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The instability characteristics and laminar–turbulent transition of a series of laminar
separation bubbles (LSBs) formed due to a single sinusoidal surface waviness are
investigated in the absence of external disturbances or forcing. A scaling based on
the geometrical parameters of the waviness and flow Reynolds number is found that
enables the prediction of flow separation on the wall leeward side. The analysis of
three-dimensional instabilities of two-dimensional base flows reveals a relation between
the number of changes in the curvature sign of the recirculating streamlines and the
number of unstable centrifugal modes that coexist for the same flow. When multiple
curvature changes occur, in addition to the usual steady mode reported for two-dimensional
recirculation bubbles, a new self-excited mode with a higher growth rate emerges,
localised near the highest streamline curvature, close to the reattachment point. A detailed
analysis of the mode growth and saturation using DNS reveals that the localised mode only
disturbs the LSB locally, while the usual one leads to a global distortion of the bubble in the
spanwise direction; this has a distinctive impact on the self-excited secondary instabilities.
Then, the complete transition scenario is studied for two selected LSB cases. The first one
only presents an unstable eigenmode, namely the usual centrifugal mode in recirculating
flows. The second case presents three unstable eigenmodes: two centrifugal eigenmodes
(the usual and the localised ones) and a two-dimensional eigenmode associated with
the self-sustained Kelvin–Helmholtz waves. These results show how completely different
transition scenarios can emerge from subtle changes in the LSB characteristics.
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1. Introduction
Laminar separation bubbles (LSBs) can appear in many technological applications and
are usually associated with a detrimental impact on the performance of aerodynamic
surfaces. Laminar flow may separate from the surface due to sharp changes in the geometry
(geometry-induced LSB) or due to experiencing an intense adverse pressure gradient
(APG-induced LSB). Geometry-induced separation happens regardless of the Reynolds
number, except in the creeping flow limit. On the other hand, APG-induced LSBs form
when the attached laminar flow presents a sufficiently high Reynolds number and is
subjected to a strong enough APG (Alving & Fernholz 1996). This kind of LSB can be
found in many flow configurations, but are of particular relevance to airfoils at high angles
of attack and turbomachinary flows. They can also be found on flat plates in the presence
of APGs arising from smooth surface deformations, such as humps and surface waviness.

A wide range of literature exists addressing fundamental aspects of LSBs, with emphasis
on the hydrodynamic instabilities that trigger laminar–turbulent transition and, ultimately,
the flow reattachment. Stemming from the presence and dominance of inflectional
instability, many efforts have focused on the convective amplification of disturbance
waves pre-existing in the boundary layer upstream of separation. Once these disturbance
waves enter the recirculation bubble, they experience an explosive amplitude growth that
leads to the shedding of spanwise-dominant Kelvin–Helmholtz vortices, their spanwise
breakdown and subsequent rapid transition to turbulence (Alam & Sandham 2000; Jones
et al. 2008; Marxen et al. 2013). In real applications the existence of some amount
of background noise, such as free-stream turbulence (FST), is unavoidable. Free-stream
turbulence penetrates the boundary layer through different receptivity mechanisms and can
reduce significantly the length of the separation bubbles (Gault 1955; Lardeau et al. 2012),
or even prevent flow separation by causing early transition upstream of the separation
point (Zaki et al. 2010). Free-stream turbulence can also generate streamwise-aligned
structures inside the boundary layer, which can either prevent separation via the nonlinear
modification of the flow (Xu & Wu 2021) or interact with the Kelvin–Helmholtz rollers
stemming from the inflectional instability and lead to different transition scenarios based
on the level of FST (Marxen et al. 2009; Balzer & Fasel 2016; Hosseinverdi & Fasel 2019).

In addition to the disturbance amplifier behaviour described above, LSBs can sustain
self-excited instability mechanisms leading to unsteadiness, three-dimensionality and
transition in the absence of external disturbances or actuation. These additional instability
mechanisms may often be masked in practical experiments by the dominance of the
convective inflectional instability, but their relevance cannot be neglected on account of
the observation of different phenomena that are not explained by the amplifier behaviour
alone; these include the emergence of three-dimensional structures in the time average
flow field (Jacobs & Bragg 2006; Diwan & Ramesh 2009; Michelis et al. 2018) or
low-frequency oscillations of the entire recirculation region (Zaman et al. 1989). Under
conditions of non-vanishing FST, the self-excited instability mechanisms could coexist
with or modify the amplification of external disturbances. In particular, for incompressible
LSBs formed on smooth surfaces, two linear global instabilities have been identified:
a two-dimensional oscillator associated with inflectional instability and a steady three-
dimensional centrifugal instability. Each of these instability mechanisms are explained in
the following.

The global oscillator behaviour of LSBs was first investigated by Pauley et al. (1990),
who suggested the onset of vortex shedding to be related to a change in the nature of
instabilities from being convectively to absolutely unstable. This question was further
studied by Hammond & Redekopp (1998), Alam & Sandham (2000), Rist & Maucher
(2002), Fasel et al. (2004), Embacher & Fasel (2014) using absolute/convective local
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instability analysis (in the sense of Huerre & Monkewitz 1990) and numerical simulations,
who demonstrated that, on account of the reversed flow region, an absolute instability is
indeed possible and leads to self-excited vortex shedding. Subsequent secondary instability
and nonlinear processes trigger the transition to turbulence, resulting in LSBs that are
qualitatively very similar to those under very weak external disturbances. There have
been some efforts in proposing a criterion for the onset of absolute instability based
on the normalised peak reverse flow (urev = −umin/U∞, where umin is the minimum
streamwise velocity and U∞ the free-stream velocity). Several authors (Rist & Maucher
1994; Allen & Riley 1995; Hammond & Redekopp 1998; Alam & Sandham 2000; Fasel
et al. 2004; Diwan 2009; Rodríguez et al. 2013; Embacher & Fasel 2014), based on direct
numerical simulation (DNS) or local stability analysis, proposed that a minimum value
of urev ≈ 16 − 25 % is required for the absolute instability of inflectional local velocity
profiles. Avanci et al. (2019) proposed a new geometrical criterion, not based on the
reversed flow, that collapses the boundary between convective and absolute instability
for a wide range of velocity profiles with reversed flow. Based on this criterion, if the
local inflection point is located inside the recirculation region, delimited by the separation
streamline, the inviscid inflectional instability becomes of an absolute type.

