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Introduction

By an ordered semigroup we mean a semigroup with a simple order
which is compatible with the semigroup operation. Several authors, for
example Alimov [1], Clifford [2], Conrad [4] and Hion [7], studied the
archimedean property in some special kinds of ordered semigroups. For a
general ordered semigroup, Fuchs [6] defined the archimedean equivalence as
follows:

a ~ b if and only if one of the four conditions
a<b=ZaY, b<Zaxsdy a=Zb<Za bZazsbd
holds for some positive integer n.

Then he mentioned that this relation is an equivalence relation. But this
is not correct. In fact, let S = {0, 4, b} with the product zy = 0 for every
%,y €S and with the order a << 0 < b. Then it is easily checked that S
is an ordered semigroup and that a ~ 0 and b ~ 0. However, a ~ b does not
hold. It seems to be troublesome to define the archimedean equivalence
suitably in a general ordered semigroup. In the present note, we restrict
our attention to nonnegatively ordered semigroups in the sense defined in
§ 1. We define the archimedean equivalence in natural way. Even in these
semigroups, the archimedean equivalence is not always a congruence rela-
tion. The main purpose of § 2 is to give necessary and sufficient conditions
in order that the archimedean equivalence is a congruence relation. Such a
nonnegatively ordered semigroup is called a-regular. Many ordered semi-
groups, for example all nonnegatively ordered commutative semigroups and
the nonnegative cones of all ordered inverse semigroups are a-regular.
In § 3, we study the structure of a-regular nonnegatively ordered semi-
groups P. The quotient semigroup of P modulo the archimedean equiv-
alence is an ordered idempotent semigroup, whose structure was completely
determined in our previous paper [8]. By the aid of this knowledge, we
show, in this note, the structure of P is known to some extent.
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1. Preliminaries

By an ordered semigroup, we mean a semigroup S with a simple order
which satisfies

a = b implies ac < bec and ca =< cb for every c € S.

An element c of S is said to lie between a and bif eithera < c<borb<c<a.
A subset T of S is called convex if T contains with two of its elements all
elements of S which lie between them. An element p of S is called positive
if p2 > p, while ¢ is called negative if ¢ < ¢q. Since the order is simple,
an element p of S is nonnegative if and only if $2 = p. An element p of S
is called positive (nommegative) in the strict semse if ps >s and sp >s
(ps = s and sp = s) for every s € S. Clearly if p is positive (nonnegative) in
the strict sense, then p is positive (nonnegative). An ordered semigroup
S is called positively (nomnegatively) ordered (in the strict semse), if every
element of S is positive (nonnegative) (in the strict sense). The number
of distinct powers of an element a of an ordered semigroup S is called the
order of a. A mapping of an ordered semigroup S into an ordered semigroup
T is called an o-isomorphism, if it is a semigroup-isomorphism and an order-
isomorphism at the same time. If there is an o-isomorphism of S onto T,
then we say that S is o-tsomorphic to T.

Now we give some lemmas which we need in the following sections.

LeEmmA 1.1 ([9] Lemma 1 and its Corollary). The set P of nonnegative
elements of an ordered semigroup S, if it 1s nonvoid, is a subsemigroup of S.
The set E of idempotents of S, if it is nonvoid, is a subsemigroup of S.

The set P of nonnegative elements of S is called the non-negative cone
of S. If the set E of idempotents of S is nonvoid, we denote by & the Z-
equivalence in the semigroup E, in order to distinguish it from that in the
original semigroup S.

LeEMMA 1.2 ([9] Lemma 2). In an ordered semigroup S, if p is nonnegative
and q 1s nonpositive and if p < q, then both pq and qp are idempotents which
lie between p and q.

LEMMA 1.3. An idempotent semigroup S is a semilattice of rectangular
bands. Every rectangular band which is a constituent of the decomposition is
a D-class of S.

The first half of the above Lemma was given in [2] Exercise 1 for § 4.2.
Then the second half can be shown easily.

LeEMMA 1.4 ([8] Theorem 1). In an ordered idempotent semigroup S,
each D-class consists of esther only one L-class or only one X-class.

A D-class of an ordered idempotent semigroup S which consists of only
one #-class (#-class) is called a D-class of L-type (#Z-type). By Lemma 1.3,
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the set of D-classes of an ordered idempotent semigroup S forms a semi-
lattice, which is called the associated semilattice of S. In the associated
semilattice, we denote the partial order by <{ and the semilattice operation
by o.

LeEmMA 1.5 ([8] Theorem 3). The associated semilattice S* of an ovdered
idempotent semigroup S is a tree semilattice, i.e. a semilattice in which {£; & < o}
forms a simply ovdered set for every « € S*.

