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Abstract

The paper contains mainly three theorems involving generating functions expressed in terms
of single and double Laplace and beta integrals. The theorems, in turn, yield, as special
cases, a number of bilinear and bilateral generating functions of generalized functions
particularly general double and triple hypergeometric series. One variable special cases of
the generalized functions are important in several applied problems.

1. Introduction

Generalized functions occupy the pride of place in literature on special functions.
Their importance which is mounting everyday stems from the fact that they generalize
well-known one variable special functions namely, Hermite polynomials, Laguerre
polynomials, Legendre polynomials, Gegenbauer polynomials, Jacobi polynomials,
Rice polynomials etc. All these polynomials are closely associated with problems
of applied nature. For example, Gegenbauer polynomials are deeply connected with
axially symmetric potentials in n dimensions and contain the Legendre and Chebyshev
polynomials as special cases. The hypergeometric function of which the Jacobi
polynomial is a special case, is important in many cases of mathematical analysis and
its applications. Further, Bessel functions used in our work are closely associated
with problems possessing circular or cylindrical symmetry. For example, they arise
in the study of free vibrations of a circular membrane and in finding the temperature
distribution in a circular cylinder. They also occur in electromagnetic theory and
numerous other areas of physics and engineering.

This paper aims at establishing three theorems involving bilinear and bilateral
generating functions of generalized polynomials, expressed in terms of Laplace and
beta integrals.
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Theorem 1 establishes a generating function for generalized triple hypergeometnc
series F(i) of Srivastava [29, p. 428] expressed in terms of beta transform of one
variable. It is worth pointing out that F(3) is a generalization of Ft to F]4 [16, pp. 113-
114] series of Lauricella, Kampe de Feriet's double series F(2) [1, p. 150 (29)]; see
also [5, p. 112]), HA, HB and Hc of Srivastava [28, pp. 99-100], see also [30]), and
FK of Sharma [26, p. 613(2)]). Theorem 2 is associated with obtaining a generating
function for Appell's function F2 expressed in terms of Laplace transform of one
variable. Theorem 3 is devoted to proving a generating function for Appell's function
F4, expressed in terms of a Laplace transform of two variables.

The above theorems yield, as special cases, some known results of Mathur [20],
Manocha [17], Manocha and Sharma [19], Sharma and Mittal [27], Saran [25], Carlitz
[6] and Halim and Al-Salam [13].

2. Definitions

We define hypergeometnc functions and polynomials, which we need in our work,
as follows:

The Kampe de Feriet's double hypergeometnc function F(2) [1, p. 150] is defined
as

: &); (d); 1 =

: (s);W; ' J r~.~, (2.D
n ml n\

where (a) and [(a)]m+n will mean the sequence of A parameters aua2,... ,aA and
the product (ai)m+n(a2)m+n • • • (aA)m+n respectively. Thus [(a)]m is to be interpreted
as

[(«)]-, = f\(a,)m = {ax)m{a2)m • • • {aA)m = f] F ( ^ + m ) , (2.2)

with similar interpretation for [(b)], [(d)] etc. F(2) has Appell's functions Fu F2 and
F4 as special cases, that is,

[a; fe, c; rf; X, Y] = > — - —, max{|X|, \Y\} < 1; (2.3)
^~Ln \d)m+n ml nl

F2[a; b, c; d, e;X,Y]= ) + — —, |X| + | y | < l ; (2.4)

(a)m+nWm+n^my"
m,n=0

F 4 [a , Z?; c, c?; X, K] =
mi
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The generalized hypergeometric function F(3) of 3-variables is defined as

(3) f (a) :: (b); (V); {b") : (c); (c'); (c"); y y 7 1 , 9 ~
* |_(d) :: (e); (*'); {e") : ( / ) ; ( / ' ) ; ( / " ) ; ' ' J ( j

x" y" z"

where (a) and [(a)]m have their usual meaning as explained in (2.2) with similar
interpretation for (b), (b1), (b") and so on. It is to be noted here that A is the number
of parameters in (a), B is the number of parameters in (b) with similar interpretation
for (£'),(&") and so on.

