rule. In most survey settings, the stopping rule is

5An overview of the most common item selection criteria for dichotomous indicators is discussed in van der Linden
(1998) and van der Linden and Pashley (2010). An excellent analysis of potential selection criteria for polytomous items
is available in Choi and Swartz (2009).
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likely to be that the number of items asked of the respondent has reached some maximum value. In
these fixed-length CAT algorithms, all respondents will be asked the same number of questions.
However, it is also possible that researchers wish to measure some trait up to a specific level of
precision regardless of the number of items that are asked. In these variable-length CAT
algorithms, items may be administered until this threshold is reached.

Finally, if the stopping rule has not been reached, the algorithm will repeat. Once the stopping
criterion has been met, the algorithm produces final estimates of �̂j and terminates.

3.3 Outline of the General Model for Dichotomous Indicators

As discussed above, there are numerous variants of CAT for both dichotomous and polytomous
indicators. Rather than attempting to summarize all of these approaches here, we will focus on the
particular specification we use in our examples below. We will also restrict ourselves to the
dichotomous case, which is both more intuitive and more familiar to a political science audience
due to its wide use in roll call analyses (c.f., Clinton, Jackman, and Rivers 2004; Bafumi et al. 2005).

We use a two-parameter logistic model, where yij is the observed outcome (correct/incorrect or
yes/no) for item i 2 ½1,n� and person j 2 ½1,J�. The model assumes that the probability of a correct
response for individual j is

pið�jÞ � Prðyij ¼ 1j�jÞ ¼
expðDaið�j � biÞÞ

1þ expðDaið�j � biÞÞ
, ð1Þ

where D ¼ 1 for a logistic model and D ¼ 1:702 for an approximation of the probit model.
We assume that the item-level parameters (ai,bi) have already been estimated using some

previously collected data, which we term the calibration sample below. These parameters are
typically termed the discrimination and difficulty parameters, respectively. For CAT, we assume
that these are known quantities and our interest is only in estimating the ability parameter, �j, for
some new respondent.

The prior distribution for �j will be

�ð�jÞ � Nð��,
1

��
Þ, ð2Þ

where �� denotes the precision of the distribution (the inverse of the variance). In our examples
below, we set �� ¼ 0 and �� ¼ 0:6, a fairly diffuse (though proper) prior.6

Table 1 Basic elements of computerized adaptive testing batteries

Stage Purpose Description

1 Estimate
respondents’ positions

A provisional trait estimate, �̂j, is created based on first i responses. If
no items have been given, the estimate is based on prior information.

2 Item selection The item that optimizes some objective function is chosen. In our

examples below, CAT chooses items that minimize expected posterior
variance.

3 Administer item

4 Check stopping rule Pre-defined stopping rules may include reducing posterior variance,
Varð�̂jÞ, below a certain threshold or reaching some maximum time
allotment for the battery.

5a Repeat steps 1–4 If the stopping rule has not been reached, new items are administered.
5b Return final trait

estimate
If the stopping rule has been reached, a final estimate for �̂j is
calculated.

6In numerous simulation experiments, we found this setting to be ideal for the purposes of small batteries. Stronger
priors (e.g., �� ¼ 1) result in item selection being dominated by the prior, which is only overcome after many items are
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Letting qið�jÞ ¼ 1� pið�jÞ, the likelihood function associated with the responses to the first k� 1

items under a local independence assumption is

Lð�jjyk�1,jÞ ¼
Yk�1
i¼1

pið�jÞ
yijqið�jÞ

ð1�yijÞ: ð3Þ

3.4 Calculating Skill Parameter

We present one of the most prominent methods for calculating respondent-level positions on a

latent scale.7

The expected a posteriori (EAP) estimate of individual j’s position on the latent scale is calculated

as

�̂ðEAPÞ
j � Eð�jjyk�1,jÞ ¼

R
�j�ð�jÞLð�jjyk�1,jÞd�jR
�ð�jÞLð�jjyk�1,jÞd�j

: ð4Þ

Neither of these integrals can be analytically derived. However, using numerical methods, we can

approximate these quantities with sufficient precision.8

3.5 Item Selection

We use the MEPV criterion to select items. This requires that we first estimate the posterior

variance associated with a correct (y�kj ¼ 1) and incorrect (y�kj ¼ 0) response for all remaining

items and multiply by the probability of observing these outcomes conditioned on the current

estimate of �j.
We first estimate Pðy�kj ¼ 1jyk�1,jÞ ¼ 1� Pðy�kj ¼ 0jyk�1,jÞ; where yk�1,j ¼ y1,j, . . . , yk�1,j. This is

done by simply entering the current value of �̂j into equation (1) for item k. We then calculate

�̂ðEAPÞ�
j � Eð�jjyk�1,j, y

�
kjÞ, ð5Þ

which is the estimator conditioned on the potential response for the candidate item k, denoted y�kj.

