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Abstract

For a group G and a real number x ≥ 1 we let sG(x) denote the number of indices≤ x of subgroups of G.
We call the function sG the subgroup density of G, and initiate a study of its asymptotics and its relation
to the algebraic structure of G. We also count indices ≤ x of maximal subgroups of G, and relate it to
symmetric and alternating quotients of G.
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1. Introduction

Subgroup growth has been a major research topic over the past decades, with some
remarkable achievements, see, for example, the book [13] by Lubotzky and Segal and
the references therein.

The purpose of this paper is to introduce a somewhat related, but different, concept,
where we count subgroup indices, instead of subgroups of a given index.

To make this precise, let G be a group, n a natural number, and let an(G) denote
the number of subgroups of index n in G (possibly infinity). Set

SG = {n ∈N | an(G) > 0},

the set of finite indices of subgroups of G. Note that SG is a multiplicative subset of
N, namely if m, n ∈ SG and m, n are coprime then mn ∈ SG . For a real number x ≥ 1,
define

sG(x)= |{n ∈ SG | n ≤ x}|.
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Thus sG(x) is the number of indices of subgroups of G which do not exceed x . We
refer to the function sG as the subgroup density of G. In this context it is natural
to restrict to residually finite groups G, and we shall often assume further that G is
finitely generated.

We trivially have sG(x)≤ [x], with equality when G has subgroups of any finite
index. For example, if G maps onto Z then it has this property. We say that
G has linear subgroup density if there exists ε > 0 such that sG(x)≥ εx for all
x ≥ 1. It is easy to see that finitely generated soluble groups have this property
(see Proposition 2.3 below). On the other hand, the subgroup density of certain
finitely generated residually finite groups can be much smaller. For example, if G
is a residually finite infinite finitely generated p-group (as constructed by Golod [3],
Grigorchuk [4], and others) then we have sG(x)= [log x/log p] + 1 for all x ≥ 1.

In this paper we propose a systematic study of the asymptotics of sG(x) for infinite
groups G, and its relation to the algebraic structure of G. We shall derive some results
and suggest directions for further research.

Our first result shows that the subgroup density of certain linear groups is rather
high. Indeed we have the following result.

THEOREM 1.1. Let G be an infinite finitely generated linear group in characteristic
zero. Then there exists a real number α > 0 such that

sG(x)≥ xα for all sufficiently large x .

In fact, our proof shows that if G is linear in dimension k, then the exponent α
above can be bounded below by some positive number depending only on k.

In general, it would be interesting to study the (lower and upper) limit(s) of
log sG(x)/log x for linear groups G.

Our next result solves this problem in some cases, and shows that Theorem 1.1 is
the best possible in the sense that α may be arbitrarily small.

THEOREM 1.2. Let r ≥ 1 and let G = SLr+1(Z). Then

log sG(x)

log x
→

1
r

as x→∞.

Our proof of this result involves tools from number theory and finite simple groups,
and applies for more general arithmetic groups. Indeed, the subgroup density of linear
and arithmetic groups in arbitrary characteristic will be discussed in [15].

It is intriguing that arithmetic groups in positive characteristic behave differently
with respect to subgroup density. For example, we show in [15] that if
G = SLr+1(Fp[t]) where r ≥ 2, then log sG(x)/log x→ 0, so the subgroup density
is much lower than that determined in Theorem 1.2 above. This also implies that the
assumption in Theorem 1.1 on the characteristic of the underlying field is essential.

Let us now turn to indices of maximal subgroups. Recall that mn(G) denotes the
number of maximal subgroups of index n of a group G. Set

M SG = {n ∈N | mn(G) > 0},
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the set of finite indices of maximal subgroups of G. For a real number x ≥ 1, define

msG(x)= |{n ∈ M SG : n ≤ x}|,

the number of indices up to x of maximal subgroups of G. We refer to the function
msG as the maximal subgroup density of G. For G = Z, the integers, we have
msG(x)= π(x), the number of primes up to x . Thus the study of the functions msG
may be viewed as a generalization of counting primes.

We clearly have msG(x)≤ sG(x)≤ [x] for all x . If G maps onto An or Sn for all
n then both equalities hold. Note, however, that msG may be a bounded function (for
example when G is a finitely generated p-group) whereas the function sG is never
bounded for infinite residually finite groups.

The study of msG is relevant in our proofs of Theorems 1.1 and 1.2. It turns out that
for certain arithmetic groups the rate of growth of msG(x) can be precisely determined.

THEOREM 1.3. Let r ≥ 1 and let G = SLr+1(Z). Then

log msG(x)

log x
→

1
r

as x→∞.

