THE ARCHIMEDEAN PROPERTY IN AN ORDERED SEMIGROUP

TÔRU SAITÔ

(Received 20 March 1967)

Introduction

By an ordered semigroup we mean a semigroup with a simple order which is compatible with the semigroup operation. Several authors, for example Alimov [1], Clifford [2], Conrad [4] and Hion [7], studied the archimedean property in some special kinds of ordered semigroups. For a general ordered semigroup, Fuchs [6] defined the archimedean equivalence as follows:

 $a \sim b$ if and only if one of the four conditions $a \leq b \leq a^n$, $b \leq a \leq b^n$, $a^n \leq b \leq a$, $b^n \leq a \leq b$ holds for some positive integer n.

Then he mentioned that this relation is an equivalence relation. But this is not correct. In fact, let $S = \{0, a, b\}$ with the product xy = 0 for every $x, y \in S$ and with the order a < 0 < b. Then it is easily checked that S is an ordered semigroup and that $a \sim 0$ and $b \sim 0$. However, $a \sim b$ does not hold. It seems to be troublesome to define the archimedean equivalence suitably in a general ordered semigroup. In the present note, we restrict our attention to nonnegatively ordered semigroups in the sense defined in § 1. We define the archimedean equivalence in natural way. Even in these semigroups, the archimedean equivalence is not always a congruence relation. The main purpose of § 2 is to give necessary and sufficient conditions in order that the archimedean equivalence is a congruence relation. Such a nonnegatively ordered semigroup is called a-regular. Many ordered semigroups, for example all nonnegatively ordered commutative semigroups and the nonnegative cones of all ordered inverse semigroups are a-regular. In § 3, we study the structure of a-regular nonnegatively ordered semigroups P. The quotient semigroup of P modulo the archimedean equivalence is an ordered idempotent semigroup, whose structure was completely determined in our previous paper [8]. By the aid of this knowledge, we show, in this note, the structure of P is known to some extent.

1. Preliminaries

By an ordered semigroup, we mean a semigroup S with a simple order which satisfies

 $a \leq b$ implies $ac \leq bc$ and $ca \leq cb$ for every $c \in S$.

An element c of S is said to lie between a and b if either $a \le c \le b$ or $b \le c \le a$. A subset T of S is called convex if T contains with two of its elements all elements of S which lie between them. An element p of S is called positive if $p^2 > p$, while q is called negative if $q^2 < q$. Since the order is simple, an element p of S is nonnegative if and only if $p^2 \ge p$. An element p of S is called positive (nonnegative) in the strict sense if ps > s and sp > s ($ps \ge s$ and $sp \ge s$) for every $s \in S$. Clearly if p is positive (nonnegative) in the strict sense, then p is positive (nonnegative). An ordered semigroup S is called positively (nonnegatively) ordered (in the strict sense), if every element of S is positive (nonnegative) (in the strict sense). The number of distinct powers of an element a of an ordered semigroup S is called the order of a. A mapping of an ordered semigroup S into an ordered semigroup S is called an o-isomorphism, if it is a semigroup-isomorphism and an order-isomorphism at the same time. If there is an o-isomorphism of S onto S, then we say that S is o-isomorphic to S.

Now we give some lemmas which we need in the following sections.

LEMMA 1.1 ([9] Lemma 1 and its Corollary). The set P of nonnegative elements of an ordered semigroup S, if it is nonvoid, is a subsemigroup of S. The set E of idempotents of S, if it is nonvoid, is a subsemigroup of S.

The set P of nonnegative elements of S is called the *non-negative cone* of S. If the set E of idempotents of S is nonvoid, we denote by \mathcal{D}_E the \mathcal{D} -equivalence in the semigroup E, in order to distinguish it from that in the original semigroup S.

LEMMA 1.2 ([9] Lemma 2). In an ordered semigroup S, if p is nonnegative and q is nonpositive and if $p \leq q$, then both pq and qp are idempotents which lie between p and q.

LEMMA 1.3. An idempotent semigroup S is a semilattice of rectangular bands. Every rectangular band which is a constituent of the decomposition is a \mathcal{D} -class of S.