In the tree semilattice S*, « € S* is called a branching element of S*,
if there exist § and y such that « < 8, « < y and o« = o ».

Finally we give the following well-known lemma, which is implicitly
included in [5] Théoréme 3 in p. 179.

LEMMA 1.6. Let S be an ordered semigroup and let p be a congruence
relation on S such that every p-class is convex. For p-classes A and B, we
define A < B if and only if a < b for some a € A and b € B. Then the quotient
semigroup S|p is an ordered semigroup. Moreover, if A << B, then a < b for
everyac 4 and b e B.

2. The archimedean equivalence

In what follows, we always denote by P a nonnegatively ordered semi-
group and by E the set of idempotents of P. For z, y € P, we define the
archimedean equivalence ~ as follows:

x~yif and only if x <y <a"ory < x < y" for some positive integer n.
LEMMA 2.1. The archimedean equivalence in P is an equivalence relation.

Proor. It suffices to prove only the transitivity. Let a ~ b and b ~ c.
Then

(Nifasbd=aranddb =c=<b™ thena =b < ¢ = bd™ < g™

2)ifa=b=<a"and c £ b < ¢™, then, according as a < cor ¢ < q,
wehavea<=c<b=Zatorc<a<b=<cm

B)ifb<a=<?d and b <c¢ < b, then, according as a < corc = 4,
wehavea S c X" Zagrorc < a < b™ < ¢

@ifb=<agbtrandc=b<c™ thenc<b=<a<bh <c™
Thus, in all cases, we have a ~ c.

An equivalence class of P modulo the archimedean equivalence ~ is
called an archimedean class.

LemMA 2.2. Each archimedean class of P is a convex subsemigroup of P
which is nonnegatively ovdered in the strict sense.

https://doi.org/10.1017/51446788700006200 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006200

550 Toru Saitd 4]

ProoF. Let A be an archimedean class of P and let a,be A and
a<c<b Sinceca~>b wehaveb <a<brorasb<a" . lfb=<a=<d",
then a =b=¢, and if a < b < a*, then a < ¢ < b < a* Thus, in both
cases, we have a ~ ¢ and so 4 is convex. Next we suppose that a, be 4.
Then, since a~b, we have a < b Za" or b<a<b". If a <0 < an,
thena < a2 < ab <a*landsca~ab. I{b <a <b* thendb =02 <ab £
b1 and so b ~ ab. Thus, in both cases, we have abe A and so A is a sub-
semigroup. Finally, by way of contradiction, we suppose that ab < a for
some a,be A. Then we have ab? < ab. On the other hand, since b < b2, we
have ab = ab% Hence ab = ab? and so ab = ab for every positive integer #.
Since ab << a < a?, we have b < a. But a~ band so b < a < b™ for some
positive integer m. Hence a < a% < ab™ = ab < a, which is a contradiction.
Thus a < ab for every a, b e A. Similarly we can prove a < ba. Thus 4
1s nonnegative in the strict sense.

LeEMMA 2.3. For an archimedean class A of P, the following conditions
are equivalent to one another.

(1) A contains an idempotent,

(2) A has the greatest element,

(3) A has the zero element,

(4) every element of A is an element of finite order,
(6) A contains an element of finite order.

Moreover, under these conditions, an idempotent of A is the greatest element and
also the zero element of A.

Proor. (1) implies (2). In fact, let ¢ be an idempotent of A and let
aeA. Then we wave a < e < a” or ¢ < a < ¢" = ¢. Thus, in both cases,
we have a < e. Incidentally we have shown that an idempotent of 4 is the
greatest element of 4. (2) implies (3). In fact, let g be the greatest element
of A and let a € A. By Lemma 2.2, we have g < ga and g < ag, and also
age Aandgae Aandsoga < gandag < g. Thus ga = ag = g. Incidentally
we have shown that the greatest element of A is the zero element of A.
(3) implies (4). In fact, let A have the zero element 0 and let 2 € 4. Then
0=<a<0"=0o0r a<0<a" In the former case, we have a = 0 and
a = q?. In the latter case, we have 0 < a® < 0" = 0 and so a" = 0 and
a" = a™+'. (4) implies (5) trivially. Finally (5) implies (1). In fact, let a be an
element of finite order in A. Then a® = @™ for some positive integer #,
and 4" is an idempotent of 4.

COROLLARY 2.4. Every archimedean class of P contains at most one
idempotent.
If an archimedean class A satisfies any one of the conditionsin Lemma
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2.3, then 4 is called a periodic archimedean class. Otherwise A is called a
nonperiodic archimedean class.