The second self-excited instability mentioned above is a centrifugal instability described
by a steady, three-dimensional global mode. The existence of such global mechanism was
first postulated by Dallmann & Schewe (1987), and later proved by Theofilis et al. (2000)
using a global linear eigenmode analysis. This centrifugal eigenmode has been recovered
consistently for two-dimensional recirculating flows in different geometries (Barkley et al.
2002; Gallaire et al. 2007; Brès & Colonius 2008; Kitsios et al. 2009; Marquet et al. 2009;
de Vicente et al. 2014; Zhang & Samtaney 2016). It was also shown that this self-excited
mechanism can become active in bubbles with reverse flow ≈ 7 % of the free-stream
velocity, under conditions in which absolute inflectional instability is absent (Rodríguez
et al. 2013). Thus, this mode can become active prior to self-excited vortex shedding. The
effect of such a mechanism on the topology of separation bubbles is investigated, among
others, by Rodríguez & Theofilis (2010) on a flat plate and by Gallaire et al. (2007) on
a separation bubble due to the presence of a smooth hump. The growth of this mode
induces a spanwise modulation and three-dimentionalisation of the whole bubble, that has
been confirmed in experiments (see, e.g. Passaggia et al. 2012). Rodríguez et al. (2021a)
showed that the three-dimensionalisation of the bubble resulting from the centrifugal
instability can give rise to self-excited secondary instabilities and shedding finite-span
vortices. This finding might explain the onset of laminar–turbulent transition in nominally
two-dimensional bubbles that are not susceptible to absolute instability.

This work aims at investigating the self-excited stability characteristics of LSBs
that are formed due to smooth surface variations, specifically surface waviness. The
impact of surface waviness on boundary layer transition has been widely studied in the
context of convective instabilities such as Tollmien–Schlichting waves, whose spatial
amplification is enhanced by the wall waviness and it was concluded that the effect of
the waviness scales as h2/λ, where h is the wave height and λ the wavelength (Lessen &
Gangwani 1976; Wie & Malik 1998). However, if the wave height is sufficiently large,
flow separation appears on the leeward side that could potentially sustain self-excited
instabilities and transition, by-passing scenarios based on the convective amplification of
external disturbances.

The present paper addresses two main research questions. First, we investigate if more
than one steady three-dimensional unstable global mode can coexist in a LSB. Then we
investigate the subtle effects of waviness geometry on the resulting transition to turbulence.
These two questions are answered by applying several steps. First, a scaling is proposed
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Figure 1. Flow configuration illustrating the two computational domains.

based on the geometrical parameters of the wall waviness and the local Reynolds number
to predict the flow separation. Then, a few waviness geometries are generated resulting in
the formation of two-dimensional LSBs with different reverse flows and characteristics.
The resulting two-dimensional base flows are subjected to global stability analysis to
characterise their two- and three-dimensional instabilities, which answers the first research
question raised above. The results of the stability analysis together with studying the
nonlinear saturation process of selected cases provide the building blocks to study the
transition scenario for two LSBs in the last part of this paper, and answer the second
question raised above.

This paper is structured as follows. In § 2, the geometry, governing equations,
boundary conditions and numerical techniques are explained. The base flow cases are
introduced in § 3, which also describes the scaling proposed for the prediction of flow
separation. Section 4 presents the results of primary stability analysis of two- and
three-dimensional perturbations and the nonlinear saturation process of some selected
spanwise-homogeneous base flow cases. Section 5 covers the secondary stability analysis
of a three-dimensional flow arising from the saturation of the primary, centrifugal
instabilities. Two distinct laminar–turbulent transition scenarios are analysed in § 6.
Finally, § 7 summarises the results and offers some conclusions.

2. Flow configuration, governing equations and numerical techniques
The geometry considered in this study is shown in figure 1. It consists of a semi-infinite
flat plate with an embedded one-wavelength sinusoidal waviness centred at x = xc. The
height and wavelength of the waviness are denoted by h and λ, respectively. Two different
domain sizes are used in this work to facilitate the imposition of boundary conditions and
reduce the computational cost, as will be explained in the next section.

