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We investigated the dynamics of thin-layer formation by non-spherical motile
phytoplankton in time-dependent shear flow, building on the seminal work of Durham
et al. (2009 Science vol. 323, pp. 1067–1070), on spherical microswimmers in time-
independent flows. By solving the torque balance equation for a microswimmer, we found
that the system is highly damped for body sizes smaller than 10−3 m, with initial rotational
motion dissipating quickly. From this torque balance, we also derived the critical shear for
ellipsoidal microswimmers, which we validated numerically. Simulations revealed that
the peak density of microswimmers is slightly higher than the theoretical prediction due
to the speed asymmetry of sinking and gyrotaxis above and below the predicted height. In
addition, we observed that microswimmers with higher aspect ratios tend to form thicker
layers due to slower angular velocity. Using linear stability analysis, we identified a thin-
layer accumulation time scale, which contains two regimes. This theoretically predicted
accumulation time scale was validated through simulations. In time-dependent flow with
oscillating critical shear depth, we identified three accumulation regimes and a transitional
regime based on the ratio of swimmer and flow time scales. Our results indicate that thin
layers can form across time scale ratios spanning five orders of magnitude, which helps
explain the widespread occurrence of thin phytoplankton layers in natural water bodies.
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1. Introduction
For more than four decades, researchers have observed the presence of thin layers of
phytoplankton, characterised by dense concentrations of phytoplankton confined within
narrow horizontal bands. These layers are accumulations of plankton in a narrow depth
layer but extending over kilometres (Dekshenieks et al. 2001; Moline et al. 2010), and
the phytoplankton concentration can potentially be orders of magnitude higher than the
background level (Ryan et al. 2008; Sullivan, Donaghay & Rines 2010), forming important
ecological activity hotspots. Due to their ecological significance, several fluid mechanic
mechanisms have been proposed for the thin-layer formation, including straining (Franks
1995; Osborn 1998), buoyancy (Alldredge et al. 2002), intrusion (Armi 1978; Phillips,
Shyu & Salmun 1986; Kasai et al. 2010) and gyrotactic trapping (Durham, Kessler
& Stocker 2009). Those proposed mechanisms have been discussed in the review by
Durham & Stocker (2012).

The gyrotactic trapping mechanism is one of the most promising mechanisms for
explaining motile, bottom-heavy phytoplankton accumulations, and it is consistent with
field observations that the thin layer is frequently found at the depths where vertical
shear, variation of horizontal velocity as a function of vertical distance, is enhanced
(Dekshenieks et al. 2001; Seuront & Strutton 2003; Ryan et al. 2008; Sullivan et al. 2010).
The balance of two types of torques leads to gyrotactic trapping. One is hydrodynamic
torque, also called viscous torque. The hydrodynamic torque was originally derived in
the seminal work by Jeffery (1922), where particles respond to local vorticity and rate of
strain (applicable only to non-spherical particles). At the microswimmer length scale, the
microswimmers experience a sea of gradients, and they experience linear hydrodynamic
shear locally (Stocker 2012) because the body size of the microswimmers is much smaller
than Kolmogorov length scales (Wheeler et al. 2019). Gravitational torques arise from
the fact that a microswimmer’s centre of mass is different from its geometric centre. Most
gyrotactic phytoplankton are bottom heavy, i.e. the centre of mass is located lower than the
geometric centre. Bottom-heavy phytoplankton generates a stabilising gravitational torque
on the cell that acts to keep its swimming direction oriented opposite to gravity.

Much previous research has shown that the microswimmer/particle intrinsic mobility,
hydrodynamic torque from local shear and gyrotaxis can independently or jointly generate
preferential distribution in a wide range of flows. Kessler (1985) set up the torque balance
of a spherical motile cell and theoretically and experimentally demonstrated the gyrotactic
focusing of the motile cells in Poiseuille flow. In addition, Durham, Climent & Stocker
(2011) demonstrate that the gyrotactic motility within a steady vorticial flow can cause a
tightly clustered aggregation of microorganisms. A similar effect has also been observed
by Khurana, Blawzdziewicz & Ouellette (2011) and Yazdi & Ardekani (2012) with only
motility effects. It has been found that the hydrodynamic shear (Rusconi, Guasto &
Stocker 2014) and flow velocity (Borgnino et al. 2019) can have non-trivial impacts on the
orientation and spatial heterogeneity of swimmers resulting from their shapes and intrinsic
mobility, in which the fluid shear can trap swimmers (Rusconi et al. 2014) and rod-like
swimmers preferentially align with the flow velocity (Borgnino et al. 2019). Turbulence
can also lead to the heterogeneous distribution of swimmers and particles (Squires &
Eaton 1991; Monchaux, Bourgoin & Cartellier 2011; Ray & Collins 2011; Durham et al.
2013; Obligado et al. 2014; Pujara, Koehl & Variano 2018; Falkinhoff et al. 2020; Qiu,
Marchioli & Zhao 2022). In isotropic turbulence, ellipsoidal swimmers preferentially
sample regions of lower fluid vorticity and accumulate in those regions (Pujara et al.
2018). However, clustering and patchiness are much weaker in isotropic turbulence than
in simple cellular or vortical flows (Torney & Neufeld 2007; Khurana et al. 2011) due to
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the complex topology (Zhan et al. 2014). (Lovecchio et al. 2019) demonstrated that chain
formation in motile phytoplankton significantly enhances their ability to migrate vertically
in turbulent waters, especially under weak to moderate turbulence. (Gustavsson et al. 2016)
and (Borgnino et al. 2018) complemented the analysis presented in (Lovecchio et al. 2019),
particularly discussed the effect of shape in sampling up-welling/down-welling regions
of turbulence and the role of swimming speed. Si & Fang have revealed the preferential
accumulation of non-spherical motile swimmers’ accumulation near Lagrangian coherent
structures (Si & Fang 2021) and three regimes of preferential transport of such swimmers
in strongly heterogeneous two-dimensional weakly turbulent flow with heterogeneous
Reynolds number along one direction (Si & Fang 2022).