LemMMA 2.5. In P, each nonperiodic archimedean class A is positively
ordered in the strict sense.

Proor. By Lemma 2.2, we have a =< ab for every «, b € A. Now, by
way of contradiction, we assume that a = ab. Then we have a = ab™ for
every positive integer m. Since a ~ b, we have either a < b < a" or
b<a=d" I b=<a=<bd" then a2 <ad"=a <4a?® and so a = a2. If
a<b=a" then a" <" and s0 a < a2 < a*! < ab® = g and a = a2
Hence, in both cases, a is an idempotent of A4, which contradicts that 4
is non-periodic. Thus we have @ < #b. We can prove @ < ba in a similar

way.
ExampLE 2.6. Let K, = {¢, /, 4, g} be a system with the multiplication
table
{ e [ a g
e € e € 4
A A A A |
a | f & € &8
4 & 8§ & &
and with the order ¢ < f < a < g. It is easily checked that K, is an ordered
semigroup.

ExaMpLE 2.7. Let K, = {e, }, 4, g} be an ordered semigroup with the
product multiplicatively dual to that of K, and with the same order relation
as K;.

THEOREM 2.8. In order that the archimedean equivalence in a nonnegatively
ordered semigroup P is not a congruence velation, it is necessary and sufficient
that P contains a subsemigroup o-isomorphic to either Ky or K, in the above
Examples.

ProoF. Necessity. Let the archimedean equivalence ~ in P be not a
congruence relation. Then there exist elements a, b, ¢ € P such that 4 ~ b
but either ac ~ bc or ca ~ cb does not hold. First we consider the case when
ac ~ be does not hold and suppose without loss of generality that a < b < a™
Then ac < bc < a"c and, since ac # be, we have #n > 1. Now we give a
series of relations which hold for @, b and c.

(1) (ac)™ < a for every positive integer m.
In fact, if (ac)™ = a for some m, then
arc = a*1(ac) < (ac)™"(ac) = (ac)m*-V+,
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Hence we have ac < bc < g"c < (ac)™*V+1 which contradicts that ac ~ b¢
does not hold.

(2) ac < a.
The special case of (1) for m = 1.

(3) ac™ = ac for every positive integer m.
In fact, by (2), we have ac?® < ac. On the other hand, since ¢ =< ¢?,
we have ac < ac?. Hence ac = ac? and so ac = ac™.

(4) ca < ac.
In fact, if ac =< ca, then, by (3), we have a"c = a"c* =< (ac)”. Hence
ac < bc < a™c =< (ac)", which contradicts that ac ~ bc does not hold.

(8) ca = cac.
In fact, by (4), we have ca < c?a = ¢(ca) < cac. On the other hand,
by (2), we have cac =< ca. Hence we have ca = cac.

(6) a < ac.

In fact, if a?c < a, then, by (3), we have a?c = a?c? = (a%c)c = ac.
On the other hand, since a < a2, we have ac < a?c. Hence ac = a?c and
so ac = a*c. Therefore ac < bc < a"c = ac, which contradicts that ac ~ bc
does not hold.

(7) aca < a.

In fact, by (5) and (1), we have aca = acac = (ac)? < a.

(8) (ac)? = ac, (ca)? = ca.

In fact, by (7), we have (ac)? = acac = ac and (ca)? = caca < ca.
On the other hand, since ac and ca are nonnegative, these elements are
idempotents.

(9) (a%c)? = a%c = a2

In fact, by (5) and (8), we have

(a%c)? = a®(ca)ac = a*(cac)ac = a(ac)?® = a(ac) = a’c.

Hence, by (6) and (2), we have a? < (a2¢)? = a% =< a2 and so (a?c)® =
atc = a2

Now we put ca = ¢, ac = f, a® = a®c = g. Then, by (4), (2) and (6),
we have ¢ << f < a < g. Moreover

e=¢e>=¢ef <ea=eg = (ca)aa = (cac)aa = ca(cac)a = (ca)®* =ca=¢e
by (8) and (5),

f=ac =acac = a(ca) = acta = fe < 2 < fa < fg = acaa = acaca =
acacac = (ac)® = ac = fby (8), (5) and (3),

[ = ac = acac = aca = ae by (8) and (5),

g=a'c=af <a’> < ag = aa’* = a® =g by (9),
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g = a(ac) = a(ac)? = a’cac = a*(ca) = ge = gf < ga < g% = (a%c)®* =
a’c = g by (8), (5) and (9).

Thus the set consisting of four elements ¢, f, @ and g forms a subsemigroup
o-isomorphic to K;. In the case when ca ~ ¢b does not hold we can prove
similarly that P contains a subsemigroup o-isomorphic to K,.