2.1. Governing equations
The non-dimensional Navier–Stokes and continuity equations for an incompressible,
constant viscosity flow are

∂u
∂t

+ (u · ∇)u + ∇ p = 1
Reδ∗

0

∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u = [u, v, w]T are velocity components in Cartesian x , y and z directions,
respectively, p is the pressure, f is the forcing term and Reδ∗

0
= (U∞δ∗

0)/ν is the Reynolds
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Boundary (Ω) Type Equation

Ωi,2 Inlet [u, v]= [u, v]inlet , w = 0
Ωwall Wall u = 0

Ωtop,2 Free surface u = utop ,
1

Reδ∗
0

∂v

∂y
− p = ptop , w = 0

Ωo,2 Outlet
1

Reδ∗
0

∂u

∂x
− p = poutlet ,

∂v

∂x
= ∂w

∂x
= 0

Table 1. Boundary conditions imposed on the DNS domain.

number based on the reference length, δ∗
0 , which is taken as the displacement thickness at

x = x0; U∞ is the free-stream velocity and ν is the kinematic viscosity.
For each definition of the wall waviness, two different sets of simulations are performed

using the two computational domains shown in figure 1. A preliminary simulation
considers the larger domain (denoted by subscript 1) and solves the two-dimensional
steady-state form of the Navier–Stokes equations. Uniform velocity (u = 1) at inlet Ωi,1,
free-stream conditions (u = 1, ∂v/∂y = 0) on the top boundary Ωtop,1, no-slip conditions
on the wall Ωwall , symmetry boundary condition upstream of the flat plate Ωsym and a
standard outflow condition (p = 0, ∂u/∂x = 0) at the outlet (Ωo,1) are used as boundary
conditions for these simulations. The height and downstream extent of the larger domain
are checked to be enough to ensure that the pressure on the top and outlet boundaries of
the inner domain, i.e. ptop and poutlet , do not change by further increasing the size of the
larger domain. The solutions on the larger domain are computed using the commercial
software COMSOL using a P3 − P2 finite-element formulation, i.e. third-order elements
for the velocity field and second-order elements for the pressure.

The rest of the simulations are performed in a reduced computational domain (enclosed
by red lines in figure 1), hereafter referred to as the DNS domain, using the spectral
element method solver Nek5000 (Deville et al. 2002; Fischer et al. 2008). The PN − PN−2
formulation in Nek5000 with seventh-order elements for velocity and fifth-order elements
for pressure is used. In figure 1 the height and length of the DNS domain are denoted by
H and L , respectively. The boundary conditions for the DNS domain are summarised in
table 1. For three-dimensional simulations, periodic boundary conditions are imposed on
the (spanwise) lateral boundaries. For each DNS case (both two- and three-dimensional
simulations), the prescribed profiles for [u, v]inlet , [u, p]top and poutlet (table 1) are
obtained from the simulation on the larger domain. Note that, the solutions obtained with
COMSOL on the larger domain are only used to provide boundary conditions for DNS
simulations. This choice of boundary conditions is based on two reasons: (i) due to the
presence of the waviness, the velocity at the inlet might differ from the Blasius solution;
and (ii) by setting ptop and poutlet , the two-dimensional base flows become independent
of the height and downstream extent of the DNS domain (Shahriari & Hanifi 2016). The
effect of the waviness on the inlet profiles (for case E – see § 3.2 for the definition of
different cases) is shown in figure 2. Finally, a fringe region is added at the outlet of the
DNS domain to avoid reflections from the outlet into the domain.

Direct numerical simulations using the smaller domain are performed in this work
with different objectives. One is the computation of steady-state solutions of the Navier–
Stokes equations to be subsequently subject to linear stability analyses. If the nonlinear
system of equations is globally unstable, no steady-state solution can be found using time-
marching techniques. Instead, the steady-state solution of the unstable system can be found
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Figure 2. Effect of waviness on the inlet boundary condition. The DNS inlet profile is for case E (see tables 2
and 3).

using techniques such as selective frequency damping (SFD) (Åkervik et al. 2006) or
Boostconv (Citro et al. 2017). The Boostconv method aims to enhance the convergence
of iterative solvers by modifying the part of the eigenspectrum dictated by the unstable
or slowly decaying modes. This is achieved by adjusting the residual at each step to
ensure faster reduction of the residual in the subsequent iteration. This method is used
in this work to find the spanwise-homogeneous two-dimensional base flows, denoted by
u 0 = [u0, v0, 0]T . SFD is used in § 4.2.1 to find the spanwise-modulated fully three-
dimensional base flows, denoted by u3D = [u3D, v3D, w3D]T . SFD adds a forcing term
to the momentum equations (using term f in (2.1)) that, in practice, acts as a low-pass
filter efficiently damping the unsteadiness present in the flow.

2.2. Linearised equations
Considering a steady solution of the governing equations q̄ = [ū, p̄]T as base flow, the
linearised Navier–Stokes and continuity equations around q̄ can be written as

∂u′

∂t
+ (u′ · ∇)ū + (ū · ∇)u′ + ∇ p′ = 1

Reδ∗
0

∇2u′, (2.3)

∇ · u′ = 0, (2.4)

where (′) denotes perturbation quantities. When the linear solver in Nek5000 is used, to
ensure consistency with the boundary conditions satisfied by q̄, homogeneous Dirichlet
boundary conditions are applied for u′ on Ωi,2 and Ωwall , while on Ωtop,2 and Ωo,2, the
respective boundary conditions are

u′ = w′ = 0,
1

Reδ∗
0

∂v′

∂y
− p′ = 0 (2.5)

and

1
Reδ∗

0

∂u′

∂x
− p′ = 0,

∂v′

∂x
= ∂w′

∂x
= 0. (2.6)

2.3. Modal stability analysis
Considering modal analysis, the perturbations are written in the form of

q ′(x, y, z, t) = q̂(x, y, z)e−iΛt + c.c., (2.7)
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y
H0

H0

L0 L0

L

H
(x, y) → (ξ,η)

η

ξx

Figure 3. Mapping of the physical domain to the computational domain used in the matrix-forming
eigenvalue analysis. The computational domain corresponds to the shaded area of the physical domain.

where Λ = ω + iσ and c.c. denotes the complex conjugate. By substituting (2.7) into (2.3)
and (2.4), a generalized eigenvalue problem of the form

Lq̂ = ΛRq̂ (2.8)

is found, where

R =
(

I 0
0 0

)
, L =

(−∇ū − ū · ∇ + 1
Reδ∗0

∇2 −∇
∇· 0

)
. (2.9)

The eigenvalues Λ = ω + iσ determine the asymptotic behaviour of the system to small
amplitude disturbances, where σ and ω are the exponential growth rate and frequency
of perturbations, respectively. If σ > 0, the system is globally unstable and any small
amplitude perturbation will grow exponentially over time.