The first half of the above Lemma was given in [2] Exercise 1 for § 4.2. Then the second half can be shown easily.

LEMMA 1.4 ([8] Theorem 1). In an ordered idempotent semigroup S, each \mathcal{D} -class consists of either only one \mathcal{L} -class or only one \mathcal{R} -class.

A \mathscr{D} -class of an ordered idempotent semigroup S which consists of only one \mathscr{L} -class (\mathscr{R} -class) is called a \mathscr{D} -class of \mathscr{L} -type (\mathscr{R} -type). By Lemma 1.3,

the set of \mathscr{D} -classes of an ordered idempotent semigroup S forms a semilattice, which is called the *associated semilattice* of S. In the associated semilattice, we denote the partial order by \leq and the semilattice operation by \circ .

LEMMA 1.5 ([8] Theorem 3). The associated semilattice S^* of an ordered idempotent semigroup S is a tree semilattice, i.e. a semilattice in which $\{\xi; \xi \leqslant \alpha\}$ forms a simply ordered set for every $\alpha \in S^*$.

In the tree semilattice S^* , $\alpha \in S^*$ is called a *branching element* of S^* , if there exist β and γ such that $\alpha < \beta$, $\alpha < \gamma$ and $\alpha = \beta \circ \gamma$.

Finally we give the following well-known lemma, which is implicitly included in [5] Théorème 3 in p. 179.

LEMMA 1.6. Let S be an ordered semigroup and let ρ be a congruence relation on S such that every ρ -class is convex. For ρ -classes A and B, we define $A \leq B$ if and only if $a \leq b$ for some $a \in A$ and $b \in B$. Then the quotient semigroup $S|\rho$ is an ordered semigroup. Moreover, if A < B, then a < b for every $a \in A$ and $b \in B$.

2. The archimedean equivalence

In what follows, we always denote by P a nonnegatively ordered semi-group and by E the set of idempotents of P. For $x, y \in P$, we define the archimedean equivalence \sim as follows:

 $x \sim y$ if and only if $x \leq y \leq x^n$ or $y \leq x \leq y^n$ for some positive integer n.

LEMMA 2.1. The archimedean equivalence in P is an equivalence relation.

PROOF. It suffices to prove only the transitivity. Let $a \sim b$ and $b \sim c$. Then

- (1) if $a \le b \le a^n$ and $b \le c \le b^m$, then $a \le b \le c \le b^m \le a^{mn}$;
- (2) if $a \le b \le a^n$ and $c \le b \le c^m$, then, according as $a \le c$ or $c \le a$, we have $a \le c \le b \le a^n$ or $c \le a \le b \le c^m$;
- (3) if $b \le a \le b^n$ and $b \le c \le b^m$, then, according as $a \le c$ or $c \le a$, we have $a \le c \le b^m \le a^m$ or $c \le a \le b^n \le c^n$;
 - (4) if $b \le a \le b^n$ and $c \le b \le c^m$, then $c \le b \le a \le b^n \le c^{mn}$.

Thus, in all cases, we have $a \sim c$.

An equivalence class of P modulo the archimedean equivalence \sim is called an *archimedean class*.

LEMMA 2.2. Each archimedean class of P is a convex subsemigroup of P which is nonnegatively ordered in the strict sense.

PROOF. Let A be an archimedean class of P and let $a, b \in A$ and $a \le c \le b$. Since $a \sim b$, we have $b \le a \le b^n$ or $a \le b \le a^n$. If $b \le a \le b^n$, then a = b = c, and if $a \le b \le a^n$, then $a \le c \le b \le a^n$. Thus, in both cases, we have $a \sim c$ and so A is convex. Next we suppose that $a, b \in A$. Then, since $a \sim b$, we have $a \le b \le a^n$ or $b \le a \le b^n$. If $a \le b \le a^n$, then $a \le a^2 \le ab \le a^{n+1}$ and so $a \sim ab$. If $b \le a \le b^n$, then $b \le b^2 \le ab \le b^{n+1}$ and so $b \sim ab$. Thus, in both cases, we have $ab \in A$ and so $a \le a \le b^n$ for some $a, b \in A$. Then we have $ab^2 \le ab$. On the other hand, since $a \le b \le ab$, we have $ab \le ab^2$. Hence $ab = ab^2$ and so $ab = ab^n$ for every positive integer $ab \le ab \le ab$. Since $ab < a \le ab \le ab$, we have $ab \le ab \le ab$. Similarly we can prove $a \le ab \le ab$. Thus $ab \ge ab$ is nonnegative in the strict sense.