Moreover, for r ≥ 2,

msG(x)= (r + o(1))
x1/r

log x
.

Here and throughout this paper o(1) denotes a real number tending to zero as
x→∞.

Theorem 1.3 can be generalized for arithmetic groups with the congruence
subgroup property [15].

While the functions sG and msG have not been studied systematically for infinite
groups G, there is some related and relevant literature concerning the case where G
ranges over certain families of finite groups. In [1], Cameron et al. count indices
up to x of maximal subgroups of finite simple groups (excluding An−1 in An) and
apply this to show that for a density 1 subset of natural numbers n the only primitive
permutation groups of degree n are An and Sn . This is extended in the more recent
work [6] by Heath-Brown et al., where we omit the maximality condition, and prove a
similar result for quasi-primitive permutation groups. We say that a subgroup H ≤ G
is quasi-maximal if, for every normal subgroup N of G, N H 6= G implies N ⊆ H .

The results of [1] and [6] have the following rather striking consequence.

THEOREM 1.4. Let G be a group which surjects to only finitely many symmetric or
alternating groups. Then

msG(x)≤ (2+ o(1))
x

log x
.

Furthermore, the number of indices ≤ x of quasi-maximal subgroups of G is also of
the form O(x/log x).
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Theorem 1.4 applies for natural families of groups, such as arithmetic groups
with the congruence subgroup property, virtually soluble groups, and groups with the
Babai–Cameron–Pálfy restriction on their upper composition factors; it provides upper
bounds similar to the one in the prime number theorem.

In fact, the conclusions of Theorem 1.4 hold under the weaker assumption, that G
surjects to at most o(x/log x) groups of the form An or Sn for n ≤ x . See Section 3
for this and related consequences.

While this paper is a first step in understanding subgroup density, much remains to
be done. One natural problem is to find the spectrum of possible growth behaviours
of sG and msG . It is easy to realize many growth types using infinite products of
finite cyclic groups; for example, if G =

∏
C pi where {pi } is a sufficiently sparse set

of primes we can make sG grow arbitrarily slowly. However, these examples are not
finitely generated. Constructions by Kassabov and Nikolov [7] of finitely generated
groups with various profinite completions (such as certain products of alternating
groups) provide a tool for tackling the spectrum problem for finitely generated groups.

Even the case of linear groups G presents some challenges. One is to determine the
growth type of sG and msG in terms of relevant data, and to try to characterize groups
under some density assumptions. A concrete problem of this type is characterizing
finitely generated linear groups G over C such that sG(x)≥ εx for some ε > 0 and
for all x ≥ 1; in particular, do all these groups have a finite index subgroup mapping
onto Z?

Finally, some words on the structure of this paper. In Section 2 we prove
preliminary results on subgroup density, which eventually lead to the proof of
Theorem 1.1, and to an upper bound crucial in the proof of Theorem 1.2. Section 3
deals with maximal subgroup density, and contains the proofs of Theorems 1.3 and 1.4,
and observations on Fuchsian groups. Theorem 1.3 provides the lower bound needed
to complete the proof of Theorem 1.2.

2. Subgroup density

We start with some elementary results.

LEMMA 2.1. (i) For any normal subgroup H of G we have sG(x)≥ sG/H (x).
(ii) For any subgroup H of G of finite index f we have sG(x)≥ sH (x/ f ).

PROOF. This is immediate. 2

COROLLARY 2.2. Let G be a finitely generated group which has a finite index
subgroup H such that |H/H ′| =∞. Then G has linear subgroup density.

PROOF. H/H ′ is an infinite finitely generated abelian group, hence it maps onto Z.
The result now follows easily from the previous lemma. 2

PROPOSITION 2.3. Let G be an infinite finitely generated virtually soluble group.
Then G has linear subgroup density.

https://doi.org/10.1017/S1446788708000943 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000943


[5] The density of subgroup indices 261

PROOF. Let K ≤ G be a soluble subgroup of finite index. Let K (i) (i ≥ 0) be the
derived series of K . If K (i)/K (i+1) is the first infinite derived factor, then Corollary 2.2
(with H = K (i)) yields the result. 2

To prove Theorem 1.1 we also need a version of the so-called Lubotzky alternative,
based on deep results on strong approximation. See [13, Chapter 9], for extensive
background, as well as the recent detailed notes by Nikolov [14]. We say that a set S of
primes has positive density if there exists ε > 0 such that |{p ∈ S, p ≤ x}| ≥ εx/log x
for all sufficiently large x . We shall now state and apply the following known result
(see, for instance, [14, Corollary 30]).