To obtain the two-dimensional global modes of the two-dimensional base flows q̄, a
matrix-free approach (Bagheri et al. 2009) is employed that uses the implicitly restarted
Arnoldi method (Lehoucq et al. 1998) implemented in Nek5000. In this case, the two-
dimensional base flows (u0) are obtained with Nek5000 (on the DNS domain) using
Boostconv. The base flows will be introduced in § 3.2, while the stability analysis results
corresponding to this part are presented in § 4.1.

To obtain the three-dimensional global modes of two-dimensional base flows, a matrix-
forming approach is used. The base flows here are obtained by interpolating the base
flows calculated using Nek5000 on a smaller subdomain (shaded area in figure 3). In this
case, instead of solving the three-dimensional eigenvalue problem, perturbations can be
assumed to be periodic in the spanwise direction, with spanwise wavenumber β. In this
case, the ansatz (2.7) is rewritten as

q ′(x, y, z, t) = q̂(x, y)ei(βz−Λt) + c.c. (2.10)

By substituting the ansatz (2.10) into (2.3) and (2.4), a generalized eigenvalue problem
similar to (2.8) is obtained. The corresponding terms for linear operators L and R of the
resulting eigenvalue problem can be found in Rodríguez & Theofilis (2009). Fourth-order
central finite differences are used to discretise the derivatives of the operators. Moreover,
in order to account for the curvature of the geometry as well as non-orthogonal grids, the
analytical mapping

ξ = x, η = H0
y(x) − yw(x)

ytop(x) − yw(x)
, (2.11)

is used to map the physical domain (x, y) into the computational one (ξ, η) as shown in
figure 3. Homogeneous Dirichlet boundary conditions are imposed for perturbations at
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the inlet, top boundary of the computation domain and at the wall, while homogeneous
Neumann boundary conditions are imposed at the outlet of the domain. In (2.11), H0 is the
height of the subdomain, while yw(x) and ytop(x) are the coordinates of the wall and top
boundary in the physical domain, respectively. Note that the top boundary of the physical
subdomain chosen for the eigenvalue problem (grey area in figure 3) is formed by simply
moving the shape of the wall H0 units in the y direction. This particular choice of the
top boundary of subdomain for eigenvalue analysis guarantees an orthogonal grid in the
computational domain, and both the physical and computational domains will have the
same grid clustering near the wall without any further transformations.

Finally, the resulting two-dimensional eigenvalue problem is solved in parallel with
sparse linear-algebra techniques using the shift-and-invert Krylov–Schur algorithm
implemented in SLEPc (Hernandez et al. 2005). Also, the MUMPS package (Amestoy
et al. 2000) is used for performing the lower–upper decomposition of the sparse matrices.
The results corresponding to this section are presented in § 4.2. This approach is validated
with Nek5000 as shown in Appendix A.2.

3. Two-dimensional base flows
This section first presents a scaling to predict the onset of flow separation for the sinusoidal
waviness considered in this work (§ 3.1). Based on that, several flow cases are considered
for further analysis, which are introduced in § 3.2.

3.1. Onset of flow separation
The wall waviness presents two consecutive changes in curvature that introduce favourable
pressure gradient and APG regions, and cause flow separation if the intensity of the APG
is large enough. Different works proposed boundary layer separation criteria based on
dimensionless parameters that consider the thickness of the boundary layer, the kinematic
viscosity and a measure of the streamwise velocity gradient at the boundary layer edge
(Thwaites 1949; Gaster 1966); thus, a priori knowledge of velocity profiles is required.
Ultimately, these quantities are a consequence of the geometrical parameters of the
waviness (h, λ) and the Reynolds number based on the boundary layer thickness. This
suggests an alternative criterion for the prediction of the boundary layer separation for the
present configuration, based on the dimensionless numbers h/δ and Reδ∗

xc
= (U∞δ∗

xc
)/ν.

Here δ and δ∗ are the boundary layer and displacement thickness of the corresponding
Blasius solution at x = xc, respectively. To find such a dependence, the wavelength λ for
which the wall shear stress vanishes has been determined for simulations with different
Reynolds numbers and waviness heights. These are shown in the left panel of figure 4.
Next, all the curves are scaled with (Reδ∗

xc
)0.5, obtaining an excellent collapse as shown

in the right panel of figure 4. Then, a power-law curve is fitted to the data to obtain an
equation to predict the waviness parameters that causes flow separation:

δ

λ
(Reδ∗

xc
)0.5 = 0.1028

(
h

δ

)−1.2892

+ 0.1611. (3.1)

For any combination of parameters that lies above this curve, flow separation is expected
to happen.

3.2. Base flow cases
Equation (3.1) allows constructing different geometries resulting in LSBs with different
(not known a priori) length, thickness and reverse flow intensity. For all the geometries
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Figure 4. Scaling of waviness parameters for incipient separation.