Sufficiency. We suppose that P contains a subsemigroup o-isomorphic
to K,. Without loss of generality, we assume P contains the ordered semi-
group K;. Then, since a? = g, we have a ~ g. But ae = f, ge = g and so
ae ~ ge does not hold. Thus the archimedean equivalence is not a congruence
relation. In the case when P contains a subsemigroup o-isomorphic to K,
we can obtain the same conclusion in a similar way.

A nonnegatively ordered semigroup P is called a-regular if the archime-
dean equivalence in P is a congruence relation.

COROLLARY 2.9. A nonnegatively ovdered semigroup P is a-regular if one
of the following conditions is satisfied:

(1) P is commutative,
(2) P contains no elements of finite ovder except idempotents,
(3) P is the nonnegative cone of an ordered inverse semigroup.

Proor. In cases (1) and (2), it is trivial that P does not contain a sub-
semigroup o-isomorphic to K; or K,. Since an ordered inverse semigroup
contains no elements of finite order except idempotents ([9] Theorem 6),
the case (3) is reduced to the case (2).

ReEMARK. When P is the nonnegative cone of an ordered regular semi-
group which contains a non-idempotent element of finite order, then, by
[9] Theorems 2 and 3, P contains a subsemigroup o-isomorphic to K, or K,.
Hence P is not a-regular.

THEOREM 2.10. A nonnegatively ordered semigroup P is a-regular if and
only if it satisfies the condition

(@) a~g=g%e=e®<<gand eDgg imply either ea = g or ae = g.

ProoF. Let P be a-regular and let a ~ g = g2, ¢ = ¢ < g and ePgg.
Then, by Lemma 2.3, we have a < g. Now we have also ¢ < a. In fact,
otherwise, ¢ < ¢ < g and so, by Lemma 2.2, we have ¢ ~ g, which contra-
dicts Corollary 2.4. First we suppose that the Zg-class of E which contains
e is of Z-type. Then ¢ = ¢2 < ea < ¢g = ¢. Hence we have ea = e. There-
fore (ae)? = aeae = ae and so ae is an idempotent. Since ~ is a congruence
relation, we have ae ~ ge = g. Hence, by Corollary 2.4, we have ae = g.
If the D 4-class which contains e is of #-type, we can prove ea = g in a similar
way. Conversely we suppose that P is not a-regular. Then, by Theorem 2.8,
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P contains a subsemigroup o-isomorphic to either K, or K,. If P contains
K;, then three elements ¢, 2 and g of K, satisfy the assumption of the
condition (). But we have ea == ¢ % g and ae = f =% ¢ and so the condition
(«) does not hold. If P contains K,, we can obtain the same conclusion in a
similar way.

3. a-regular nonnegatively ordered semigroups

In this section, we denote by P an a-regular nonnegatively ordered
semigroup and by A (p) the archimedean class which contains an element
p € P. Since P is a-regular, the archimedean equivalence ~ is a congruence
relation and so, by Lemmas 2.2 and 1.6, the quotient semigroup P/~ is an
ordered semigroup with the order defined in Lemma 1.6. We denote by P
the ordered semigroup P/~.

THEOREM 3.1. P is an ordered idempotent semigroup.

Proor. Let A(p) be an element of P. Then, since p ~ p2, we have
(A(p))? = A(p%) = A(p)-

LeEmMA 3.2. The mapping ¢ which maps e€ E to A(e) € P is an o-iso-
morphism of E into P.

Proor. By Corollary 2.4, ¢ is a one-to-one mapping. Then it is easily
seen that @ is a semigroup-isomorphism and an order-isomorphisin.

The image set of the o-isomorphism ¢ in the above Lemma 3.2 is denoted
by E. E is a subsemigroup of P. For an archimedean class 4, we have 4 € E
if and only if 4 contains an idempotent. Hence E is the set of periodic
archimedean classes. The Z-equivalence in the ordered idempotent semi-
group P is denoted by Z. For A e P, the D-class which contains 4 is denoted
by 2(4).

THEOREM 3.3. If A € E, then 2(A) CE.

Proor. Let B e P such that AZB. First we suppose that Z(4) is a
D-class of L-type. Since 4 € E, 4 contains an element ¢ € E. We take b € B
arbitrarily. If & < ¢, then, by Lemma 1.2, be is an idempotent of P and be €
BA = B.Ife < b, then wehave e = ¢2 < ebe AB = A. Hence, by Lemma
2.3, we have ¢ = ¢b and so (be)? = bebe = be and be € BA = B. Hence be
is an idempotent of B. Thus, in both cases, we obtain B € E. In the case
when Z(A) is of #-type, we can prove B € E in a similar way.