It will be assumed throughout the paper that the absence of parameters shown by
horizontal dashes mean that there exist no parameters, and in that case, from (2.2), the
conventional value of an empty product will be unity, that is, T[1=\(a')n, = 1. Also,
numerator parameters like (a), (b), {b'), (b") etc. may be zero or negative integers,
but the denominator parameters like (d), (e), (e1) etc. are not allowed to be zero or
negative integers.

The region of convergence of the above triple power series (2.6) is given in the
recent literature [8, p. 156]; see also [9, p. 40].

Lauricella's functions F^ and F^n) of n variables in the notation of Lauricella [16]
are as follows.

2, . . . ,bn;cu ... , c n ; x u ... , xn]

" " " {bn)mn
 x\

il + l*2l + " - + l*«l</; (2-7)

... ,cn;xu... ,xn]

(2-8)

For n = 2, equations (2.7) and (2.8) reduce to Appell's functions F2 and F4

respectively.
The functions FE and Fc in the notation of Saran [23], indicating also the numbering
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of Lauricella's [16] on the left are as follows:

F4 : FE[a, a, a, b, c, c; d, e, / ; x, y, z]

v ^ (a)m+n+P(b)m(c)n+p xm y" z" 1/2 l/2

m,t^=0 («* )««• ( / ) , m ! * ! * ! ' ' ( 2 9 )

F8 : FG[«, a, a; b, c, d; e, f, / ; X, Y, Z]

m\n\pV

^ "The Jain's functions 3 ^ " and S^ 0 [14] are as defined below.

m\n\p\'

, a, a, fci, b2; cu c2, c2\ X, Y, Z]

' ^ p
 2

The generalized Rice polynomial [15, p. 158], defined as

H^\p, q, x) = ( 1 ~^ a ) " 3 F 2 [ -» , n+a + P+l,p;l+a,q;X], (2.13)

has the Jacobi polynomial P^"^' (X) [22, p. 254], the generalized Laguerre polynomial
L"{X) [22, p. 200] and the Gegenbauer polynomials C°(X) as special cases defined
as

p. P. " 4 )
1 [ i^] (2.14)

-n, 1 + 2o + «; a + 1; i y ^ l , (2.15)

L°(X)= ( 1 + , Q ! ) " l F 1 [ - / i ; l + a ; X ] , (2.16)

where in each of the equations (2.13) to (2.16) Re (a) > - 1 , Re(^) > - 1 and n
being a non-negative integer.

The Laguerre polynomials play an important role in finding the wave function
associated with the electron in a hydrogen atom. Further, Laguerre polynomials are
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encountered in the solution of the problem on the propagation of electromagnetic
waves in long lines and in the analysis of the motion of electrons in Coulomb field, as
well as in certain other problems.

The Bediant polynomial Rn(a, fi; X) [3, p. 15] is defined as

W ; X> = < ^ s f ! [ 4 - | + ̂  - «;ft , - « - „; ±] ,2,7>

The generalized Sylvester polynomial fn(x; a) is defined as

fn(X;a)=y—f-2Fo\-n,X;-, , (2.18)
n! |_ ax J

where a ^ 0 is an arbitrary constant.
The Lagrange's polynomial ga/{X, Y) [10, p. 267] is defined as

r=0 v ''

The Bessel function Jn(x) of order n in x is defined as

— - r ( n + l ) u "Ln + l; 4 J '

where — oo < x < oo and n is a positive integer or zero.