Case h h/δ δ/λ h/λ

G 1.8756 0.50 0.0218 0.0109
I 1.8756 0.50 0.0240 0.0120
A 1.8756 0.50 0.0255 0.0127
B 2.0631 0.55 0.0092 0.0050
C 2.0631 0.55 0.0133 0.0073
D 2.0631 0.55 0.0171 0.0094
E 2.0631 0.55 0.0198 0.0109
F 2.2507 0.60 0.0158 0.0095
H 2.2507 0.60 0.0182 0.0109

Table 2. Geometrical parameters defining the cases considered in this work.

considered in the rest of this work, the Reynolds number based on local Blasius
displacement thickness at the centre of the waviness is Reδ∗

xc
= 1720.8, which corresponds

to Rexc = (U∞xc)/ν = 1 × 106. For all cases, the location of the inlet (x = x0) is chosen
such that the Reynolds number based on the local Blasius displacement thickness
is Reδ∗

x0
= 1332.925. The value of δ∗

x0
is taken as the reference length to make

all coordinates non-dimensional. Finally, the origin of the dimensionless streamwise
coordinate is displaced to the inlet of the DNS computational domain, so that x = 0
is the inlet coordinate and xc ≈ 300. For reference, the dimensionless Blasius boundary
layer thickness at xc is δxc = 3.7512. Table 2 summarises the geometrical parameters for
different geometries considered; these cases are also shown on the separation diagram in
figure 5. Separated flow is present for all cases except case B, which is at the edge of
separation. Note that, all two-dimensional base flows are obtained with a DNS domain
size of H = 700 and L = 1400.

Figure 6 shows the streamwise velocity u for cases A, C and E. The figure is not drawn
to scale in order to enhance the visibility of the recirculation bubble. The derivative of
the pressure coefficient C p with respect to the wall arc length s, dC p/ds, is shown by
the dashed black line. The red dashed line shows the dividing streamline yd , defined as
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Figure 5. Geometrical parameters defining the cases considered in this work. The dashed line shows the
separation curve for Reδ∗

xc
= 1720.8.
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Figure 6. Base flows for cases A, C and E. The colour map corresponds to streamwise velocity u. Here dC p/ds
is shown by a dashed black line and the values are indicated by the right vertical axis. White and red dashed
lines show reverse flow yr and dividing streamlines yd , respectively. The figure is not drawn to scale.

the y coordinate below which the streamwise mass flux is zero, i.e.
∫ yd

ywall
u(x, y)dy = 0.

The white dashed line corresponds to the coordinate yr that delimits the reverse flow
region (u < 0). Table 3 summarises different characteristics of the separation bubble for all
cases.

1011 A27-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.395


Journal of Fluid Mechanics

Case urev xs xr Lsep θs h1 h2 Reθ,s ReL

G −0.0994 277.30 385.77 108.47 0.4441 3.4062 3.2633 592.03 144,584
I −0.1081 278.13 381.62 103.49 0.4428 3.4716 3.3244 590.22 137,944
A −0.1118 278.76 380.46 101.70 0.4389 3.5458 3.3458 585.07 135,561
C −0.0548 277.47 420.58 143.10 0.4618 3.0949 3.0614 615.54 190,744
D −0.0941 273.54 405.17 131.62 0.4493 3.5802 3.4878 598.92 175,445
E −0.1120 274.19 394.48 120.30 0.4429 3.7586 3.6272 590.46 160,350
F −0.1063 270.42 414.51 144.09 0.4479 3.9177 3.8411 597.08 192,065
H −0.1233 271.15 403.21 132.05 0.4424 4.1177 3.9872 589.73 176,021

Table 3. Maximum reverse flow (urev), x coordinate of separation (xs) and reattachment (xr ) points, length
of separation bubble (Ls = xr − xs), momentum thickness at separation point (θs), maximum vertical distance
between the wall and dividing streamline (h1), maximum vertical distance between the wall and separation
point (h2), Reynolds number based on momentum thickness at the separation point (Reθ,s ) and Reynolds
number based on the length of the separation bubble (ReL ). For all cases, Reδ∗

xc
= 1720.8.

Figure 6, illustrates how the change of wall curvature, especially near the reattachment,
plays a significant role in the shape and length of the separation bubble. The flow
experiences an acceleration in the first part of the waviness, followed by an APG region
that results in flow separation. A pressure plateau is evident within the recirculating region,
except for the proximity of the reattachment region. For cases A and E, near the rear end of
the bubble the flow experiences a sudden deceleration and the dividing streamline bends
towards the wall. The reattachment occurs either at the end point of the wall waviness
or downstream, in the flat plate. After reattachment, the flow accelerates until a zero
pressure gradient region is recovered over the flat plate. Conversely, in case C where the
reattachment is upstream of the end of the waviness, the flow experiences an acceleration
after the reattachment.

Regarding the maximum value of reverse flow, both h and λ play a role. This can be seen
by comparing maximum reverse flow magnitude for cases G, E and H, where h/λ is the
same; however, the reverse flows are different. The reverse flow increases by increasing
the height of waviness while keeping constant λ. At a constant height of the waviness,
increasing h/λ (i.e. decreasing λ), increases the reverse flow magnitude. The effect of
height of the waviness is found to be more pronounced: h/λ for case A is almost 16 %
higher than that for case H, but case H has a higher maximum reverse flow than case A.