Hydrodynamic torque, gravitational torque as well as microswimmer’s intrinsic motility
can also combine to generate a clustering of thin layers at the surface of water bodies.
In natural water bodies, the shear rate typically decreases with increasing depth. (Durham
et al. 2009) showed that thin layers form at a depth where the shear rate exceeds a critical
value SC . Above the critical shear, hydrodynamic torque dominates, causing continuous
cell rotation and resulting in a sinking motion due to settling velocity. Below the critical
shear, gyrotactic forces stabilise the cell, allowing it to move upward while encountering
higher shear. As a result, the swimmer tends to become trapped at the critical shear layer.
At critical shear, the cell’s upward speed vanishes, leading to an accumulation of cells. The
critical shear is derived based on torque balance and is equal to the inverse of the gyrotactic
time scale (τ ), which τ is known for a variety of species and is generally within 1–100 s
(Kessler 1985; Hill & Häder 1997; Drescher et al. 2009; Durham et al. 2009). (Santamaria
et al. 2014) investigated spherical gyrotactic trapping in Kolmogorov flows and discussed
the effects of turbulence fluctuation on thin-layer formation. Bearon & Durham (2023)
explored elongated gyrotactic trapping in Kolmogorov flow. (Berman et al. 2022) assessed
the effect of elongation in steady Kolmogorov, while (Borgnino et al. 2022) investigated
that effect both in steady and unsteady Kolmogorov flows.

Despite valuable insights from gyrotactic swimmers in Kolmogorov flow, significant
opportunities remain in understanding the gyrotactic trapping mechanisms driving thin-
layer generation in the depth-independent shear environments typical of oceans and lakes.
A few key questions remain unanswered. First, how does the swimmer shape affect the
formation of the thin layer? Second, how quickly does this thin layer emerge, i.e. what
is the time scale of thin-layer accumulation? Third, how will the time-dependent flow
modulate the thin layer? In this paper, we aim to address these knowledge gaps.

We start in § 2 by introducing the equations for torque balance, reviewing the equations
for particle rotational motion and their simplification, and verifying our model. In § 3, we
study the impact of a swimmer’s non-spherical shape on thin-layer formation, deriving
the thin-layer accumulation time scale, and reveal three distinct mechanisms for thin-layer
accumulation when the background flow is time-dependent. We conclude our work in § 4.

2. Methods

2.1. Torque balance and agent-based model
We simulate particles as spheroids of which the sizes are described by ds , the diameter of
the equivalent sphere with the same volume as the spheroid. The shapes are described by λ,
the aspect ratio given by a/b, where a is the length along the particle’s axis of symmetry
and b is the length of one of the orthogonal axes (figure 1). Here, L is the distance between
the centroid and the centre of mass, while Tg = mgL sin φ is the gravitational torque due
to the bottom-heavy characteristic, where m is the mass of the microswimmer, g is the
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Figure 1. Sketch of ellipsoidal microswimmer. Only prolate spheroidal particles are considered, as no
gyrotactic microswimmers are oblate. Here, a represents the length of the long semi-axis while b = c are
the lengths of the short semi-axes for axisymmetric ellipsoids. The hydrodynamic shear lies in the x–z plane
(the y-axis points into the page), and only ∂ux/∂z is non-zero. The angle between vertical direction (z-axis)
and swimming orientation ( p) is the polar angle φ. Here, L is the distance from the centroid to the centre of
gravity. In the schematic, the flagella are shown only to indicate the direction of swimming.

acceleration due to gravity, φ is the angle from the z-axis to the swimming direction p,
i.e. the polar angle. Conceptually, the polar angle φ spans the range [–π , π]. However, as
the primary focus of this paper is on the formation of thin layers, lateral displacement in
the x-direction is not our main interest. Therefore, we restrict φ to [0, π], treating negative
values of φ as their positive counterparts by mirroring them across the z-axis. In this paper,
we considered prolate (λ> 1) spheroids since most gyrotactic microswimmers are prolate.

Starting from the equation of hydrodynamic torque T for ellipsoids in general shear flow
shown in Jeffery’s seminal paper (Jeffery 1922)

T =
⎛
⎜⎝

Tx

Ty

Tz

⎞
⎟⎠= 16πμa3

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b2 + c2

b2β0 + c2γ0

(
b2 − c2

b2 + c2 Szy + (Ωzy − ωx )

)
c2 + a2

c2γ0 + a2α0

(
c2 − a2

c2 + a2 Sxz + (Ωxz − ωy)

)
a2 + b2

a2α0 + b2β0

(
a2 − b2

a2 + b2 Syx + (Ωyx − ωz)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.1)

where Si j = (1/2) (∂ j ui + ∂i u j ), Ωi j = (1/2) (∇ × u), u is the velocity of the
background flow, Ux is the horizontal component of the background velocity field and
ωi is particle’s angular velocity. The shape parameters α0, β0 and γ0 are given by,

α0 =
∫ ∞

0

dh

(a2 + h)Δ
, β0 =

∫ ∞

0

dh

(b2 + h)Δ
, γ0 =

∫ ∞

0

dh

(c2 + h)Δ
, (2.2)

where Δ = [(a2 + h)(b2 + h)(c2 + h)]1/2, and a, b and c are the semi-axes lengths along
three axes for triaxial ellipsoids. The formula for shape factor integrals are provided in
table 1.