The posterior variance for each possible response to each potential item is

Varð�jjyk�1,j, y
�
kjÞ ¼ Eðð�j � �̂

ðEAPÞ�
j Þ

2
j yk�1,j, y

�
kjÞ ð6Þ

asked. Weaker priors (e.g., �� ¼ 0:01) result in extreme and uninformative items being selected when n is small. Note
that we only set this prior during item selection. For the final estimation of �̂j, we return to the same �� ¼ 1 prior used
for parameter estimation on the calibration data.

7A second common technique is to estimate the maximum a posteriori (MAP), which is found by estimating the root of
the first derivative of the log posterior (equation 3):

@logLð�jjyk�1,jÞ

@�j
¼
Xk�1
i¼1

p�i ð�jÞðyij � pið�jÞÞ

pið�jÞqið�jÞ
,

where

p�i ð�jÞ �
@pið�jÞ

@�j
¼ Daiðdi � ciÞ

expðDaið�j � biÞÞ

ð1þ expðDaið�j � biÞÞÞ
2
:

8In most IRT models in the political science literature, these estimates are done using Markov chain Monte Carlo
(MCMC) simulation. However, since these are both one-dimensional integrals, we deem such an approach unnecessary.
In the current version of our software, we use an approximation through the integrate.xy() function in the sfsmisc
package. This is appropriate as the model is identified by fixing the distribution of “ability” parameters to cluster
relatively tightly near zero, making numerical integration less likely to produce a significant error. Alternative
parameterizations that allow for a broader possible range for �j may require alternative implementations.
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¼

R
ð�j � �̂

ðEAPÞ�
j Þ

2�ð�jÞLð�jjyk�1,j, y
�
kjÞd�jR

�ð�jÞLð�jjyk�1,j, y
�
kjÞd�j

, ð7Þ

which is estimated via numerical integration as above. Equation (7) represents the posterior
variance we will observe if the algorithm administers item k to respondent j and the answer
given is y�kj. According to the MEPV criterion, the item chosen will minimize the value of

Pðy�kj ¼ 1jyk�1,jÞVarð�jjyk�1,j, y
�
kj ¼ 1Þ þ

Pðy�kj ¼ 0jyk�1,jÞVarð�jjyk�1,j, y
�
kj ¼ 0Þ:

ð8Þ

3.6 Stopping Criteria

In our examples below, the algorithm stops offering items when the number of questions reaches a
pre-specified threshold nmax. An alternative, however, is to stop when the posterior precision,
Vð�jjyjÞ

�1, rises above some pre-specified level �stop� . This option might be particularly useful
when researchers seek homoscedastic measurement variance.9

4 Simulation and Illustration

In this section, we seek to demonstrate the potential advantages of CAT through a simulation
study. These simulations represent circumstances that are as ideal as can be expected in a survey
setting. The item pool consists of 60 items, and the response probabilities align exactly with the two-
parameter logistic model in equation (1). The discrimination parameters are drawn from
ai � Gammað50,25Þ; and the difficulty parameters (bi) are spaced equidistantly on the interval
[-3,3]. In essence, the simulation assumes that we have 60 items that load strongly on the underlying
latent dimension ( �a ¼ 2), with item difficulty parameters spanning the range of likely ability
parameters.

4.1 Illustrative Simulated Example

We begin by comparing how fixed and dynamic batteries of identical length estimate the position of
a single exemplar individual. The focus here is to illustrate why, under some circumstances, CAT
can provide less biased and more precise estimates of �j.

Reduced scales, both in our simulations and in the real world, are typically chosen to optimize
measurement precision for respondents near the center of the latent distribution. For instance, in
developing a reduced scale measuring aspects of personality, Gosling, Rentfrow, and Swann (2003,
508) state that “where possible we selected items that were not evaluatively extreme.” This is
because it is items that reveal the most information about individuals at the center of the
distribution that will minimize total absolute bias and error. Put simply, most respondents are
located in the middle of the distribution, so it makes sense to choose items biased towards the
center. However, this strategy often results in imprecise and even biased estimates of respondents
located toward the extreme ends of the latent scale.