LEMMA 2.3. For an archimedean class A of P, the following conditions are equivalent to one another:

- (1) A contains an idempotent,
- (2) A has the greatest element,
- (3) A has the zero element,
- (4) every element of A is an element of finite order,
- (5) A contains an element of finite order.

Moreover, under these conditions, an idempotent of A is the greatest element and also the zero element of A.

PROOF. (1) implies (2). In fact, let e be an idempotent of A and let $a \in A$. Then we wave $a \le e \le a^n$ or $e \le a \le e^n = e$. Thus, in both cases, we have $a \le e$. Incidentally we have shown that an idempotent of A is the greatest element of A. (2) implies (3). In fact, let g be the greatest element of A and let $a \in A$. By Lemma 2.2, we have $g \le ga$ and $g \le ag$, and also $ag \in A$ and $ga \in A$ and so $ga \le g$ and $ag \le g$. Thus ga = ag = g. Incidentally we have shown that the greatest element of A is the zero element of A. (3) implies (4). In fact, let A have the zero element 0 and let $a \in A$. Then $0 \le a \le 0^n = 0$ or $a \le 0 \le a^n$. In the former case, we have a = 0 and $a = a^2$. In the latter case, we have $0 \le a^n \le 0^n = 0$ and so $a^n = 0$ and $a^n = a^{n+1}$. (4) implies (5) trivially. Finally (5) implies (1). In fact, let a be an element of finite order in a. Then $a^n = a^{n+1}$ for some positive integer a, and a^n is an idempotent of a.

COROLLARY 2.4. Every archimedean class of P contains at most one idempotent.

If an archimedean class A satisfies any one of the conditions in Lemma

2.3, then A is called a periodic archimedean class. Otherwise A is called a nonperiodic archimedean class.

LEMMA 2.5. In P, each nonperiodic archimedean class A is positively ordered in the strict sense.

PROOF. By Lemma 2.2, we have $a \le ab$ for every $a, b \in A$. Now, by way of contradiction, we assume that a = ab. Then we have $a = ab^m$ for every positive integer m. Since $a \sim b$, we have either $a \le b \le a^n$ or $b \le a \le b^n$. If $b \le a \le b^n$, then $a^2 \le ab^n = a \le a^2$ and so $a = a^2$. If $a \le b \le a^n$, then $a^n \le b^n$ and so $a \le a^2 \le a^{n+1} \le ab^n = a$ and $a = a^2$. Hence, in both cases, a is an idempotent of A, which contradicts that A is non-periodic. Thus we have a < ab. We can prove a < ba in a similar way.

Example 2.6. Let $K_1 = \{e, f, a, g\}$ be a system with the multiplication table

	e	f	а	g
e	l e	e	e	e
f	f	f	f	f
a	f	g	g	g
g	g	g	g	g

and with the order e < f < a < g. It is easily checked that K_1 is an ordered semigroup.

Example 2.7. Let $K_2 = \{e, f, a, g\}$ be an ordered semigroup with the product multiplicatively dual to that of K_1 and with the same order relation as K_1 .

Theorem 2.8. In order that the archimedean equivalence in a nonnegatively ordered semigroup P is not a congruence relation, it is necessary and sufficient that P contains a subsemigroup o-isomorphic to either K_1 or K_2 in the above Examples.

PROOF. Necessity. Let the archimedean equivalence \sim in P be not a congruence relation. Then there exist elements a, b, $c \in P$ such that $a \sim b$ but either $ac \sim bc$ or $ca \sim cb$ does not hold. First we consider the case when $ac \sim bc$ does not hold and suppose without loss of generality that $a \leq b \leq a^n$. Then $ac \leq bc \leq a^nc$ and, since $ac \neq bc$, we have n > 1. Now we give a series of relations which hold for a, b and c.