Assuming the shear flow is generated by the vertical gradients of velocity in the
x–z plane, the sum of hydrodynamic and gravitational torques on an ellipsoid can be
written as

Ty = 16πμa3

3

[
b2 + a2

b2β0 + a2α0

(
b2 − a2

b2 + a2
∂ux

∂z
+ (Ωy − ωy)

)]
− mgL sin φ, (2.3)

The first term on the right-hand side involves the contribution of hydrodynamic torque.
Both rate of strain and vorticity contribute to the hydrodynamic torque for non-spherical
particles, while only vorticity contributes to the hydrodynamic torque when a swimmer
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λ> 1 λ= 1 0 < λ< 1

α0 − 2
λ2 − 1

− λκ
√
λ2 − 1

3
2
3
κ − λ

2
√

1 − λ23

(
κ − π + 2λ

√
1 − λ2

)

β0 = γ0
λ2

λ2 − 1
+ λκ

2
√
λ2 − 1

3
2
3
κ

1
√

1 − λ23

(
λ(κ − π) + 2

√
1 − λ2

)

κ log

(
λ− √

λ2 − 1

λ+ √
λ2 − 1

)
1 2 arctan

(
λ√

1 − λ2

)

Table 1. Solution of shape factor integrals for ellipsoids with b = c and a = bλ.

is spherical. The second term on the right-hand side is gravitational torque. By setting
Ty = 0, and ωy = 0, the static torque balance yields a constant polar angle φ for time-
independent shear rate,

sin φ = 16πμa3

3mgL

(
b2

b2β0 + a2α0

)
∂ux

∂z
= τ

∂ux

∂z
, (2.4)

where τ is the gyrotactic reorientation time scale, referring to the characteristic time it
takes for microswimmers to reorient themselves due to gravitational torque.

Substituting the volume calculation formula of spheroids, V = 4/3πa2b, into (2.4),
a simplified expression of τ can be obtained

τ = 4ν

BgL(β0/λ2 + α0)
, (2.5)

where B is the buoyancy, which is the density ratio of particle to fluid. With the gyrotactic
reorientation time scale (τ ), the equation of torque can be simplified as

Ty = mgLτ

[
∂ux

∂z
− (1 + λ2)ωy − sin φ

τ

]
. (2.6)

Then, the angular acceleration can be derived as

ω̇y = Ty

Iy
= −5gLτ

b2 ωy + 5gLτ

a2 + b2

[
∂ux

∂z
− sin φ

τ

]
, (2.7)

where Iy is the moment of inertia of the ellipsoidal swimmers. The angular velocity can
be solved as

ωy = − 1
λ2 + 1

(
∂ux

∂z

∣∣∣∣
t=0

− sin φ0

τ

)
e− 5gLτ

b2 t + 1
1 + λ2

(
∂ux

∂z
− sin φ

τ

)
, (2.8)

where φ0 is the initial polar angle. We arrive at the question of the motion of angular
velocity of an ellipsoid particle experiencing both viscous and gravitational torques. Since
we assume that flow has no velocity out of the x–z plane, the angular velocity is a scalar.
Moreover, the angular velocity consists of an exponentially decaying time-varying part
and a steady part.
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Figure 2. Colour map of the decaying time scale tdecay with equivalent diameter ds and aspect ratio λ. The
colour bar is presented on a logarithmic scale.

To determine how quickly the first term decays, we quantify the magnitude of its
decaying time scale

tdecay = b2

5gLτ
= Bb2(β0 + λ2α0)

20νλ2 . (2.9)

The decay time scale is a function of both the swimmer’s size and shape. Figure 2 shows
tdecay is smaller than 10−2 s when ds is smaller than 10−3 m for λ between 1 and 5, meaning
the system is highly damped and inertia can be ignored even for relatively large swimmers
such as Euglena gracilis, Ceratium and species belong to Copepod. Most gyrotactic
microswimmers are smaller than 10−3 m and have an aspect ratio between 1 and 5. Based
on that, we proposed an agent-based model for gyrotactic ellipsoidal swimmers

ωy = 1
1 + λ2

(
∂ux

∂z
− sin φ

τ

)
, (2.10)

v = u + vp p + vsettle, (2.11)

φ = ωy�t + �φ, (2.12)

where u is the velocity of background flow while p indicates the swimming direction.
vsettle is the settling velocity, which can be written as

vsettle = −v1ez − (v3 − v1)(ez · p) p, (2.13)

where v1 and v3 are the Stokesian terminal velocities of a spheroid in a quiescent fluid with
its symmetry axis orientated orthogonal to and parallel to the gravity direction. To describe
randomness existing in the swimming direction of a group of swimmers, we add noise
at each time step, which is modelled as �φ = ±(2DR�t)1/2 with rotational diffusivity
DR = 0.01 s−1 (Durham et al. 2009).