More fundamentally, reduced scales almost inevitably include some questions that are either too
“easy” or too “hard” for a given respondent. This results in inefficiencies, since questions are
administered to respondents that provide no additional insight as to their true position on the
latent scale.

This is illustrated in Fig. 1, which shows the item characteristic curves (ICC) for a fixed (left
panels)10 and dynamic (right panels) battery administered to a single individual whose true position

9Note that one is not guaranteed the same level of variance in the estimate of �̂ for each respondent when simply asking
a fixed number of questions. Using this alternative stopping rule can help ensure that the estimates have equal variance
and are more amenable to regression analysis.

10Specifically, the battery includes Items 10, 20, 30, 40, and 50. As items are spread equidistantly, this represents a high-
quality fixed battery.
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on the latent scale is indicated by the vertical dashed line.11 Item characteristic curves show the

predicted probability of answering a question affirmatively (i.e., getting the question “right”) for

individuals of varying skill levels (�j). Thus, the horizontal axis shows the different potential values
of �j, while the vertical axis shows the probability of answering affirmatively for each value of �j.

Fig. 1 Item characteristic curves for a fixed and dynamic five-item battery. The left panels show the

item characteristic curves for the five items in the static scale. The right panel shows these same curves
for the items as chosen by the CAT algorithm. Note that the CAT algorithm chooses items that the
respondent, whose position is indicated with a vertical line, has a significant probability of answering

either correctly or incorrectly. For the static battery, the respondent is extremely unlikely to answer
Items 4 and 5 correctly.

11Recall that that MEPV selection criteria choose the item that minimizes the function shown in equation (8). The selected
items will generally have (1) large discrimination parameters and (2) difficulty parameters located near the algorithm’s
current estimate of �̂. If most items have fairly similar discrimination parameters, the latter criteria tends to dominate.
Note that, even in a simulated example where all items perform well, there is not always a strictly smooth relationship
between an item’s difficulty and its EPV due to heterogeneity in discrimination parameters.
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Note especially the ICCs shown in the four bottom-most panels of Fig. 1. The ICC curve for the
fixed battery indicates that the respondent, whose position is at �1 on the latent scale, will almost
certainly not answer either Item 4 or Item 5 in the fixed battery affirmatively. The predicted
probability of doing so is nearly zero. Thus, as we show below, no additional information
about the respondent is gained by asking these questions. On the other hand, the items chosen
by the CAT battery are all such that the respondent has a significant probability of answering in
either direction. This suggests that we will learn more about the respondent as each additional
question in the CAT battery is asked and answered.

This intuition is confirmed by looking at the estimated posteriors for �j shown in Fig. 2. The
figure shows the true value (�j) and the posterior estimates of (�̂j) given responses to all previously
administered items for both the static (left panels) and dynamic (right panels) batteries.12

There are two aspects of Fig. 2 we wish to emphasize. First, the final estimate for the static
battery (�̂j ¼ �0:53) is relatively inaccurate compared to the final estimate of the dynamic battery
(�̂j ¼ �0:89). Second, neither the precision nor the accuracy of the estimate are improved after the
administration of Items 4 and 5 in the static scale. That is, over 40% of the battery provides almost
no additional information about this respondent. In contrast, the right panels of Fig. 2 show the
posteriors as determined by items chosen by the CAT algorithm. As can be seen, the estimate of �j is
more accurate and far more precise. Moreover, the posterior continues to converge toward the true
value of �j after each question is administered and answered.

4.2 Systematic Simulation

While the results in Figs. 1 and 2 are illustrative, they do not provide systematic evidence in favor of
CAT. We therefore seek to generalize these results across a broader range of values of �. Figure 3
shows the squared error13 for the dynamic (gray) and static (black) batteries of various lengths.14

The upper left panel shows the results for the case when the number of items is three, and the
remaining panels show results when the battery length is five, seven, and ten items respectively.15

These estimates were generated for 1000 simulated respondents distributed equidistantly on the
interval [-3,3]. This provides a fairly precise understanding for how the CAT algorithms perform
across the possible range of �j. The two sets of curves show the squared error (the vertical axis) that
would result from the administration of static and dynamic batteries for individuals with differing
positions on the underlying latent scale (the horizontal axis).