3. Main theorems

THEOREM 1. Let F(x, t) be a function having a formal power series expansion in t,
given by

oo

(3.1)
n=0

where Cn is a specified sequence of parameters, independent of x and t, and fn{x),
n = 0, 1, 2, . . . , are polynomials of degree n in x. Then, for Re(q) > 0, Re(p) > 0,
p and q being complex numbers, and with restrictions on x 's and t, such that the triple
hypergeometric series of Srivastava and F (x, f̂j-) remain uniformly convergent for
z e (0, 1),

+ n,(a) :: 00; (tf); (&") : (c); (c'); (c");
q,(d) :: (e); (e')\ (e") : ( /) ;( / ' ) ;( /"); '' 2'
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/„(*)*" = K f zp-\\ - z)"-p-] (3.2)
Jo

(3) [ ( a ) :: ( b ) ; ( t f ) ; { b " ) : ( c ) ; ( c ' ) ; ( c " ) ; Y 7 y 7 yX F [(d) ( ) ( ' ) (") ( /) (/') ( / " ) X ' Z ' ^Z' Xj

where K = r (^_ («)„ j\y r/ie Pochhammer symbol, defined by

(«)„ =
n! if a = 1 and n > 1

1, i f n = O

L i ( a + ^ - 1) = a ( a + l) •••(a + n - 1) forn

and F0)[X, Y, Z] is the triple series, defined by (2.6).

THEOREM 2. Let

F(x,t) = ^fn(x)tn, (3.3)
n=0

"n(x) w a polynomial of degree n in x. Then for Appell's function F2 (see
equation (2.4))

- i - f e-ppb-\Fl[c;b;Yp]lFl[a;d;Zp]dp
I (») Jo

^"F^b + « ; a ' c ; d - f e ; z -
n=0

provided the integral is convergent.

THEOREM 3. Let

(3.5)
n=0

where /„(*) w a polynomial of degree n in x. Then

e~{P+q)P"~'clb'^Fx[-,c;Ypq}oFx[-\d;ZPq}F(x,tpq)dpdq
V(a)T(b)

OO

= ^2(a)n(b)nF4[a +n,b + n;c, d; Y, Z]fn(x)t", (3.6)
n=0

provided the integral is convergent.

https://doi.org/10.1017/S0334270000008833 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008833


[7] Bilinear and bilateral generating functions 263

PROOF OF THEOREMS 1 TO 3. To prove Theorem 1, we replace F(x, t) by its power
series (3.1) and F0)[X, Y, Z] by its series representation (2.6) in the integrand of
(3.2). Changing the order of integration and summation, which is permissible due to
the uniform convergence of the series involved and evaluating the inner beta function
integral, we arrive at the result (3.2).

The proofs of Theorems 2 and 3 are similar to that of Theorem 1.

On taking B = B' = B" = E = E" = 0 (Here B, B', B" etc. are the number of
parameters in (b), {b'), (b") and so on), X3 = 0, Theorem 1 gives an elegant result in
the form

= K f
Jo

(2Jp+n,(a):(c),(c');y
-7)

' %}; x,z, x2z] F (x,
(/); J V

% %}; x,z, x2z] F (x,
(d) : (/), (/); J V z-

where F(2)[X,, X2] is defined by (2.1).
On taking B = B' = B" = E = E' = E" = D = 0, C = C = C" = F = F' =

F" = A = 1, then replacing a\ with q in Theorem 1, we get a known result of Mathur
[20, p. 222 (2.2)]:

y (P)n FAp + n^ Cu Cit Q. fu /2> f3. X i j x^ x3]fn(X)tn

Jo
"-1 FA[q,CuC2,Cy, A, fi, fy, XtZ, X2Z, X3Z]

x F (x, - ^ \ dz. (3.8)

Similarly results for Lauricella's functions FB, Fc and FD [12, p. 41] given by
Mathur [20, pp. 222-223, eqns (2.3) to (2.5)] follow as special cases of Theorem 1.

4. Applications

In view of the importance and usefulness of Theorems 1 to 3, we first present some
interesting applications of Theorem 1.

(i) Consider the generating function for the generalized Rice polynomial [18,
p. 432(7)]:

OO / I N

Yl (_ _n H?-"-l>-n\l;, j , X)tn = F2[X, -a, f; -a - 0, j ; -t, Xt], (4.1)
n=0 ' a P'n
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where //n
(ff/i)(£> j , X) is the generalized Rice polynomial, defined by (2.13).