The wall curvature also affects the streamlines of the flow, especially near the rear part of
the waviness where the flow undergoes a sudden deceleration. This is shown in figure 7 that
depicts the streamlines for cases G, A, E and H. Among the four cases shown in this figure,
the curvature of the streamlines in case G does not change sign inside the recirculation
bubble. The same happens for cases C, D and F (not shown here). On the other hand,
the curvature of streamlines in cases A, E, H and I (not shown here) changes sign in
the vicinity of the reattachment point. This change in the sign of streamline curvature is
found to directly impact the three-dimensional global centrifugal instabilities, as will be
discussed in § 4.2. Note that in the base flow for case H a second recirculation region
inside the main one is formed, as shown in figure 7(e). The same streamline topology
has been reported for different two-dimensional steady solutions of the Navier–Stokes
equations recovering fully laminar recirculation bubbles (e.g. Alizard et al. 2009; Balzer
& Fasel 2016). This seems to be an effect of the rapid increase of pressure gradient near the
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Figure 7. Flow streamlines near reattachment point for cases (a) G, (b) A, (c) E and (d) H. The figure is not
drawn to scale. (e) Velocity vectors within the marked dashed rectangular region in case H.

reattachment point. In what follows, the spanwise-homogeneous (two-dimensional) base
flows presented in this section will be referred to by u0 = [u0, v0, 0]T .

4. Primary instability analysis of the two-dimensional base flows

4.1. Two-dimensional instability: vortex shedding
In this section the results for global stability analysis for two-dimensional perturbations
(introduced in § 2.3) are presented. The numerical details and domain sensitivity analysis
are given in Appendix A.1. Figure 8 shows the eigenspectra for all the cases. Note that the
eigenspectrum being symmetric about ω = 0, only the side of it with positive frequencies
is shown. The eigenspectra show two different families of eigenmodes, characterised
as low-frequency (ω < 0.06) and high-frequency (ω > 0.06) regions, respectively. For
case B, which is the case without flow separation, only the low-frequency part of the
eigenspectrum appears. Among all cases studied, only cases E, F and H are globally
unstable with respect to two-dimensional instabilities; a self-sustained oscillator-type
instability is expected to happen for these cases in nonlinear simulations without
external forcing. The peak reverse flow for these unstable cases is urev ≈ 10 − 12 %,
which is lower than the threshold of urev ≈ 16 % (Rist & Maucher 2002; Alam &
Sandham 2000), and the inflection point does not cross the dividing streamlines of these
bubbles (as proposed by Avanci et al. 2019), suggesting that the global instability does
not originate from the local absolute inflectional instability, but by fully non-parallel
effects.

The growth rate and frequency of high-frequency modes show a higher sensitivity
to the geometry of the waviness. This is in agreement with the results of
Ehrenstein & Gallaire (2008) for a separated flow over a hump. Figure 9 shows the real
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Figure 8. Eigenspectra of two-dimensional global eigenmodes (β = 0) of the two-dimensional base flows.
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Figure 9. Real part of the streamwise velocity component of global eigenmodes for case E, corresponding to
the four eigenvalues marked with the letters a, b, c and d in figure 8.

part of the streamwise velocity component of global modes for case E, corresponding
to the four eigenvalues marked with the letters a, b, c and d in figure 8. Figure 9
confirms that that low-frequency and high-frequency modes belong to different families.
Low-frequency modes, corresponding to convectively unstable waves, resemble Tollmien–
Schlichting waves downstream of the wall waviness. The corresponding eigenfunctions are
also similar to eigenfunctions of a family of low-frequency modes found downstream of
the reattachment point of an LSB caused by a smooth hump, as shown by Ehrenstein
& Gallaire (2008). The modes in the high-frequency family exhibit a notable spatial
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Figure 10. Dependence of the maximum growth rate of steady (ω = 0) eigenmodes on the spanwise
wavenumber for different cases. In the case of coexistence of two eigenmodes at one spanwise wavenumber,
the growth rate of the second mode is shown by a dashed line.

amplification in the separated shear layer and inside the recirculation region, upstream
of the reattachment point. The spatial shape of all the high-frequency modes (either stable
or unstable) shares the same features; however, their spatial extension downstream of the
reattachment point decreases from eigenmode to eigenmode as their frequency increases
(modes c and d). The eigenmodes shown in figure 9 are similar to the two-dimensional
eigenmodes found in the LSBs caused by a smooth cavity (Åkervik et al. 2007) and smooth
hump (Ehrenstein & Gallaire 2008).

4.2. Three-dimensional instability: base flow three-dimensionalisation
Since the base flows u0 are homogeneous in the z direction, their three-dimensional
instability is studied using global stability analysis of perturbations of the form (2.10).
Details of the numerical set-up and cross-validations using Nek5000 are given in
Appendix A.2.

For an LSB on a flat plate, Theofilis et al. (2000) reported the existence of a single steady
unstable centrifugal three-dimensional eigenmode for a specific spanwise wavenumber.
Recently, Rodríguez et al. (2021a) showed that this eigenmode is responsible for spanwise
modulation of an initially two-dimensional base flow and can potentially lead to transition
through a self-excited secondary instability mechanism. Here, on a curved surface, we
show that for a specific β, more than one zero-frequency unstable centrifugal mode can
coexist. The effect of spanwise wavenumber on the growth rate of the leading unstable
eigenmode(s) is shown, for all cases, in figure 10. Note that all the eigenmodes shown
in this figure have zero frequency. In the case of having two unstable eigenmodes for a
specific β, the lower-growth-rate modes are shown by the same symbol as the higher-
growth-rate modes, but are connected with a dashed line. No more than two unstable
eigenmodes have been found in any of the cases.