(1) $(ac)^m < a$ for every positive integer m. In fact, if $(ac)^m \ge a$ for some m, then $a^n c = a^{n-1}(ac) \le (ac)^{m(n-1)}(ac) = (ac)^{m(n-1)+1}.$ Hence we have $ac \leq bc \leq a^n c \leq (ac)^{m(n-1)+1}$ which contradicts that $ac \sim bc$ does not hold.

(2) ac < a.

The special case of (1) for m = 1.

(3) $ac^m = ac$ for every positive integer m.

In fact, by (2), we have $ac^2 \le ac$. On the other hand, since $c \le c^2$, we have $ac \le ac^2$. Hence $ac = ac^2$ and so $ac = ac^m$.

(4) ca < ac.

In fact, if $ac \le ca$, then, by (3), we have $a^nc = a^nc^n \le (ac)^n$. Hence $ac \le bc \le a^nc \le (ac)^n$, which contradicts that $ac \sim bc$ does not hold.

(5) ca = cac.

In fact, by (4), we have $ca \le c^2a = c(ca) \le cac$. On the other hand, by (2), we have $cac \le ca$. Hence we have ca = cac.

(6) $a < a^2c$.

In fact, if $a^2c \le a$, then, by (3), we have $a^2c = a^2c^2 = (a^2c)c \le ac$. On the other hand, since $a \le a^2$, we have $ac \le a^2c$. Hence $ac = a^2c$ and so $ac = a^nc$. Therefore $ac \le bc \le a^nc = ac$, which contradicts that $ac \sim bc$ does not hold.

(7) aca < a.

In fact, by (5) and (1), we have $aca = acac = (ac)^2 < a$.

(8) $(ac)^2 = ac$, $(ca)^2 = ca$.

In fact, by (7), we have $(ac)^2 = acac \le ac$ and $(ca)^2 = caca \le ca$. On the other hand, since ac and ca are nonnegative, these elements are idempotents.

(9) $(a^2c)^2 = a^2c = a^2$.

In fact, by (5) and (8), we have

$$(a^2c)^2 = a^2(ca)ac = a^2(cac)ac = a(ac)^3 = a(ac) = a^2c.$$

Hence, by (6) and (2), we have $a^2 \le (a^2c)^2 = a^2c \le a^2$ and so $(a^2c)^2 = a^2c = a^2$.

Now we put ca = e, ac = f, $a^2 = a^2c = g$. Then, by (4), (2) and (6), we have e < f < a < g. Moreover

 $e=e^2 \le ef \le ea \le eg = (ca)aa = (cac)aa = ca(cac)a = (ca)^3 = ca = e$ by (8) and (5),

 $f = ac = acac = a(ca) = ac^2a = fe \le f^2 \le fa \le fg = acaa = acaca = acacac = (ac)^3 = ac = f$ by (8), (5) and (3),

$$f = ac = acac = aca = ae$$
 by (8) and (5),
 $g = a^2c = af \le a^2 \le ag = aa^2 = a^3 = g$ by (9),

$$g = a(ac) = a(ac)^2 = a^2cac = a^2(ca) = ge \le gf \le ga \le g^2 = (a^2c)^2 = a^2c = g$$
 by (8), (5) and (9).

Thus the set consisting of four elements e, f, a and g forms a subsemigroup o-isomorphic to K_1 . In the case when $ca \sim cb$ does not hold we can prove similarly that P contains a subsemigroup o-isomorphic to K_2 .

Sufficiency. We suppose that P contains a subsemigroup o-isomorphic to K_1 . Without loss of generality, we assume P contains the ordered semigroup K_1 . Then, since $a^2 = g$, we have $a \sim g$. But ae = f, ge = g and so $ae \sim ge$ does not hold. Thus the archimedean equivalence is not a congruence relation. In the case when P contains a subsemigroup o-isomorphic to K_2 , we can obtain the same conclusion in a similar way.

A nonnegatively ordered semigroup P is called *a-regular* if the archimedean equivalence in P is a congruence relation.