In (3.1) we take

F{x, t) = F2(k, -a, £; -a - p, j ; -t, xt),

Combining (4.1) with (3.1), we get

)5
 (3)

By means of (2.14), (2.15), and (2.16), (4.2) reduces to generating functions in-
volving Jacobi, Gegenbauer and Laguerre polynomials.

The Rice polynomial H(a~n'e~n)(%, j , x) generalizes the modified Jacobi polynomi-
als P^a~"-^~"\x), which, in turn, generalizes the Legendre polynomial. The Legendre
polynomials are closely associated with physical phenomena for which spherical geo-
metry is important.

Again, Kampe de Feriet's function F(2) in (4.2), can be specialized to yield the
generating functions for Appell's functions F\ to F4.

For example, on taking A = D=F = F' = 0, C = C ' = 1 , then replacing £ by
j , X by |(1 — X) equation (4.2) reduces to a result for Jacobi polynomials:

•o- FQ [p, p, p, —a, P\, Pi\ ~a ~ Pi Q, <?!

-It 2y 2z I

(4.3)

where FG is given by (2.10).
On taking A = C = C = F = F' = I, D — 0, and then replacing at by

equation (4.2), reduces in view of (2.14) to

(P) , PuPi\ Yu Yi\ Y, Z\P«-n'l>-
n=o *• a

p, pu fr, -a; Yu Yi\ - « - P\ -, - , - - 1 , (4-4)
CO CO CO]

where, for convenience we put

co=(I - i-a - x)ty

https://doi.org/10.1017/S0334270000008833 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008833


[9] Bilinear and bilateral generating functions 265

Similarly, on taking C = C" = D = 0, F = F' = 1, A — 2 and letting one of the
A's parameters be q, (4.2) reduces to

\—* ip}>> r? r , „ o i

= {co)-pFE \p, p, p, -a, p, P; -a - p, yuy2; - - , - , - 1 ,
|_ CO CO CO J (4.5)

where F£ is Lauricella's F4 (see equation (2.9)).
The results (4.4) and (4.5) are the known results of Manocha [17, p. 457(2.2)] and

Sharma and Mittal [27, p. 691(10)] respectively. Some more bilinear and bilateral
generating functions involving Jacobi polynomial follow immediately from results
(4.3) to (4.5) upon reducing Fu F2 and FA to the Gauss function 2F\.

(ii) Consider the generating function [31, p. 185] (see also [22, p. 302])

Y(a)nfn(x; a)f = (1 - axt)~a
2F0 a, x; - ; , (4.6)

i=a L l-axt]

where fn(x; a) is the generalized Sylvester polynomial given by (2.18).
On taking X = 1 + p — q in (4.6) and utilizing the result (3.7) with X2 = 0, we

obtain

+ n,(a),(c); 1 , , r \a)t"

00 (p)M+r+,[(a)U(c)]m X"

Now, multiplying the above by eK K~b, replacing t by t/K and then evaluating the
result obtained with the help of Hankel's contour integral for the gamma function [12,
p. 32(1.5.1.5)]:

(a + m)
(4.8)

where m is a non-negative integer and a does not take non-positive integer values, we
get

n=0Wn
l+A+cFl+D+F[ 9. id), if); *'J'-<*'">'

~ F ( 3 ) | p : : - ; - ; - : ( f l ) , ( c ) ; - ; j : ; i

- r l _ : : _ ; f t ; _ :q,(d) ' ^ - • • Ai>axi<l\- v*-*>
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Setting A = C = D = 1, F = 0, then replacing cx by q in (4.9), we get after
suitable adjustment of parameters and variables that

> a^f = 1<PG\P, P, P\ P, X; it, b, b; Y, Xt, t],

»=° { )n (4.10)

where 3 ^ " is defined by (2.12).
Again the generalized Sylvester polynomial fn{X\a) in (4.10) in view of the

relation

fn(X; 1) = 4>n{X) = —2F0 -n, X; - -
n. \_ A

reduces to the Sylvester polynomial (pn(X) and we get a known result due to Mathur
[20, p. 226(3.22)].