Figure 11 summarises the stable and unstable cases in two different parameter spaces.
Figure 11(a) shows the stability characteristics of cases in h/δ–δ/λ parameter space, where
the plus and circle symbols are for two- and three-dimensional instabilities, respectively.
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Figure 11. (a) Stability diagram in h/δ–δ/λ parameter space. Plus and circles show the stability characteristics
of two- and three-dimensional instabilities, respectively (blue: stable, red: unstable). The black dashed line
shows the separation curve for Reδ∗

xc
= 1720.8 (see figure 5). (b) Stability diagram of three-dimensional

instabilities in the Re1/2
hh –h/λ parameter space. The blue circle shows the stable case, black circles show the

cases with one unstable eigenvalue and red circles show the cases where two unstable eigenvalues are present
for a particular value of β.

Blue and red colours also show stable and unstable cases, respectively. From the figure
it is clear that, at a fixed height of the waviness, by decreasing the wavelength of the
waviness, i.e. increasing δ/λ, three-dimensional instabilities become unstable prior to
two-dimensional instabilities. Figure 11 (b) shows the stability characteristics of three-
dimensional instabilities in the Re1/2

hh –h/λ parameter space, where Rehh = u(h)h/ν is the
local Reynolds number at the x location of the maximum height of the waviness h and
u(h) is the value of the Blasius velocity profile at height h (Von Doenhoff & Braslow
1961; Bucci et al. 2021). Although analysing more cases is required to properly identify
the neutral curves at this parameter space, from the figure it is clear that at a fixed Rehh ,
by increasing the aspect ratio h/λ of the waviness, first the flows become unstable with
respect to one unstable global mode (black circles) and then with respect to two global
eigenmdoes (red circles) for a fixed value of spanwise wavenumber.

The existence of multiple steady centrifugal eigenmodes is found to be directly related
to the number of sign changes in the curvature of the recirculating streamlines of the base
flow. As explained in § 3.2 and shown in figure 7, cases A, E, H and I present more than
one change of curvature sign due to the presence of the curved wall. For these four cases,
as figure 10 shows, the coexistence of two unstable centrifugal modes is possible in a finite
range of β. Note that the unstable range of β for the higher-growth-rate eigenmode is
almost twice that for the lower-growth-rate mode.

Figure 12 shows the real part of the streamwise u (left panels) and v (right panels)
velocity components for the two unstable eigenmodes of case A with β = 0.7, and the
single unstable eigenmode for case G with β = 0.4; the top and middle panels show the
eigenfunctions for the higher-growth-rate (M1) and lower-growth-rate mode (M2) for case
A, and the bottom panels show the same eigenfunctions for the unstable mode (M1) in
case G. Flow streamlines in the vicinity of the change of streamline curvature are also
plotted as thin grey lines in the figure. The higher-growth-rate mode is very localised in
the region where the curvature of streamlines changes. For a given β, the growth rate of
this mode, which will be referred to as the localised mode, is one order of magnitude
higher than that of the other mode, which will be referred to as the spread mode. It should
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Figure 12. Real part of the u component (left panels) and v component (right panels) of global modes for
case A with β = 0.7 and case G with β = 0.4. The most unstable mode for case A is denoted by M1 and the
second unstable mode is denoted by M2. The red solid line shows the dividing streamline for each case. The
flow streamline in the rear part of the bubble is shown by grey lines. Red and blue colours show positive and
negative values, respectively. The figure is not drawn to scale.

be noted that, at a fixed h/δ when both the localised and spread modes coexist, the growth
rate of both modes increases with decreasing wavelength of the waviness, i.e. increasing
δ/λ, as can be seen from figure 10 (cases A and I). The spatial structure of the spread
mode extends over the whole recirculation bubble and shares the same features as the
three-dimensional global mode found in LSBs formed on a flat plate (Theofilis et al.
2000; Cherubini et al. 2010; Rodríguez & Theofilis 2010), smooth humps (Gallaire et al.
2007) and S-shaped ducts (Marquet et al. 2009). When only one unstable mode is found
(e.g. case G), the eigenfunction identifies it as a spread mode. There are two important
differences between the properties of the localised and the spread eigenmodes that are
consistently observed in their respective eigenfunctions for all the cases. First, unlike the
spread mode, the localised mode nearly vanishes along the dividing streamline (the red
line in figure 12), except for a small region centred above the dominant recirculation centre.
Second, the u component of the localised mode changes sign inside the bubble and near
the reattachment point. Conversely, the u component of the spread mode (even when it
coexists with the localised mode) changes sign only downstream of the reattachment point;
the flow disturbance induced by this mode produces a spanwise modulation of the entire
recirculation region (Rodríguez & Theofilis 2010) that is found here to be more relevant to
the subsequent nonlinear evolution than that induced by the localised mode, as is discussed
in the following sections.
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Case Lz β Uns. modes u0,rev u3D,rev ū2D,rev ubd (tsat )

G 15.708 0.4 SP 0.0994 0.1280 0.0723 0.2905
A 8.976 0.7 LM + SP 0.1118 0.1379 0.0919 0.1628
A 5.236 1.2 LM 0.1118 0.1135 0.1079 0.0451

Table 4. Cases considered for nonlinear simulations. Here Lz = 2π/β denotes the spanwise size of the
domain.The forth column describes the number and type of unstable eigenmodes at the fundamental spanwise
wavenumber β; SP and LM denote the spread and localised modes, respectively. The other columns show
the maximum reverse velocity for initial two-dimensional flow, u0; three-dimensional saturated flow, u3D ;
spanwise averaged saturated flow, ū2D ; and the peak negative base flow distortion at nonlinear saturation,
ubd (tsat ).