There are three aspects of the results shown in Fig. 3 that are helpful for understanding the
advantages of CAT. First, across the entirety of the range of values of �j, the dynamic survey results
in a lower squared error. That is, for survey batteries of a similar length, a dynamic survey provides
more accurate and more precise estimates of the latent trait.16

Second, the relative advantage of CAT diminishes somewhat toward the middle of the range of
values for �j. For example, in the lower left panel of Fig. 3 the static scale performs more equally
with the dynamic scale for values of �j near zero. This is an expected finding that replicates results
from previous simulation studies (e.g., van der Linden 1998). It indicates the degree to which fixed
batteries are optimized to accurately measure individuals near the center of the distribution.17

12For illustrative purposes, we assume that responses are deterministic. That is, respondents always answer affirmatively
(correctly) when the predicted probability is greater than 0.5.

13Squared error is defined as Varð�̂ðEAPÞ
j Þ þ �j � �̂

ðEAPÞ
j

� �2
.

14The static batteries are: Items 15, 30, 45 for n ¼ 3; Items 10, 20, 30, 40, 50 for n ¼ 5; Items 9, 16, 23, 30, 37, 44, 51 for
n ¼ 7; and Items 3, 9, 15, 21, 27, 33, 39, 45, 51, 57 for n ¼ 10. Alternative methods for selecting fixed batteries make
little difference in the substantive conclusions of these simulations.

15The stopping rule chosen for this and the empirical example is based on our belief that the primary constraint for public
opinion researchers is time. While another rule, such as a measurement precision threshold, could have been used, this
did not seem realistic given the budget and time constraints of most public opinion surveys.

16Indeed, examining the bias alone shows that CAT also provides lower bias for nearly all values of �j. Improvement in
unbiasedness is especially large in the extreme range of �j (results not shown).

17It makes sense that static scales are aimed at individuals in the “middle” of the latent space, as this is where most
individuals will be located. However, the advantage of CAT is that the algorithm will tailor the battery to efficiently
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Finally, Fig. 3 shows visually how CAT divides respondents into a larger number of categories

or “bins” than traditional static scales. By asking questions each respondent is more likely to

answer right or wrong, CAT increases the likelihood of observing a positive or negative response

to each question. A clear example of this is visible in the upper-left panel of Fig. 3. With three

questions, we can potentially observe 23 ¼ 8 response profiles. Indeed, we can see that the CAT

Fig. 2 Exemplar posterior estimates for a five-item static and dynamic battery. The left panels show the

posterior estimates for the position of a single individual after each of five items in a fixed scale. The right
panels show the posterior estimate after items as chosen by a dynamic scale. The true value (�) and estimate
(�̂) are indicated with the dashed and solid vertical lines, respectively. Note that the posterior for the

dynamic scale continues to converge to the true value of � for all five items, while little additional
information is garnered from the administration of the final two items in the fixed sale.

estimate a latent trait regardless of the respondents’ positions in the latent space. As we show, this improves
measurement for all individuals, but the comparative advantage is greatest for more extreme individuals.
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scale divides respondents into exactly eight categories, as there are eight “U” shaped bins visible.
However, with a static scale we observe only four.18 Increasing the number of observed response
profiles improves both measurement accuracy and precision.

5 Empirical Application: Political Knowledge

The simulation results in Section 4 show the advantages of CAT relative to a static scale
theoretically. In this section, we provide an empirical application of CAT to the domain of political
knowledge (sometimes termed political sophistication). This example demonstrates the superiority
of CAT relative to static scales for accurately and precisely measuring important concepts to
political science.

Although scholars have developed a number of measures for knowledge and sophistication (e.g.,
Luskin 1987; Delli Carpini and Keeter 1993), one of the most widely used methods for survey
researchers is to ask questions measuring knowledge of basic facts about American politics, public
officials, and current events. Since 1986 the American National Election Study (ANES) has asked
respondents to identify the “job or political office” of officials such as the Vice President, the
Speaker of the House, the Chief Justice of the United States Supreme Court, and the Prime

Fig. 3 Squared error for dynamic and static scales of four different lengths for simulated respondents. The

curves show the squared error, defined as Varð�̂ðEAPÞ
j Þ þ �j � �̂

ðEAPÞ
j

� �2
, for simulated individuals with

differing values on the latent scale (�). The point {0,1} is associated with a squared error of 1 for an

individual whose true position on the latent scale is �j ¼ 0: The dark curves show the estimated squared

error that results with administering a static scale, while the lighter curves show the squared error associated
with a CAT scale of identical length (n¼ 3, 5, 7, and 10).

18Recall that in these simulations answers are deterministic (see Footnote 12). In a static scale, therefore, there will always
be nþ 1 bins while there will be 2n bins for the dynamic batteries.
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Minister of the United Kingdom (DeBell 2012). While these four items allow open-ended responses,
other commonly used items are similar to standard multiple choice questions used in educational
testing. For instance, the 1992 ANES asked respondents:

Who has the final responsibility to decide if a law is or is not constitutional . . . is it the President, the Congress,

the Supreme Court, or don’t you know?