THEOREM 2.4. Let G be a finitely generated linear group over a field of
characteristic zero, and suppose G is not virtually soluble. Then there exist a subgroup
H of finite index in G, a fixed untwisted simple Lie type X, a set S of primes of
positive density, and an epimorphism φ : Ĥ →

∏
p∈S X (Fp), where Ĥ is the profinite

completion of H.

PROOF OF THEOREM 1.1. Let G be as in the theorem. If G is virtually soluble then
Proposition 2.3 shows that sG(x)≥ εx for some ε > 0 and for all x , and the conclusion
of the theorem follows immediately.

So suppose G is not virtually soluble. Then the conclusion of Theorem 2.4 holds.
Set K =

∏
p∈S X (Fp). We claim that it suffices to show that there exists β > 0 such

that
sK (x)≥ xβ for all large x . (2.1)

Indeed, this follows from Lemma 2.1 and the inequality (x/ f )β ≥ xβ−o(1) where
f = |G : H |.

Now, the minimal index of a proper subgroup of X (Fp) is known, and, assuming
p is large enough, say p > c, is given by the value of some fixed polynomial g(t)
(depending on the type X only) at the point t = p. See [8, p. 175] and [9]. Moreover,
it is easily seen that g(p) is an increasing function of p and that g(p)≥ pd where
d = deg(g)≥ 1. It follows that

SK ⊇ {g(p) | p ∈ S, c < p ≤ x1/d
}.

Since S has positive density, we conclude that there exists ε > 0 such that, if x is
large enough, then SK contains at least εx1/d/log x1/d

− c distinct indices up to x . It
follows that, for large x ,

sK (x)≥ εd
x1/d

log x
− c ≥ x1/d−o(1).

This implies the inequality (2.1) for any β < 1/d and concludes the proof. 2

Note that if G above is linear in dimension k, then the dimension of the Lie type X ,
and hence d too, are bounded above in terms of k. This proves the remark following
the statement of Theorem 1.1.

To prove Theorem 1.2 we need the following number theoretic lemma.
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LEMMA 2.5. Fix a constant b. Then the number of positive integers n ≤ x whose
prime divisors are all at most b log x is of the form xo(1).

PROOF. Let A be the set of primes p ≤ log x/(log log x)2, and let B be the set of
primes p such that log x/(log log x)2 < p ≤ b log x . Let C = A ∪ B. We have to
count the number NC of sequences (kp)p∈C such that kp ≥ 0 and

∏
p∈C pkp ≤ x .

Clearly kp ≤ log2 x for all p ∈ C , and
∑

p∈C kp log p ≤ log x .
Hence the number NA of choices for (kp)p∈A satisfies

NA ≤ (log2 x)|A| ≤ (log2 x)log x/(log log x)2
≤ xc1/log log x ,

for some (small) constant c1.
For p ∈ B we have log p ≥ log log x − 2 log log log x ≥ (1− o(1)) log log x .

Therefore
log x ≥

∑
p∈B

kp log p ≥ (1− o(1))(log log x)
∑
p∈B

kp.

We conclude that
∑

p∈B kp ≤ (1+ o(1)) log x/log log x . By the prime number
theorem we also have |B| ≤ (b + o(1))) log x/log log x .

Thus the number of possibilities NB for (kp)p∈B is at most the number of
monomials of total degree at most d = (1+ o(1)) log x/ log log x in f = (b + o(1))
log x/log log x variables. It is well known that there are

(d+ f
d

)
≤ 2d+ f such

monomials. This yields

NB ≤ 2(b+1+o(1)) log x/log log x
≤ xc2/log log x

for some constant c2.
Altogether we obtain

NC ≤ NA NB ≤ xc/log log x ,

where c = c1 + c2. In particular, NC ≤ xo(1), as required. 2

We now turn to the core of the proof of Theorem 1.2.

PROPOSITION 2.6. Let r ≥ 1 and let G = SLr+1(Z). Then sG(x)≤ x1/r+o(1).

PROOF. For r = 1 there is nothing to prove, so suppose r ≥ 2. Then G has the
congruence subgroup property; moreover, by [13, Proposition 6.1.1] there is a constant
c such that every index n subgroup of G contains a congruence subgroup G(m)
for some m ≤ cn, and so corresponds to an index n subgroup of the finite group
SLr+1(Z/mZ).