2.2. Model verification
To verify our agent-based model of spheroidal microswimmers, we utilise the parameters
of a typical gyrotactic microswimmer, Chlamydomonas nivalis, in our simulation, with
vp = 80 µm s−1, ds = 10 µm, B = 1.05 and L = 0.06 µm. When setting λ = 1.001, we
recover the experimental conditions of (Durham et al. 2009). The background flow is
assumed to be a linear shear flow with kinematic viscosity ν = 1 × 10−6 m2 s−1. The shear
rate can be expressed as ∂u/∂z = 3z − 0.3, which varies linearly from –0.3 to 0.6 s−1 when
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Figure 3. Flow conditions: (a) velocity profile and (b) shear profile of the background flow.
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Figure 4. Time evolution of the heights of a group of microswimmers with (a) λ = 1.001, (b) λ = 2 and
(c) λ= 3. The black dashed line represents the theoretical prediction of the depth of critical shear (1/τ )
according to (2.5), while the blue dashed line shows the average ensemble depth of the thin layer from the
simulation.

z changes from 0 to 0.3 m (figure 3). Initially, 500 spheroidal active particles are released
at x = 0 m and z = 0.1 m with uniformly distributed random orientations. The time step
is set to 0.01 s.

Figure 4 shows time variations in the depth of a group of gyrotactic microswimmers
with different body shapes, and the dashed lines are the predicted accumulation depths.
We observe that microswimmers accumulate near the predicted critical shear depths.
In the beginning, the swimmers are located in a region with relatively low shear
(z = 0.1 m) with random orientation. The gravitational torque dominates the rotational
motion, directing the microswimmers to go upward. However, when microswimmers
go above the theoretically predicted depth, the hydrodynamic torque dominates and
drives microswimmers to rotate continuously. When the swimmer rotates continuously,
its intrinsic mobility lacks directional bias in the vertical direction, and the gravitational
settling moves the microswimmers downward gradually. Finally, those swimmers will
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Figure 5. (a) The PDFs of the depths of microswimmers at steady states with a series of aspect ratios from
1.001 to 3. The vertical dashed lines indicate the theoretical predictions of the depth of critical shears (1/τ ). The
inset shows the standard deviations of the PDFs as a function of λ, where the standard deviations characterise
the thickness of the thin layer. (b) Comparison of critical shear between numerical results and theoretical
prediction. The inset figure shows numerical accumulation depth and corresponding theoretical predictions.

accumulate at a specific height, where local shear is equal to critical shear, and form
a thin layer in the background flow. Due to the rotational diffusivity in the simulation,
the microswimmers’ orientations will be perturbed, and the aforementioned process will
continue. When λ = 1.001, we observe a thin-layer accumulation where the local shear
is approximately 0.2 s−1, which is consistent with the (Durham et al. 2009) experiments
with nearly spherical microswimmers (Chlamydomonas nivalis). The reproduction of the
experimental observation shows that our simulation is reliable.

3. Results and discussion

3.1. Effects of shape
The seminal work of (Durham et al. 2009) demonstrated that the critical shear SC , at
which gyrotactic microswimmers accumulate, can be predicted as 1/τ based on the torque
balance equation. The critical shear, SC = 1/τ , arises from the torque balance between
hydrodynamic and gravitational torques acting on a gyrotactic microswimmer. At steady
state, (2.10) simplifies to ∂u/∂z = sin φ/τ . Considering that the settling speed is much
smaller than the swimming speed, the steady polar angle φ is close to π/2, meaning
sin φ is close to 1. Thus, the critical shear is approximately 1/τ . When we consider
ellipsoid microswimmers of the same ds , the larger aspect ratios λ alter the gyrotactic
time scale τ , leading to a smaller SC (2.5). Additional observation can be done for figure 4,
when simulations reach a steady state. Here, steady state refers to a statistically stationary
condition where ensemble-averaged quantities, such as mean depth z and polar angle φ,
stabilise without consistent directional changes over a sufficiently long time window, even
though individual trajectories may oscillate due to time-dependent shear or rotational
diffusivity. As the aspect ratio of the microswimmer increases, the microswimmers are
observed to accumulate at a smaller critical shear level.

In addition, we observe some nuanced behaviour of the accumulation depth in figure 5.
The accumulation depth is typically slightly higher than the predicted critical shear depth.
In figure 5(a), we see that the peaks of the probability density functions (PDFs) of the
accumulation depths are higher than the critical shear depths. A similar effect is also
seen in figure 5(b). The reason behind this is closely related to the mechanism of the
thin-layer generation. Below the critical shear depth, the gravitational torque dominates,
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Figure 6. (a) Plot of
√

v2
p − 4(v3 − v1)v1 against the body lengths of four common types of gyrotactic

microswimmers (Titelman 2001; Titelman & Kiørboe 2003; Carlotti, Bonnet & Halsband-Lenk 2007; Sohn
et al. 2011). (b) The ratio of swimming speed and settling speed as a function of body length.

and microswimmers tend to move upward due to intrinsic mobility. Above critical shear
hydrodynamic torque dominates, and microswimmers rotate continuously. As a result of
this rotation, the intrinsic mobility contributes negligibly to the net vertical displacement,
and microswimmers sink due to gravitational settling. The microswimmers’ settling
velocities are much smaller than their intrinsic mobility, as shown in figure 6. Hence,
the time for microswimmers to stay above the critical shear is longer than the time below
in the predicted critical shear. Consequently, the thin layer appeared to be a little above the
critical shear depth. This phenomenon was also observed in the experiments of (Durham
et al. 2009).