While this method of measuring political knowledge is used widely in public opinion research (e.g.,
Delli Carpini and Keeter 1993, 1996; Gomez and Wilson 2001; Barabas 2002; Brewer 2003), it has
also been extensively criticized (c.f., Mondak 2001; Mondak and Davis 2001; Mondak and
Anderson 2004; Lupia 2006, 2008; Prior and Lupia 2008; Gibson and Caldeira 2009; Luskin and
Bullock 2011; DeBell 2012; Prior 2012). The coding of the open-ended responses is of questionable
reliability, and on occasion entirely incorrect.19 Some have argued that the heavy emphasis on
identifying prominent individuals does not seem a valid indicator of “political sophistication,” or
the ability to engage coherently in the political system (Lupia 2006). Finally, the items themselves
do not seem appropriately chosen to acquire useful information about most respondents. In the
2008 ANES, 4% of respondents correctly identified the office held by John Roberts, 5% of
respondents identified Gordon Brown, 37% identified Nancy Pelosi, and 73% correctly identified
Dick Cheney (DeBell 2012).20

In this section, therefore, we apply a much larger collection of closed form (i.e., multiple choice)
questions designed to measure much broader areas of political knowledge necessary for successfully
engaging in the political system. In addition, the questions were designed to supply sufficient
variation in difficulty.

5.1 Model Calibration

We developed a battery of 70 multiple-choice knowledge questions, six of which were dropped due
to poor performance. These items were largely drawn from questions used previously in national
samples (e.g., Luskin and Bullock 2011). The remaining 64 items, which measure knowledge in
areas including the legislative process, interest groups, foreign affairs, and constitutional rights, are
listed in our online supplementary materials.

We administered the battery to 810 respondents based in the United States and over the age of
18 years. Respondents were recruited through Amazon Mechanical Turk.21 This sample primarily
serves to calibrate the model and allows us to estimate appropriate difficulty and discrimination
parameters. Ideally, this calibration would be done on a nationally representative sample, which
would give more meaningful estimates that could be used by researchers in future studies.22

However, this convenience sample serves the more limited purpose of illustrating the usefulness
of the CAT method.

19DeBell (2012) notes that in 2004 identifying Tony Blair as the “Prime Minister of the United Kingdom” was coded as
an incorrect response.

20These percentages change depending on how “correct” responses are coded. In addition, these numbers appear to
fluctuate wildly from year to year. In 2004, 9.3% identified Dennis Hastert, 28% identified William Rehnquist, 62%
identified Tony Blair, and 84% identified Dick Cheney (Gibson and Caldeira 2009).

21Berinsky, Huber, and Lenz (2012) provide a detailed analysis of Mechanical Turk participants. Among their findings,
which is reflected in our results below, is that Turk participants have much higher levels of political knowledge than the
general US population. Although this limits the degree to which the item calibrations from this sample can be used for
CAT algorithms administered to other populations, it does not alter the nature of our findings about the relative
advantages of the CAT approach itself. Since the calibration and test samples are drawn from the same population, the
underlying distribution of political knowledge can be assumed to be similar. It is the similarity in the distribution of
political knowledge in the two samples that allows the CAT algorithm to outperform static batteries in the analyses
below. To the degree that we might be concerned that this assumption is not correct as a result of our nonrandom
sampling procedure, this fact only makes the significant improvement in measurement quality we show below more
remarkable. In general, the more accurate the calibration of the item parameters, the better the performance of CAT
will be relative to any given static scale.

22Using a national sample would allow us to say that difficulty parameters would, for instance, indicate the degree to
which an average American can correctly answer a specific question. Researchers should avoid using convenience
samples to calibrate the CAT algorithm unless they are comfortable that the distribution of the calibration sample is
“representative” of the overall population of interest on the given latent trait.
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Table 2 presents the item-level parameters associated with each of the questions in our battery.

Items are ordered according to their difficulty parameters. The easiest question (the item with the

lowest difficulty parameter) identified by this sample is Question 1, “How long is one term for

the President of the United States? (a) Eight years, (b) Six years, (c) Four years, (d) Two years.” The

hardest question (the item with the largest difficulty parameter) is Question 64: “On which of

the following does the US federal government spend the most money each year? (a) Education,

(b) Medicare, (c) Interest on the national debt, (d) National defense.”23 Broadly speaking,

respondents ordered questions in difficulty as we would expect. While there are available items

for all levels of difficulty, there is a skew toward the lower end of the difficulty spectrum. This is

unsurprising as we relied on items originally designed for national probability samples.