We have SLr+1(Z/mZ)∼=
∏

p∈S SLr+1(Z/pkpZ) if m =
∏

p∈S pkp for a finite set
S of primes. Hence if n ≤ x and n ∈ SG , then there exist a finite set S of primes, and a
sequence (kp : p ∈ S) of positive integers, such that∏

p∈S

pkp ≤ cx, (2.2)
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and
n ∈ SH where H =

∏
p∈S

SLr+1(Z/pkpZ). (2.3)

We may assume further that S is minimal, so if n = |H : K | then K does not contain
a direct factor Hp := SLr+1(Z/pkpZ); therefore the projections of H to each factor
Hp map K into a proper subgroup Mp < Hp.

Our proof of the proposition will now be carried out in three steps. First we bound
the number of choices for S; then, given S, we bound the number of choices for the
sequence (kp : p ∈ S); finally, we bound the number of choices for n given S and
(kp : p ∈ S).

STEP 1. Suppose p > 2. Then the minimal index of a proper subgroup of SLr+1(Fp)

is (pr+1
− 1)/(p − 1) (see [8, p. 175]). Since the Frattini subgroup of SLr+1(Zp) is

the first congruence subgroup, it follows that the minimal index of a proper subgroup
of Hp is also (pr+1

− 1)/(p − 1). In particular,

|Hp : Mp| ≥ pr
+ pr−1

+ · · · + p + 1> pr .

Note that n = |H : K | where K ≤
∏

p∈S Mp, and so

x ≥ n ≥
∏
p∈S

|Hp : Mp| ≥
∏

p∈S,p>2

pr .

We conclude that
∏

p∈S,p>2 p ≤ x1/r . By the unique factorization in Z we see that

the set of primes S \ {2} can be chosen in at most x1/r ways. Thus S can be chosen in
at most 2x1/r ways.

STEP 2. Suppose S is given. We now estimate the number of sequences (kp : p ∈ S)
of positive integers such that the inequality (2.2) above holds. Let m = |S| and let
p1, p2, . . . , pm be the first m primes. Then

cx ≥
∏
p∈S

pkp ≥

∏
p∈S

p ≥
m∏

i=1

pi .

It follows from the prime number theorem that pm ∼ m log m and
∏m

i=1 pi
≥ e(1−o(1))m log m

≥ e(1−o(1))pm . Hence (1− o(1))pm ≤ log(cx), which implies

pm ≤ b log x

for some constant b.
Now, to each sequence (kp : p ∈ S) we attach the number

∏m
i=1 pni

i so that ni is
kp for the i th prime p in S. Since

∏m
i=1 pni

i ≤
∏

p∈S pkp ≤ cx we obtain an injective
map from the set of sequences (kp : p ∈ S) to the set of positive integers n ≤ cx whose
prime divisors are all ≤ pm ≤ b log x . By Lemma 2.5 the size of the latter set is of
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the form xo(1). Therefore, given S, there are at most xo(1) choices for the sequence
(kp : p ∈ S).

STEP 3. Suppose both S and (kp : p ∈ S) are given. We now count indices n
which arise from this data. Such indices are divisors of the order of the group
H =

∏
p∈S SLr+1(Z/pkpZ). Note that

|H | ≤
∏
p∈S

(pkp )(r+1)2
≤ (cx)(r+1)2,

by (2.2). It is well known that a given number h has at most hc3/log log h divisors, for
some constant c3 (see [5, Chapter 18]). Therefore, the number of divisors of |H | is at
most

((cx)(r+1)2)c3/log log((cx)(r+1)2 )
≤ xc4/log log x

for a suitable constant c4. In particular, there are at most xo(1) choices for the index n
given S and (kp : p ∈ S).

Combining all three steps we see that the number of indices n ≤ x of subgroups of
G is at most x1/r+o(1), as required. In fact our arguments establish a slightly stronger
result, namely

sG(x)≤ x1/r+c5/log log x

for some constant c5 and for all x . 2

It now follows immediately that, if G = SLr+1(Z), then

lim sup
log sG(x)

log x
≤

1
r
, (2.4)

establishing one inequality in the conclusion of Theorem 1.2. The remaining
inequality will be proved in the next section.

3. Maximal subgroup density

The following result is immediate, but useful.

LEMMA 3.1. Let G be a group and H a normal subgroup. Then M SG ⊇ M SG/H and
msG(x)≥ msG/H (x) for all x.

Next we quote a theorem, which settled positively a famous conjecture of Higman.
Recall that a Fuchsian group is a finitely generated nonelementary discrete group of
isometries of the hyperbolic plane. Examples include free groups, surface groups
(oriented or not), the modular group SL2(Z), and hyperbolic triangle groups.