COROLLARY 2.9. A nonnegatively ordered semigroup P is a-regular if one of the following conditions is satisfied:

- (1) P is commutative,
- (2) P contains no elements of finite order except idempotents,
- (3) P is the nonnegative cone of an ordered inverse semigroup.

PROOF. In cases (1) and (2), it is trivial that P does not contain a subsemigroup o-isomorphic to K_1 or K_2 . Since an ordered inverse semigroup contains no elements of finite order except idempotents ([9] Theorem 6), the case (3) is reduced to the case (2).

REMARK. When P is the nonnegative cone of an ordered regular semi-group which contains a non-idempotent element of finite order, then, by [9] Theorems 2 and 3, P contains a subsemigroup o-isomorphic to K_1 or K_2 . Hence P is not a-regular.

Theorem 2.10. A nonnegatively ordered semigroup P is a-regular if and only if it satisfies the condition

(a)
$$a \sim g = g^2$$
, $e = e^2 < g$ and $e \mathscr{D}_E g$ imply either $ea = g$ or $ae = g$.

PROOF. Let P be a-regular and let $a \sim g = g^2$, $e = e^2 < g$ and $e \mathcal{D}_E g$. Then, by Lemma 2.3, we have $a \leq g$. Now we have also e < a. In fact, otherwise, $a \leq e < g$ and so, by Lemma 2.2, we have $e \sim g$, which contradicts Corollary 2.4. First we suppose that the \mathcal{D}_E -class of E which contains e is of \mathcal{L} -type. Then $e = e^2 \leq ea \leq eg = e$. Hence we have ea = e. Therefore $(ae)^2 = aeae = ae$ and so ae is an idempotent. Since \sim is a congruence relation, we have $ae \sim ge = g$. Hence, by Corollary 2.4, we have ae = g. If the \mathcal{D}_E -class which contains e is of \mathcal{R} -type, we can prove ea = g in a similar way. Conversely we suppose that P is not a-regular. Then, by Theorem 2.8,

P contains a subsemigroup o-isomorphic to either K_1 or K_2 . If P contains K_1 , then three elements e, a and g of K_1 satisfy the assumption of the condition (α). But we have $ea = e \neq g$ and $ae = f \neq g$ and so the condition (α) does not hold. If P contains K_2 , we can obtain the same conclusion in a similar way.

3. a-regular nonnegatively ordered semigroups

In this section, we denote by P an a-regular nonnegatively ordered semigroup and by A(p) the archimedean class which contains an element $p \in P$. Since P is a-regular, the archimedean equivalence \sim is a congruence relation and so, by Lemmas 2.2 and 1.6, the quotient semigroup P/\sim is an ordered semigroup with the order defined in Lemma 1.6. We denote by \bar{P} the ordered semigroup P/\sim .

Theorem 3.1. \bar{P} is an ordered idempotent semigroup.

PROOF. Let A(p) be an element of \bar{P} . Then, since $p \sim p^2$, we have $(A(p))^2 = A(p^2) = A(p)$.

Lemma 3.2. The mapping φ which maps $e \in E$ to $A(e) \in \overline{P}$ is an o-isomorphism of E into \overline{P} .

PROOF. By Corollary 2.4, φ is a one-to-one mapping. Then it is easily seen that φ is a semigroup-isomorphism and an order-isomorphism.

The image set of the o-isomorphism φ in the above Lemma 3.2 is denoted by \overline{E} . \overline{E} is a subsemigroup of \overline{P} . For an archimedean class A, we have $A \in \overline{E}$ if and only if A contains an idempotent. Hence \overline{E} is the set of periodic archimedean classes. The \mathscr{D} -equivalence in the ordered idempotent semigroup \overline{P} is denoted by $\overline{\mathscr{D}}$. For $A \in \overline{P}$, the $\overline{\mathscr{D}}$ -class which contains A is denoted by $\overline{\mathscr{D}}(A)$.

THEOREM 3.3. If $A \in \overline{E}$, then $\overline{\mathcal{D}}(A) \subseteq \overline{E}$.