In addition, the larger aspect ratios will also lead to thicker layers. This is evidenced by
the more scattered trajectories while the aspect ratio λ increases (figure 4). In figure 5(a),
we observe that the PDF is more widespread as the aspect ratio increases. In the inset, we
plot the PDFs’ standard deviation as the characterisation of the thin-layer thickness, and
we observe a monotonic increase in layer thickness with an increase in the aspect ratio.

The thicker layer for microswimmers with larger aspect ratios can be explained by
carefully observing (2.10). Particles rotate slower with increasing λ due to a larger λ2 + 1
in the denominator of angular velocity. In addition, larger aspect ratio microswimmers tend
to accumulate at the depth with smaller shear, leading to a further decrease in the rotation
rate. During the thin-layer accumulation, the microswimmers usually continuously rotate
once their position is higher than the critical shear such that the microswimmer’s intrinsic
mobility is rotated in all possible directions in the x–z plane. Over one rotation period in
the x–z plane, the intrinsic mobility of the swimmer causes displacement in all directions,
resulting in a net displacement in the z-direction that is almost zero. The net-zero vertical
displacement notwithstanding, the trajectories in t–z space will be a sinuous line. The
radius of curvature of the trajectory increases as the rotation rate decreases. When the
microswimmer’s aspect ratio increases, the rotation becomes slower, and the radius of
curvature increases, causing thicker thin-layer accumulation.

3.2. The time scale of thin-layer accumulation
In addition to the gyrotactic time scale, there is also an important time scale: the time scale
for microswimmers to accumulate at the thin layer (td ), which is crucial for understanding
how microswimmers accumulate in time-dependent flows where critical shear depth
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is changing. We rewrite (2.10) as (3.1) and focus on the z component of (2.12) to obtain
(3.2). These two differential equations describe the variation of polar angle φ and vertical
position z for microswimmers, while noise is neglected. Here, we perform a linear stability
analysis on the following dynamic system:

dφ

dt
= 1

1 + λ2

(
∂ux

∂z
− px

τ

)
, (3.1)

dz

dt
= vp pz −

[
v1 + (v3 − v1)p2

z

]
, (3.2)

where ux is the projection of flow speed in the x direction, px is the projection of the
swimming direction vector p onto the x-axis and pz is the projection of p onto the z-axis.
The fixed point is obtained as

cos φ∗ =
vp −

√
v2

p − 4(v3 − v1)v1

2(v3 − v1)
, (3.3)

S(z∗) =
√

1 − cos2 φ∗
τ

, (3.4)

vp cos φ∗ = v1 + (v3 − v1) cos2 φ∗ = vs, (3.5)

where z∗ and φ∗ are steady-state solutions to the dynamical system and vs is the vertical
component of vsettle. To ensure the existence of the fixed points, we compare the values
of v2

p and 4(v3 − v1)v1 for a series of common gyrotactic swimmer species in figure 6(a).
Typically, a microswimmer’s intrinsic mobility is much larger than the settling velocity
(Kamykowski, Reed & Kirkpatrick 1992), ensuring that fixed points always exist for
microswimmers. To analyse the stability of the equilibrium points, the Jacobian is derived
as follows:

J =
⎡
⎣ − 1

1 + λ2
cos φ

τ

1
1 + λ2 S′(z)

−vp sin φ + 2 cos φ sin φ(v3 − v1) 0

⎤
⎦, (3.6)

where S′(z) = ∂2u/∂2z is the shear changing rate. Eigenvalues of the Jacobian are
obtained as follows:

σ1,2 = 1
2

[
− 1

1 + λ2
cos φ∗

τ

±
√(

1
1 + λ2

cos φ∗
τ

)2

− 4S′(z∗)
1 + λ2 [vs sin φ∗ − (v3 − v1)2 sin φ∗ cos φ∗]

⎤
⎦.

(3.7)

Let M = (cos φ∗/((1 + λ2)τ ))2 and N = 4S′(z∗)/(1 + λ2)[vp sin φ∗ − (v3 − v1)2 sin φ∗
cos φ∗], the eigenvalues can be simplified as

σ1,2 = −√
M ± √

M − N

2
. (3.8)

We identify two regimes of eigenvalues: regime I with M < N and regime II with
M � N . In regime I, the eigenvalues have a negative real part and an imaginary part,
which indicates the equilibrium points are stable. On the other hand, if M � N , the
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Figure 7. Plots of thin-layer accumulation time scale (td ) normalised by particle’s gyrotactic time scale (τ )
versus λ2 + 1 with a series of speed ratios vs/v p, where dashed lines represent theoretical predictions, and
markers show numerical results. (a) Plots in regime I and (b) plots in regime II.

eigenvalues are real numbers, and
√

M is always greater than
√

M − N , indicating that
the equilibrium points are still stable. The existence of a stable fixed point for all cases
indicates that thin-layer formation is possible for all motile microswimmers.