By Theorem 3.3, each D-class D in P belongs to one and only one of the
following two types:

(1) all archimedean classes in D are periodic,
(2) all archimedean classes in D are nonperiodic.
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If a D-class D belongs to the type (1), then D is called a periodic D-class,
while if D belongs to the type (2), it is called a nonperiodic Z-class.

TuaeoREM 3.4, If A is an archimedean class which belongs to a periodic
D-class D and if A is not the least element of D with respect to the order in P,
then, in P, every element of A is at most of order 2.

Proor. Let a € 4. By assumption, there exists an archimedean class
B e D such that B << A. Since D is a periodic Z-class, both 4 and B are
periodic archimedean classes. Let ¢ and f be idempotents of A and B,
respectively. Then, since B << A, we have f << a < e. First we suppose
that the D-class D is of #-type. Then ef e AB = A and fe € BA = B. Since
ef € E and fe € E, we have e¢f = ¢ and fe = f by Corollary 2.4, and so eZgf.
In the case when D is of #-type, we can prove eZgf in a similar way. Hence,
in both cases, by Theorem 2.10, we have fa = e or af = e. On the other hand,
since f < a < ¢, wehave fa < a%2 < ¢ = eand af < a? < ¢* = ¢. Therefore

we have a2 = e.

THEOREM 3.5. Suppose that, for A € P, there exists B € P suchthat A < B
and 9(A) < D(B). Then A is a periodic archimedean class.

ProoF. First we suppose that & (4) is a D-class of #-type. Then, since
D(A) =D(4)o D(B) = D(4B), we have AB = A(AB) = A. We take
a € 4 and b e B arbitrarily. Then abe AB = A and so ab << b. Hence we
have a?b < ab. On the other hand, since a < a2, we have ab < a2b. There-
fore ab = a%h = a(ab) with ae A and abe A. Hence, by Lemma 2.5,
A is a periodic archimedean class. In the case when Z(4) is of %Z-type, we
can obtain the same conclusion in a similar way.

THEOREM 3.6. Every nonperiodic D-class D consists of only one non-
periodic archimedean class.

Proor. By way of contradiction, we assume that D contains two
distinct archimedean classes A and B. Without loss of generality, we suppose
that 4 < B. Then 2(4) = D = 2 (B) and A is a nonperiodic archimedean
class, which contradicts Theorem 3.5.

COROLLARY 2.7. Let A be a nonperiodic archimedean class and let B be
an archimedean class such that A << B. Then there exists an archimedean
class C such that A < C and D(A) > Z(C).

Proor. We put C = AB. Then, by Lemma 1.2, we have 4 =< C < B.
If it were true that A = C, then A = C < Band 9(4) = 9(C) = 9 (4 B)
< 2(B), which contradicts Theorem 3.5. Hence we have 4 < C. Moreover
9(C) = D(AB) < D(A) and the equality is excluded by Theorem 3.6.
Thus we have 2(4) > Z(C).
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REMARK. Intuitively speaking, when we pursue the course on the associ-
ated semilattice of P according to the order, every nonperiodic archimedean
class appears in the descending path. In particular, every branching element
of the associated semilattice is a periodic Z-class.

THEOREM 3.8. Let A and B be archimedean classes such that A < B.

(1) If AB < B, then AB is a periodic archimedean class and, for every
aed and b e B, the product ab is equal to the idempotent of AB.

(2) If BA < B, then BA is a periodic archimedean class and, for every
ac A and b e B, the product ba is equal to the idempotent of BA.

Proor. First we consider (1) and suppose that A B < B. Then Z(4 B) =
D(A) 0o D(B) < @(B) and so, by Theorem 3.5, AB is a periodic archi-
medean class. Let g be the idempotent of A B and let a € 4 and b € B. Then,
since AB < B, wehave g < band soag = ab. On the other hand, by Lemma
2.3, g is the greatest element of AB and A < AB. Hence we have a < g.
Therefore, by Lemma 1.2, ag is an idempotent and also age 4 (A B) = AB.
Hence we have g = ag. Since ab e AB, we have ab < g = ag by Lemma 2.3
again. Thus ab = ag = g. The assertion (2) can be proved in a similar way.

REMARK. If AB = B, the product ab varies in general according to the
choice of elements 2 € 4 and b € B. For the study of the structure in this
case, it needs to discuss beforehand the inner structure of archimedean
classes.

Appendix

I express my hearty thanks to the referee for his suggestions given to
this paper.
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