PROOF. Let $B \in \overline{P}$ such that $A\overline{\mathcal{D}}B$. First we suppose that $\overline{\mathcal{D}}(A)$ is a $\overline{\mathcal{D}}$ -class of \mathcal{L} -type. Since $A \in \overline{E}$, A contains an element $e \in E$. We take $b \in B$ arbitrarily. If $b \leq e$, then, by Lemma 1.2, be is an idempotent of P and $be \in BA = B$. If $e \leq b$, then we have $e = e^2 \leq eb \in AB = A$. Hence, by Lemma 2.3, we have e = eb and so $(be)^2 = bebe = be$ and $be \in BA = B$. Hence be is an idempotent of B. Thus, in both cases, we obtain $B \in \overline{E}$. In the case when $\overline{\mathcal{D}}(A)$ is of \mathcal{R} -type, we can prove $B \in \overline{E}$ in a similar way.

By Theorem 3.3, each $\overline{\mathcal{D}}$ -class \overline{D} in \overline{P} belongs to one and only one of the following two types:

- (1) all archimedean classes in \bar{D} are periodic,
- (2) all archimedean classes in \bar{D} are nonperiodic.

If a $\overline{\mathcal{D}}$ -class \overline{D} belongs to the type (1), then \overline{D} is called a periodic $\overline{\mathcal{D}}$ -class, while if \overline{D} belongs to the type (2), it is called a nonperiodic $\overline{\mathcal{D}}$ -class.

Theorem 3.4. If A is an archimedean class which belongs to a periodic $\overline{\mathcal{D}}$ -class \overline{D} and if A is not the least element of \overline{D} with respect to the order in \overline{P} , then, in P, every element of A is at most of order 2.

PROOF. Let $a \in A$. By assumption, there exists an archimedean class $B \in \overline{D}$ such that B < A. Since \overline{D} is a periodic $\overline{\mathscr{D}}$ -class, both A and B are periodic archimedean classes. Let e and f be idempotents of A and B, respectively. Then, since B < A, we have $f < a \leq e$. First we suppose that the $\overline{\mathscr{D}}$ -class \overline{D} is of \mathscr{L} -type. Then $ef \in AB = A$ and $fe \in BA = B$. Since $ef \in E$ and $fe \in E$, we have ef = e and fe = f by Corollary 2.4, and so $e\mathscr{D}_E f$. In the case when \overline{D} is of \mathscr{R} -type, we can prove $e\mathscr{D}_E f$ in a similar way. Hence, in both cases, by Theorem 2.10, we have fa = e or af = e. On the other hand, since $f < a \leq e$, we have $fa \leq a^2 \leq e^2 = e$ and $af \leq a^2 \leq e^2 = e$. Therefore we have $a^2 = e$.

THEOREM 3.5. Suppose that, for $A \in \overline{P}$, there exists $B \in \overline{P}$ such that A < B and $\overline{\mathcal{D}}(A) \leqslant \overline{\mathcal{D}}(B)$. Then A is a periodic archimedean class.

PROOF. First we suppose that $\overline{\mathscr{D}}(A)$ is a $\overline{\mathscr{D}}$ -class of \mathscr{L} -type. Then, since $\overline{\mathscr{D}}(A) = \overline{\mathscr{D}}(A) \circ \overline{\mathscr{D}}(B) = \overline{\mathscr{D}}(AB)$, we have AB = A(AB) = A. We take $a \in A$ and $b \in B$ arbitrarily. Then $ab \in AB = A$ and so ab < b. Hence we have $a^2b \leq ab$. On the other hand, since $a \leq a^2$, we have $ab \leq a^2b$. Therefore $ab = a^2b = a(ab)$ with $a \in A$ and $ab \in A$. Hence, by Lemma 2.5, A is a periodic archimedean class. In the case when $\overline{\mathscr{D}}(A)$ is of \mathscr{R} -type, we can obtain the same conclusion in a similar way.

Theorem 3.6. Every nonperiodic $\overline{\mathcal{D}}$ -class \overline{D} consists of only one non-periodic archimedean class.

PROOF. By way of contradiction, we assume that \bar{D} contains two distinct archimedean classes A and B. Without loss of generality, we suppose that A < B. Then $\bar{\mathcal{D}}(A) = \bar{D} = \bar{\mathcal{D}}(B)$ and A is a nonperiodic archimedean class, which contradicts Theorem 3.5.