We estimate the time scale td for microswimmers to accumulate at the thin layer during
the initial transient stage as td = 2/

√
M when M < N (regime I) and td = 2/(

√
M −√

M − N ) when M � N (regime II). If M < N , td in regime I can be rewritten as follows
by substituting the definition of A and cos φ∗ = vs/vp into the expression:

td
τ

= 2(1 + λ2)

vs/vp
. (3.9)

The time scale ratio td/τ is directly proportional to 1 + λ2, and inversely proportional to
the speed ratio vs/vp. In the simulation results, we measure the decaying time scale td
by fitting the z–t curve with an exponential function. Figure 7 compares the numerical
estimation with theoretical results of decaying time scales in two regimes with a series of
aspect ratios.

In regime I, the simulation results match the theoretical predictions perfectly, where
td/τ monotonically increases with λ2 + 1 according to (3.9). In regime II, td/τ decreases
as λ2 + 1 increases according to our theoretical prediction. However, the numerical results
in regime II (figure 7b) show a larger error compared with regime I (figure 7a) due to
the influence of a secondary eigenvalue in (3.8). In regime II, the two real eigenvalues
correspond to different decaying time scales, and our prediction uses the larger time scale,
corresponding to the eigenvalue with a smaller magnitude. The secondary eigenvalues,
associated with a faster decay, can alter the numerical results, leading to the observed
discrepancy. As λ increases, the term M decreases faster than the term N until a point
where M = N , initiating the transition from regime II to regime I.

3.3. Effects of time-dependent background flow
In this section, we will answer the following question: Will a fast-changing flow disrupt the
accumulation of gyrotactic microswimmers? This is an important, unanswered question
because the flow is time varying in most natural environments, and understanding how
the time variation of the background flow impacts microswimmers will enable us to better
understand the widely observed thin-layer formation in natural water bodies.

A perturbation term ε sin ωt is added to the original fixed shear profile (figure 2b)
and the shear rate becomes ∂u/∂z = 3z − 0.3 + ε sin ωt , where ε = 0.1 s−1. With this
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perturbation term, the vertical position of the critical shear varies as a sine wave with time.
The ω values used in our simulation are 5 × 10−2, 5 × 10−3, 5 × 10−4 and 5 × 10−5 s−1.
The reason why we chose this kind of flow is that the critical shear also oscillates
sinusoidally in linear gravity waves with the deep water limit and small wave amplitude,
and the linear gravity wave can be the source of time dependence in natural water
bodies. Here, we neglect the vertical variation of the oscillations from linear gravity
waves. Although more general time-dependent perturbations warrant exploration, their
analysis lies beyond the scope of this work and deserves future study. The parameters
of microswimmers are the same as those described in § 2.2. Considering the possible
influence of initial conditions, we release 100 particles at five heights, z0 = 0.05, z0 = 0.1,
z0 = 0.15, z0 = 0.2 and z0 = 0.25 m. These heights cover the range of heights where
the critical shear exists. The initial orientations of the particles are randomised with
a uniform distribution, and the time step is set to 0.1 s. This time step is found to be
sufficient to simulate the swimmer dynamics accurately given the smaller translational
and rotational movement of the microswimmers. In order to distinguish different regimes
clearly, we removed the rotational diffusivity in the simulation because it would cause the
thin layer to become thicker. Nevertheless, the regimes discussed here still persist when
a sufficiently small rotational diffusivity is added. As the rotational diffusivity increases,
the distinction between different thin-layer regimes gradually disappears. In the following,
we only present the results for microswimmers with λ= 2, but the result also holds for
other body shapes.

To quantify the time period of background flow T = 2π/ω relative to td , we define
a dimensionless number R = td/T . A typical guess would be that, if td < T , the
microswimmer would accumulate, and the accumulation would disappear if td > T .
Surprisingly, the thin-layer accumulation will occur regardless of the relative difference
between td and T , and we identified three distinct regimes with distinct behaviours.

Before we look into the details of the three distinct behaviours, we define another
time scale (tr ) that describes the mean time required for a swimmer to rotate 2π due
to a hydrodynamic torque when hydrodynamic torque dominants the gravitational torque.
From (3.1), we can express the rotation time scale

tr =
∫ 2π

0

1 + λ2

∂ux

∂z
− sin θ

τ

dθ. (3.10)

When hydrodynamic torque is dominant, we have ∂ux/∂z > 1/τ . However, we are
specifically interested in cases where the microswimmer is not too far from the critical
shear level, ensuring that tr remains meaningful for understanding thin-layer formation.
Consequently, we cannot ignore the term sin θ/τ . Assuming ∂ux/∂z to be constant, we
have

tr = 2π(1 + λ2)√(
∂ux

∂z

)2

− 1
τ 2

. (3.11)

However, for realistic tr estimation with time-dependent shear for our specific case,
we numerically calculate this time scale with time-varying shear. We calculate tr by
placing microswimmers at 0.25 m in our flow, which is close to the time-varying
shear for microswimmers of different aspect ratios, where the hydrodynamic torque is
always dominant. Choosing the depth to calculate tr seems arbitrary, but our results hold
for a variety of depths with the following two criteria: (i) the depth should always have
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Figure 8. Time evolutions of height and polar angle of a group of particles (λ= 2) against normalised time
over 3 periods after the simulation reach a steady state with (a) and (b) ω = 5 × 10−5 (regime A), (c) and
(d) ω = 5 × 10−4 (regime B), (e) and (f ) ω = 5 × 10−2 (regime C). Dashed lines in (a), (c) and (e) show the
time variation of the height of critical shear. Dashed lines in (b), (d) and (f ) indicate horizontal polar angle.
For all cases, microswimmers are initially released at z0 = 0.05, z0 = 0.1, z0 = 0.15, z0 = 0.2 and z0 = 0.25 m
with random orientations.

hydrodynamic torque dominance and (ii) the depth should be close to the critical shear
depths, such that the magnitude of the shear is on the similar order of magnitude of
critical shear. The numerical estimation of tr is reasonably close to the one estimated
by (3.11). With tr , we can define another non-dimensional number: V = tr/T . Later, we
will demonstrate that V and R are linearly related, and V is a better parameter to separate
the three regimes. With the time scales derived, we will present three representative cases
for three regimes.