Table 2 Item-level parameters estimated from calibration sample

Question Difficulty Discrimination Question Difficulty Discrimination

1 �2.57 1.72 33 �0.61 0.97
2 �2.50 1.36 34 �0.54 0.71
3a �2.34 2.12 35 �0.51 0.70

4 �2.17 0.51 36 �0.43 1.33
5 �2.17 1.77 37 �0.41 1.35
6 �2.03 1.18 38 �0.33 1.47

7 �2.00 1.00 39 �0.28 1.12
8 �1.97 1.55 40 �0.26 1.05
9 �1.89 1.23 41 �0.18 2.06

10 �1.81 1.57 42 �0.13 1.39
11 �1.62 1.84 43a �0.07 1.65
12 �1.60 1.85 44 �0.04 1.60

13a �1.59 1.63 45 0.12 0.92
14 �1.59 2.18 46 0.15 1.27
15 �1.57 1.22 47 0.17 1.57
16 �1.51 1.58 48 0.18 1.34

17 �1.46 1.38 49a 0.20 1.65
18 �1.42 2.03 50 0.31 1.51
19 �1.40 1.61 51 0.35 1.23

20 �1.30 1.78 52 0.39 1.44
21 �1.25 0.98 53 0.40 0.89
22a �1.17 1.80 54 0.42 0.86

23 �1.16 0.67 55 0.43 1.05
24 �1.01 0.89 56a 0.53 1.45
25 �0.98 1.51 57 0.60 1.25
26 �0.95 0.66 58 0.60 0.92

27a �0.85 1.71 59a 1.14 0.81
28 �0.84 1.00 60 1.34 0.66
29 �0.72 1.41 61 2.50 0.61

30 �0.71 1.95 62a 2.73 1.11
31a �0.69 2.04 63 2.98 0.83
32 �0.64 1.63 64 4.25 0.53

aItem included in 10-item fixed scale. The model was estimated using the ltm() command in the ltm package in Rv2.15. Standard errors
are suppressed for clarity. n ¼ 810.

23Response options were randomized for all respondents except where responses had a clear numerical ordering. In
addition, respondents were always allowed to answer that they did not know the answer or to simply skip the
question (after a five-second delay). All “Don’t know” and skipped questions were coded as incorrect responses.

Computerized Adaptive Testing for Surveys 185

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

ps
06

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mps060


5.2 Empirical Comparison with Reduced Scales

To assess the efficacy of CAT techniques outside the calibration sample, we conducted a survey
experiment on a fresh sample of 820 respondents.24 In this second survey, roughly half of the
respondents (n¼ 401) first answered a ten-item fixed battery.25 The remaining respondents
(n¼ 419) answered ten items as selected by the CAT algorithm discussed above. Respondents in
both groups then answered the remaining 54 items presented in a random order.

Requiring all respondents to complete the entire battery allows us to evaluate the two
measurement techniques using a common metric—respondents’ scores as assessed by the
complete 64-item battery. Thus, we approximated respondent j’s true latent trait value, �j, using
her answers to the 64 questions. We then computed estimated values of �̂ðEAPÞ

j based on the first
n 2 ð3,5,7,10Þ questions administered in either treatment condition.26 Our purpose is to evaluate
how well �̂ðEAPÞ

j approximates �j across treatment conditions.
Note that the data from the calibration sample are used only for item selection. That is, we re-

estimated the entire measurement model using only the fresh sample. This provides a fair test of the
method, as we are not simply assuming that the model estimated on the calibration sample is true
for the second (experimental) sample.

Figure 4 shows the squared error of the estimated values of �̂ðEAPÞ
j for individuals in the dynamic

(squares) and static (triangles) treatment conditions. The lines represent loess curves for each
population.27 As in the simulations in Section 4, the dynamic algorithm outperforms the fixed
battery for all values of �j and the difference is particularly noticeable for larger values of n and
more extreme values of �j.