COROLLARY 2.7. Let A be a nonperiodic archimedean class and let B be an archimedean class such that A < B. Then there exists an archimedean class C such that A < C and $\overline{\mathscr{D}}(A) > \overline{\mathscr{D}}(C)$.

PROOF. We put C = AB. Then, by Lemma 1.2, we have $A \leq C \leq B$. If it were true that A = C, then A = C < B and $\overline{\mathscr{D}}(A) = \overline{\mathscr{D}}(C) = \overline{\mathscr{D}}(AB) \leq \overline{\mathscr{D}}(B)$, which contradicts Theorem 3.5. Hence we have A < C. Moreover $\overline{\mathscr{D}}(C) = \overline{\mathscr{D}}(AB) \leq \overline{\mathscr{D}}(A)$ and the equality is excluded by Theorem 3.6. Thus we have $\overline{\mathscr{D}}(A) > \overline{\mathscr{D}}(C)$.

Remark. Intuitively speaking, when we pursue the course on the associated semilattice of \bar{P} according to the order, every nonperiodic archimedean class appears in the descending path. In particular, every branching element of the associated semilattice is a periodic $\bar{\mathcal{D}}$ -class.

THEOREM 3.8. Let A and B be archimedean classes such that A < B.

- (1) If AB < B, then AB is a periodic archimedean class and, for every $a \in A$ and $b \in B$, the product ab is equal to the idempotent of AB.
- (2) If BA < B, then BA is a periodic archimedean class and, for every $a \in A$ and $b \in B$, the product ba is equal to the idempotent of BA.

PROOF. First we consider (1) and suppose that AB < B. Then $\overline{\mathcal{D}}(AB) = \overline{\mathcal{D}}(A) \circ \overline{\mathcal{D}}(B) \leqslant \overline{\mathcal{D}}(B)$ and so, by Theorem 3.5, AB is a periodic archimedean class. Let g be the idempotent of AB and let $a \in A$ and $b \in B$. Then, since AB < B, we have g < b and so $ag \le ab$. On the other hand, by Lemma 2.3, g is the greatest element of AB and $A \le AB$. Hence we have $a \le g$. Therefore, by Lemma 1.2, ag is an idempotent and also $ag \in A(AB) = AB$. Hence we have g = ag. Since $ab \in AB$, we have $ab \le g = ag$ by Lemma 2.3 again. Thus ab = ag = g. The assertion (2) can be proved in a similar way.

REMARK. If AB = B, the product ab varies in general according to the choice of elements $a \in A$ and $b \in B$. For the study of the structure in this case, it needs to discuss beforehand the inner structure of archimedean classes.

Appendix

I express my hearty thanks to the referee for his suggestions given to this paper.

References

- N. G. Alimov, 'On ordered semigroups', Izv. Akad. Nauk SSSR 14 (1950), 569—576 (Russian).
- [2] A. H. Clifford, 'Naturally totally ordered commutative semigroups', Amer. J. Math. 76 (1954), 631—646.
- [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups I (Amer. Math. Soc. Math. Surveys No. 7, 1961).
- [4] P. Conrad, 'Ordered semigroups', Nagoya Math. J. 16 (1960), 51-64.
- [5] M. L. Dubreil-Jacotin, L. Lesieur and R. Croisot, Leçons sur la théorie des treillis, des structures algébriques ordonnées et des treillis géométriques (Gauthier-Villars, 1953).
- [6] L. Fuchs, Partially ordered algebraic systems (Pergamon Press, 1963).
- [7] Ya. V. Hion, 'Ordered semigroups', Izv. Akad. Nauk SSSR 21 (1957), 209—222 (Russian).
- [8] T. Saitô, 'Ordered idempotent semigroups', J. Math. Soc. Japan 14 (1962), 150—169.
- [9] T. Saitô, 'Regular elements in an ordered semigroup', Pacific J. Math. 13 (1963), 263—295.
 Correction, 14 (1964), 1505.
- [10] E. Ya. Gabovits, Ordered semigroups (Autoreview of dissertation, Leningrad, 1967) (Russian).

Tokyo Gakugei University