THEOREM 3.2. Let G be a Fuchsian group (oriented or nonoriented). Then G
surjects to all but finitely many alternating groups An .
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This is proved by Everitt [2] for oriented groups, and later in [11] for oriented and
nonoriented groups (using probabilistic methods).

We now deduce the following result, showing that Fuchsian groups have very large
maximal subgroup density.

PROPOSITION 3.3. Let G be a Fuchsian group. Then there exists a constant c such
that

msG(x)= [x] − c for all large x .

PROOF. Since An has a maximal subgroup of index n this follows immediately from
the two results above. 2

We shall now show that there is a more general connection between the function
msG and alternating and symmetric quotients of G. For a group G define

QG = {n ∈N | G surjects to An or Sn}.

We clearly have M SG ⊇ QG . The next result, based on [1], shows that the difference
M SG \ QG is small in some sense.

PROPOSITION 3.4. The number of positive integers n ∈ M SG \ QG satisfying n ≤ x
is at most (2+ o(1))x/log x.

PROOF. Let n ∈ M SG \ QG , and let H be a maximal subgroup of index n in G. Let
N = HG be the core of H . Then G/N is a primitive permutation group of degree n,
and G/N is not isomorphic to An or Sn (since n 6∈ QG).

Let D be the set of natural numbers n with the property that there exists a primitive
permutation group of degree n not isomorphic to An or Sn . We have shown that

M SG \ QG ⊆ D.

The main result of [1] shows that the number of positive integers n ≤ x such that n ∈ D
is (2+ o(1))x/log x . The result follows. 2

Let [1, x] denote the interval {y ∈R | 1≤ y ≤ x}.

COROLLARY 3.5. For every group G,

|QG ∩ [1, x]| ≤ msG(x)≤ |QG ∩ [1, x]| + (2+ o(1))x/log x .

PROOF OF THEOREM 1.4. The first assertion follows immediately from the above
corollary. The second one is proved similarly using [6] instead of [1]. 2

Note that the somewhat stronger version of Theorem 1.4 mentioned in the
introduction also follows from Corollary 3.5.

We say that a subset L ⊆N has density α if limx→∞ |L ∩ [1, x]|/x = α.
Another consequence of Corollary 3.5 is the following result.

COROLLARY 3.6. If QG has density α then so does M SG .

We now discuss the maximal subgroup density of SLr+1(Z).
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PROOF OF THEOREM 1.3. If r = 1 then G = SL2(Z) is Fuchsian, and so the result
follows from Proposition 3.3 above. So suppose r ≥ 2. Then G = SLr+1(Z) has the
congruence subgroup property and its profinite completion satisfies

Ĝ ∼=
∏

p
SLd(Zp).

Hence every maximal subgroup of finite index in G comes from a maximal open
subgroup of SLd(Zp) for some prime p. We may ignore p = 2 (as this only
reduces the maximal subgroup density by a constant). For p > 2 the maximal open
subgroups of SLr+1(Zp) correspond to those of G p := SLr+1(Fp). As noted in
the proof of Proposition 2.6 above, the minimal index m(G p) of such a subgroup is
(pr+1

− 1)/(p − 1). Using the prime number theorem it is easy to see that the number
of indices (pr+1

− 1)/(p − 1)≤ x is (r + o(1))x1/r/log x . This yields

msG(x)≥ (r + o(1))x1/r/log x .

It is known that the number of conjugacy classes of maximal subgroups of SLr+1(Fp)

is bounded (independently of p); see, for instance, [12, Lemma 2.1], for a more
general result. Hence each group G p = SLr+1(Fp) contributes at most c indices of
maximal subgroups, where c is some constant (depending on r only). Excluding the
minimal index m(G p), each such index is at least bm(G p)

1+ε
≥ bp(1+ε)r for some

absolute constants b, ε > 0 (see [10, Lemma 6.6] for this and a more general result).
Thus, such an index n ≤ x arises from a factor G p for some p ≤ (x/b)1/(1+ε)r . We
conclude that the contribution to msG(x) of those indices is at most O(x1/(1+ε)r )≤

o(x1/r/log x).
Altogether it follows that, if r ≥ 2, then

msG(x)= (r + o(1))x1/r/log x .

This completes the proof of the second assertion in Theorem 1.3. The first assertion
follows immediately. 2

PROOF OF THEOREM 1.2. Let G = SLr+1(Z). Since sG(x)≥ msG(x),

lim inf
log sG(x)

log x
≥ lim

log msG(x)

log x
=

1
r
.

Combining this with inequality (2.4) the result follows. 2
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