28

Figure 5 compares the static and dynamic scales of various lengths at the population level. The
upper-left panel shows the median squared error (MSE) while the upper-right panel shows the
median absolute bias, measured as j�j � �̂

ðEAPÞ
j j. Likewise, the lower-left panel shows the total

absolute bias for each of the samples, and the lower-right panel shows the median posterior
variance for the estimates. The figure shows that CAT offers dramatic improvements in
measurement accuracy relative to static scales on each of these metrics. The measures are both
less biased and more precisely estimated. Indeed, by these metrics a CAT scale with only six items
outperforms a ten-item fixed scale. Extrapolating from this example, Fig. 5 suggests that CAT
offers the potential for 40% reduction in battery length on surveys with no loss in measurement
quality.

Finally, the increased accuracy and precision resulting from using the adaptive measure affects
the inferences we draw from the data.29 To begin with, the dynamic battery is able to provide a
more fine-grained measure that better reflects heterogeneity within the sample. For instance, the
estimated sample variance on the political knowledge scale is only 0.65 when using a five-item static
battery, while it is 15% greater (0.75) for the sample that took the dynamic battery. Likewise, fully
21% of respondents taking the five-item static scale were placed in the most extreme category as
either the most or least knowledgeable respondents in the sample. However, only 5% of

24Respondents were again based in the United States and over the age of 18 years and were recruited using Amazon
Mechanical Turk. Respondents who had participated in the first-round survey were excluded from this analysis.

25We designed the fixed battery to provide 3-item, 5-item, 7-item, and 10-item batteries with good measurement
properties. That is, we chose items that spanned the range of difficulty and had relatively large discrimination
parameters in the calibration sample. Moreover, in choosing between similarly performing items, we selected questions
most similar to the standard ANES measure of political knowledge (e.g., “Who is the Speaker of the House of
Representatives?”). The items in the fixed battery are indicated in Table 2.

26Observe that, because the CAT algorithm minimizes �̂ðEAPÞ
j at every step of the test, we can compare the results obtained

by stopping at any given point without loss of generality.
27We used a two-sided Wilcoxon test to determine whether the distributions were indeed statistically different. The results
of the test confirm what we observed visually. That is, squared error is significantly lower in all cases with p < 0:001.
The rank-sum statistics were W ¼ 69470, 43790, 28108, and 13546 for n ¼ 3,5,7, and 10; respectively.

28Some caution is needed in comparing the performance of the two methods for the extreme values of � due to the
increasingly small sample size.

29We thank an anonymous reviewer for suggesting this analysis.
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respondents taking a dynamic scale of an identical length were so categorized due to the adaptive

nature of the CAT battery.
The increased precision and reduced bias also improve the external validity of the knowledge

measure. We can see this by examining the level of correlation between our political knowl-

edge measure and other responses that we would expect to be correlated with political knowledge.

Table 3 shows bivariate regressions for the five-item dynamic and static political knowl-

edge measures. The “outcomes” in these regressions are answers to three additional survey

items: the respondents’ level of interest in politics (a four-point scale), the frequency with which

they discuss politics and current affairs (a seven-point scale), and the degree to which they report

paying attention to national and international issues (a seven-point scale).30

To make the coefficients comparable, we re-scaled the knowledge batteries to range between

0 and 1. Table 3 shows that the coefficients for the dynamic political knowledge scale are always

larger. Moreover, the differences are substantive. For example, our political interest questions ask

the respondent, “How interested would you say you are in politics and current affairs: Not at all

interested; Not very interested; Somewhat interested; or Very interested?” Moving from the

minimum to the maximum of political knowledge as measured by the static five-item knowledge

battery is associated with an average change of 1.31 on this scale. However, because of the

improved measurement properties of the five-item adaptive battery, moving from a minimum to

Fig. 4 Out-of-sample squared error for dynamic and static scales of four different lengths. The points

show the squared error, defined as Varð�̂ðEAPÞ
j Þ þ �j � �̂

ðEAPÞ
j

� �2
, for each individual using both the CAT

(triangles) and static (circles) batteries of length 3, 5, 7, and 10. The lines are loess estimates for each

method.

30All survey question wording and response options are shown in the online supplemental materials.
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a maximum level of political knowledge is associated with a 2.08-unit change for respondents
randomly assigned to answer the dynamic battery. Table 3 shows similar differences for all three
outcomes.

6 Conclusion

While we believe the evidence presented above suggests that CAT offers a superior approach
to traditional static batteries, the methodology comes with several caveats and limitations that
are important to note. First, CAT is only appropriate when researchers are interested in
placing respondents on some latent scale rather than examining responses to specific questions.
Second, CAT should not be used for batteries where there is evidence of strong question-order
effects.