Regime A occurs when V < 10−2. Our case A has R = 0.25 and V = 0.004.
In figure 8(a), we observe that the swimmers’ depths closely follow the depth of the
critical shear. This is intuitive because background flow varies so slowly that its time scale
is several times larger than the time scale required to accumulate the thin layer (td ), and
the background flow time scale is three orders of magnitude slower than the rotation time
scale when hydrodynamic forces dominate (tr ). In this case, microswimmer depth closely
follows the depth of critical shear, and the polar angle (φ) slowly oscillates around the
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π/2 with a small amplitude (figure 8b). The slowly oscillating φ directs vz up and down,
allowing the swimmers to follow the critical shear depth. The z–t and φ–t curves have the
same frequency but exhibit a π/2 phase shift.

Regime B occurs when V ∈ (10−2, 10−1). Our case B has R = 2.5 and V = 0.04.
In figure 8(c), we observe that the microswimmers accumulate at the highest elevation of
the varying critical shear depth. The value R = 2.5 indicates that microswimmers cannot
closely follow the critical shear depth. At a steady state, when the critical shear depth goes
down, the microswimmers are not able to follow it. Instead, microswimmers experience
local shear that is larger than the critical shear because shear increases as a function of z.
During this time, microswimmers rotate continuously due to the dominant hydrodynamic
torque. As a consequence, microswimmers will sink due to gravity. Since V � 1, between
the time gap (T ) when critical shear reaches the highest point, microswimmers will rotate
N times with N � 1. This large number of rotations (N � 1) minimises the intrinsic
mobility’s contribution to the net displacement in z during T . Since the settling velocity
for the microswimmer is very small, the z displacement due to gravity is small during T .
When the critical shear occurs above the swimmers’ positions, gravitational torque
dominates, directing the microswimmer to move upward. The microswimmers repeat this
process over time. Nevertheless, the z displacement is small, so the microswimmers appear
to be accumulated in a thin layer. In figure 8(d), the value of φ oscillates between 0 and
π when the critical shear depth is lower than the thin-layer depth, indicating that the
microswimmer rotates due to the dominant hydrodynamic shear. As a consequence, this
rotation results in small oscillations in z as a function of time when the critical shear depth
is below the thin-layer depth. During the brief periods where the critical shear is higher
than the microswimmers, the polar angle (φ) oscillation stops due to gravitational torque
dominance and φ approaches 0 due to the dominant gravitational torque.

Regime C occurs when V > 1. Our case C has R = 250 and V = 4. In figure 8(e), we
observe that the microswimmers accumulate at the mean location of the critical shear.
A value of V > 1 indicates that microswimmers will rotate only a fraction of 2π during T .
If a microswimmer is located above the mean elevation of the critical shear, hydrodynamic
shear dominates for a larger fraction of the time (when viewed from the microswimmer’s
frame of reference). This dominance causes the microswimmer to rotate continuously
while its settling velocity gradually reduces its elevation. Conversely, if a microswimmer
is initially lower than the mean critical shear location, it will experience more dominant
gravitational torque over time (i.e. the fraction of time the microswimmer experiences
dominant gravitational torque is larger), which will direct it to a higher position. Only
when the microswimmer is at the mean location of the critical shear will it experience
half-time with dominant gravitational torque and half-time with dominant hydrodynamic
torque. This is evidenced by the time evolution of the polar angle as shown in figure 8(f ).
The small amplitude of φ is due to the short duration of T in this regime, where the
microswimmer’s orientation changes minimally under any applied torque.

Between regimes B and C, we observe a transitional regime where V ∈ (10−1, 100).
In this case, a microswimmer will rotate N times during T if the microswimmer is in a
hydrodynamic dominant shear and N ∈ (1, 10). Nevertheless, N is not large enough, and
the initial depths can play a role. Our simulations reveal that, depending on the initial z
position, a microswimmer will reach different steady-state elevations (figure 9d).

To have a better understanding of regimes A, B and C, as well as the transitional regime,
we plot the trajectories of microswimmers in a space spanned by z and φ. Figure 9 shows
the four regimes, and we only consider the time when the simulation reaches a steady
state. The number of periods plotted in figure 9 (10 for regime A, 40 for regime B, 8000
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Figure 9. Microswimmer trajectories in φ–z space for (a) regime A, (b) regime B, (c) regime C and
(d) transition regime after simulations reach steady state. The time windows are 10 periods for regime A,
40 periods for regime B, 8000 periods for regime C and 500 periods for the transitional regime. For each case,
the trajectories of five particles are plotted, starting from different initial elevations (z0 = 0.05, z0 = 0.1, z0
= 0.15, z0 = 0.2 and z0 = 0.25 m). To clearly display the trajectories, one point is plotted every 25 s. The
inset figure of (b) shows a segment of a microswimmer’s trajectory after the simulation reaches a steady state,
with the red rectangle indicating the starting point and the red circle marking the ending point. The inset in (c)
provides a zoomed-in view of the trajectory.