(iii) Consider the generating function [31, p. 186] (see also [3])

OO / \

V ^-Rn(P, (M; X)tn = F2(a, p, P; ̂ , /x; ut, vt), (4.11)

where u = X — y/x2 — 1, v = X -f -Jx1 — 1 and /?n(yS, /u,; X) is the Bediant polyno-
mial, defined by (2.17).

In (3.3), we take F(X, t) = F2(a, P, P; fi, /x; ut, vt). Combining (4.11) with (3.3)
in Theorem 2, we get

V {b]n{C*)n
F2(b + n, a, c; d, b; Z, Y)Rn(P, /x, X)t"

(b)m+n+r+s(c)m(a)n(a)r+s(PUP)s Ym Z" (ut)r (vt)s

m\n\ r\ s\

which on replacing t by t/K, multiplying by eKK~a and evaluating with the help of
the integral (4.8), gives

OO / i \

V y^F2{b + n, a, c; d, b; Z, Y)Rn(P, /i; X)t"

= FlA)[b, a, c, p, p; a, b, fi, \x\ Z, Y, ut, vt]. (4.12)

In (4.12), changing Z into Z/a and letting a -> oo, taking Y = 0, we get a result
for Bediant polynomial involving Jain's function 3 ^ " :

7-Y-iF,[fc + n; d\ Z]Rn(P, ix; X)f = 3<p^[b, b, b, p, P; d, n, n; Z, ut, vt].
W" (4.13)«=°
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(iv) Consider the Bateman's generating function [22, p. 70] (see also [2])

° '

Then for

the application of Theorem 3 would give us

(4.14)

On taking a = X, b = S, c = l + / x and Z = 0 in (4.14), we get a known result of
Manocha and Sharma [19, p. 79(31)]

, y]kf«;l+a,l+/U+M;i2_^fi^!tl'| (4.15)

which was originally obtained by a fractional derivative technique.
When we put C = 1 + or, d = 1 + /S and Y = Z = 0, equation (4.14) yields a

result due to Brafman [4, p. 943].
Again when we put Z = 0, replace y by y/(y — 1), t by //(I — y), C by a, d by b

and use Euler transformation [22, p. 60(4)] we get a known result of Saran [25, p. 16
(3.3)].

It may be pointed out that o^i defines a Bessel function. Bessel functions are
common in the solution of problems featuring circular or cylindrical domains.

(v) Consider the generating relation [31, p. 85(25)] (see also [11, p. 267])

ga/(X,Y)t", (4.16)
n=0

where g°'p(X, Y) is the Lagrange polynomial, defined by (2.19).
In (3.5), we take F(x, t) = (1 - xt)-"(l - yt)'e combine (4.16) with (3.5) and

then in the result obtained replace t by t/pq. Multiplying by ep+q(p)~c{q)~d and
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evaluating with the help of the integral (4.8), we obtain

Y) ™%lF4[a +n,b + n;a, b; Y, Z)g^\X, Y)t" (4.17)
n=0 \^)n\^)n

Since on replacing x by —(1 + x)/2, y by (1 — JC)/2, a by —a and /? by — J},
(4.16) reduces to a result of Carlitz [6] (see also [31, p. 82(2)]) involving the Jacobi
polynomial P"~n0~"(X), the above replacement in (4.17) offers us

m=0

— .. —, c , a , — . o , —, —;

which on taking Z = 0, replacing y by y/(y — 1), f by t/(y — 1) and making use of
Euler's transformation, gives a result due to Saran [25, p. 16 (3.4)]:

rrSr (4.19)
n = 0 (C)n(")n

Y - 2(Y-l) J

Also, equation (4.19) is a generalization of known results [31, p. 105 (eqns. (4) and
(7)), p. 106 (eqns. (8) to (11) and p. 107 (eqn. (12)]
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