Third, CAT requires pre-testing of battery items to calibrate the model. Although pre-testing of
items is generally considered ideal for public opinion research, it is not always feasible. This

Fig. 5 Comparing measurement quality by battery length. The points in the upper-left panel show the
median squared error for the sample individual using both the CAT (light triangles) and static (dark
squares) batteries of various lengths. The points on the upper-right panel show the median absolute bias,

defined as j�j � �̂
ðEAPÞ
j j. The points on the lower-left panel show the total absolute bias for the sample, while

the lower-right panel shows the median posterior variance for the estimates.
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suggests that there may be a trade-off for the costs of reducing the length of batteries and the costs
of pre-testing batteries. The more accurate the pre-test (i.e., the larger the sample size and the more
representative the sample), the greater the potential for reducing battery length while preserving
measurement accuracy.

In part, pre-testing costs may be ameliorated by making survey data and item calibrations widely
available to other researchers, thus sharing the costs of pre-testing. In any case, we note that even
the selection of static reduced batteries is based on some kind of pre-test data or prior
understanding. We strongly believe that, ceteris paribus, CAT algorithms will always outperform
static batteries for any fixed level of pre-test information or prior beliefs about item performance.

Finally, for time-varying attitudes or traits, the calibration may not always remain current or
appropriate. This is not an issue for measurement of traits like personality, but could be
problematic for less stable attitudes like presidential approval. Further research is needed to
develop methods that can detect when specific item parameters have become obsolete (e.g.,
Segall 2002).

We conclude by noting several promising paths forward for this research. While numerous
variations in CAT algorithms are available, the examples in this article implemented only
uninformative priors, MEPV item selection, EAP ability estimation, and fixed-length batteries.
Future research could explore which algorithms of the many available in the literature are most
appropriate for various types of researcher constraints, whether they be time, cost, or measurement
precision. Additional guidance as to the relative advantages and disadvantages of various CAT
approaches may facilitate wider adoption of the methodology.

Furthermore, this article restricted itself to dichotomous data. While this is useful for many
political science applications, there are also numerous latent traits that are more appropriately
measured using polytomous models. Though the intuition behind such models is similar to that
described above, implementation issues remain. Moreover, it may be that CAT offers limited
advantages for Likert-type survey items relative to static batteries. Future studies should investigate
the benefits of CAT surveys for ordered-categorical survey questions.

Finally, we note that there are several extensions to CAT algorithms that may significantly
improve performance beyond what we show here. These include the development of informative
priors based on earlier survey response (van der Linden 1999) and accounting for response times
(van der Linden 2008). In addition, we believe that additional research is warranted on the
development of priors more appropriate for survey research because the battery size is likely to
be quite short and responses may include more error relative to educational testing applications.

Although there is room for continued improvement and extension, we have shown in this article
that CAT techniques are capable of obviating the need for public opinion researchers to choose
between administering large multi-item scales or selecting a single reduced scale to administer to
all respondents, which may reduce measurement quality. Adaptive testing allows for the
administration of fewer questions while achieving superior levels of statistical precision and
accuracy relative to any static reduced scale. We believe that CAT may provide substantial cost
savings and efficiency gains for survey researchers while reducing attrition and nonresponse.

Table 3 Comparing external validity of five-item dynamic and static political knowledge batteries

Interest in politics Frequently discuss Attention to politics

Dyn. Static Dyn. Static Dyn. Static

Constant 3.34 (0.11) 2.78 (0.08) 5.58 (0.23) 4.92 (0.16) 4.58 (0.21) 3.56 (0.14)
Knowledge 2.08 (0.17) 1.31 (0.13) 3.45 (0.35) 2.78 (0.25) 3.42 (0.32) 2.07 (0.23)

R2 0.26 0.20 0.19 0.23 0.21 0.17
n 418 400 418 401 418 401

Note. To make the coefficients comparable, the knowledge scores are re-scaled so that a one-unit change represents moving from the
minimum to the maximum observed value in each sample. Note that the coefficients are always substantially larger for the dynamic
battery, indicating higher levels of correlation. All survey question wording and response options are shown in the online supplementary
materials.
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After presenting the details of one CAT algorithm, we demonstrated the method using both
simulation and an empirical example. Using a battery of political knowledge items, we administered
a set of 64 questions to 810 respondents and calibrated the CAT algorithm on their responses.
When compared to a fixed battery, CAT provided both improved measurement precision and
accuracy for a fresh sample of 820 respondents. This was particularly true for larger numbers of
questions and more “extreme” respondents. Finally, we have developed software to administer such
dynamic surveys. This software will be made available to researchers who wish to adopt CAT
techniques using a variety of survey platforms.31
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