for regime C and 500 for the transitional regime) was chosen to clearly depict the steady-
state behaviour with a long enough total time (between 5 × 105 and 1 × 106 s). We see that
the thin-layer accumulations for regimes A and C are associated with islands of stability.
Even though regime B also has thin-layer accumulation behaviour, it does not show stable
islands. As explained earlier, thin layers in regime B arise from alternating periods of
continuous rotation due to hydrodynamic torque dominance and periods of gravitational
torque dominance, rather than true stability. A closer examination of the trajectories in
φ–z reveals that microswimmers spend more time at a higher position, which is
exemplified by denser clouds of dots. At a higher position, hydrodynamic shear is
dominant, which corresponds to the period when critical shear is between the peak
position. During the hydrodynamic dominant period, settling velocity gradually sinks
microswimmers. On the other hand, when microswimmers sink below the critical shear,
gravitational torque dominates and directs them upward. From figure 6(b), we know that a
microswimmer’s swimming speed is significantly greater than its settling speed, causing
microswimmers to spend less time at lower positions in the thin layer. This mechanism is
similar to the behaviour observed in time-independent flow. In that case, the unsteadiness
originated from the rotational diffusivity, while in regime B, the unsteadiness was due
to flow time dependency. In the inset of figure 9(b), we illustrate the trajectory of one
microswimmer in φ–z space. We clearly observe the continuous period of rotation linked
to a slow decrease in z, and a quick decrease in φ due to gravitational torque, which is
accompanied by a relatively quicker increase in z. Interestingly, we observe three islands
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Figure 10. Phase diagram of multiple regimes in a time-varying background flow with non-dimensional
numbers R and V . Triangles correspond to regime A; circles correspond to regime B; stars correspond to
the transitional regime; squares correspond to regime C. Green symbols correspond to λ= 2; blue symbols
correspond to λ= 1.5; red symbols correspond to λ= 1.001. The solid line represents a line with a slope of 1.

of stability in the transitional regime. But the period of the orbit is across a few flow
periods (T ). In addition, the location for thin-layer formation is dependent on the initial
elevation (z0). Across all regimes, where the flow–swimmer time scale ratio spans more
than five orders of magnitude, microswimmers tend to accumulate in relatively thin layers.
This explains why thin layers of planktonic life are widely observed in natural water
bodies.

We summarise all three regimes and the transition regime in figure 10. It shows a clear
linear relationship between V and R, indicating a linear relationship between td and tr :
td = ctr + d, where c = 62.5 and d ≈ 0. This linear relationship simply means that the
microswimmer, on average, tends to rotate c times before accumulation. The exact value
of the constant c is not particularly important. However, the linear relationship between
td and tr shows that, the faster the microswimmer rotates, the quicker the microswimmers
accumulate.

4. Conclusion
We have examined the thin-layer formation dynamics of non-spherical phytoplankton
(small motile particles) in time-dependent shear flow. From the balance between
gravitational and hydrodynamic torques, we found that the equation for a swimmer’s
angular velocity consisted of an exponentially decaying term and a steady term. For
microswimmers of sizes up to 10−3 m and aspect ratios between 1 and 5, we showed
that the exponential decay time scale is no greater than 10−2 s, indicating that the
system is highly damped. Thus, we can ignore this exponentially decaying term, and the
angular speed of all gyrotactic microswimmers is determined by their shape, instantaneous
orientation and local shear.

We showed that the higher aspect ratio microswimmers tend to accumulate at a
smaller critical shear level. Our theoretical prediction of critical shear for non-spherical
microswimmers agreed well with the simulation data. In the simulation, microswimmers
tend to accumulate at a higher depth than predicted. This discrepancy arises from the
speed asymmetry between sinking and gyrotaxis above and below the predicted height.
Additionally, we observed that the microswimmer with higher aspect ratios would have a
higher layer thickness due to a slower rotation rate.

Using linear stability analysis, we showed that stable fixed points exist for typical
microswimmers in hydrodynamic shear. In addition, we derived a time scale (td ) for a
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microswimmer to accumulate at critical shear and identified two regimes of the time scale.
We validated the time scales using numerical simulation.

Finally, we studied the thin-layer accumulation dynamics with time-dependent flow,
where the critical shear depth varies in a sinusoidal manner. As the time scale of the flow
changes, we identified three distinct regimes and one transitional regime. When V < 10−2

(regime A), the flow time scale is much larger, and the microswimmer accumulation will
closely follow the depth of the critical shear. Regime B occurs when V ∈ (10−2, 10−1).
In this regime, microswimmers are not fast enough to closely follow the critical shear
depth and instead accumulate at the highest elevation of the critical shear. Regime C
exists when V >1. The microswimmers tend to stay at the mean location of the swimmer.
There is also a transitional regime with V ∈ (10−1, 10−0). We found that the
microswimmer’s behaviour is highly dependent on the initial conditions in this
transitional regime. Despite this dependency, microswimmers eventually reach a steady-
state elevation. Our research shows that a thin layer will form no matter the time scale of
the background flow. This explains why thin layers of phytoplankton are ubiquitous in the
natural water bodies where flow is time-dependent.
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