4.2.1. Nonlinear saturation of the three-dimensional instability
To investigate the nonlinear response and evolution of the system due to the growth
of global unstable modes until nonlinear saturation, a set of DNS is performed.
The simulations are initialised from the corresponding two-dimensional base flow for
each case. Note that only cases in which all two-dimensional eigenmodes were stable
are considered. Table 4 shows the cases considered. Periodicity is imposed on the
spanwise boundaries. The spanwise extent of the computational domain (Lz = 2π/β) in
the simulations is chosen in each case to impose a fundamental wavenumber β of particular
relevance based on figure 10. For case G, the spanwise size of the domain (Lz) is chosen
such that the corresponding spanwise wavenumber of domain (β = 2π/Lz) matches the
spanwise wavenumber of the most unstable mode for this case, i.e. β = 0.4, as shown in
figure 10. For case A, two spanwise sizes are considered, Lz = 2π/1.2 and Lz = 2π/0.7,
where 0.7 is the spanwise wavenumber of the most unstable mode for case A, and 1.2 is
the spanwise wavenumber where only one localised mode is unstable and the spread mode
is stable (see figure 10). In the following, the value of β indicates the spanwise size of the
domain, i.e. Lz = 2π/β, in each case. Convergence studies are reported in Appendix A.3.

Figure 13(a) shows the temporal evolution of the absolute value of the peak streamwise
perturbation component ‖u′‖∞ for each case, where u′(x, y, z, t) = u3D(x, y, z, t) −
u0(x, y) is the difference between the instantaneous velocity and the two-dimensional
base flow. All the simulations present an initial transient that is not shown here. In what
follows, the time t ′ = t − t0 is considered, where t0 is an arbitrary time after the initial
transient but before important dynamics appears. The evolution of disturbance kinetic
energy E(t) = √

(u′ · u′)/2 is shown in figure 13(b). Note that the energy is integrated
in the whole domain. The instantaneous growth rate of the disturbances can be computed
from the DNS data using the disturbance energy as

σDN S = 1
E(t ′)

dE(t ′)
dt ′

. (4.1)

In figure 13 the red dashed lines show the growth of the most unstable mode for each case
obtained from linear theory (figure 10). In the following, an overview of the nonlinear
saturation process for each of these three cases will be given.

(i) Case G, β = 0.4: this case aims to investigate the dynamics when only a single spread
mode is present. The perturbation experiences an exponential growth for a long
time (at t ′ ≈ 3300, σDN S ≈ 0.001200 and σL ST ≈ 0.001204) followed by a slower
growth due to nonlinear interactions of higher harmonics of the spanwise wavelength
starting from t ′ = (t − t0) ≈ 5000, as is clear from the reduced slope of the blue
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Figure 13. Time evolution of the peak of the absolute value of streamwise perturbation (‖u′‖∞) (a) and
integrated kinetic energy of perturbations (b) for case A with β = 0.7 (solid black line), case A with β = 1.2
(dashed black line) and case G with β = 0.4 (solid blue line). The blue dashed line correspond to case G after
applying SFD. The inset in panel (a) shows the oscillations that happen for case G before using SFD. The red
dashed lines show the growth rate predictions based on LST. Note that t0 is the transient time that is different
for each case. Note that the simulations are run for a much longer time than the part shown in this figure.

line in figure 13(b). At t ′ ≈ 9000, oscillations starts to appear in the shear layer
close to reattachment point, as shown in the inset of figure 13(a). These oscillations
are an indicator of a self-excited secondary instability that could lead to transition
(Rodríguez et al. 2021a). Note that, figure 13(a) shows the time evolution of the
peak of the absolute value of u′ in the whole domain, i.e. ‖u′‖∞. Thus, the slope
of amplitude growths in figure13(a) should not be considered as the growth rate of
perturbations, since the point corresponding to peak perturbation might vary over
time. However, this figure is useful to identify self-excited oscillations in the domain
when the kinetic energy of the domain is not a good metric (since the oscillations
do not appear in such an integral metric), and the location of oscillations is not
known a priori. The subsequent transition process will be investigated in § 6. Here,
to obtain the saturated base flow for this case for further analysis, when oscillations
start to appear in the flow, SFD is activated. The saturated base flow is assumed to
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be converged when no significant change up to the seventh digit was found in ‖u′‖∞.
The blue dashed line in figures 13(a) and 13((b) shows the evolution of ‖u′‖∞ and
kinetic energy after activating the SFD.

(ii) Case A, β = 1.2: this case aims to investigate the dynamics when only a single
localised mode is present. The black dashed line in figure 13 shows that, after
the initial transient, perturbations grow exponentially in the domain until nonlinear
saturation gives rise to a steady flow. As opposed to the previous case, new
fluctuations do not appear after the saturation. The growth rate of the exponential
growth phase is approximated at t ′ ≈ 550. For this case, σDN S ≈ 0.003473 which is
close to that obtained using linear stability analysis, σL ST = 0.003488.

(iii) Case A, β = 0.7: in this case, the localised mode and its first harmonic (β = 1.4)
coexist with an unstable spread mode with β = 0.7. The same scenario as in the
previous case is recovered. However, the growth rate of perturbations is larger than
that for β = 1.2, as figure 10 also suggests. Surprisingly, for this case, the saturated
state is achieved for later times compared with β = 1.2. The reason for this is that the
rapid initial exponential growth shown in figure 13 (at t ′0 ≈ 300, σDN S = 0.0.005320
and σL ST = 0.005439) is due to the localised mode. However, the spread mode that is
also unstable keeps growing with a growth rate much lower than that of the localised
mode. Nevertheless, a steady saturated state is obtained that again does not present
signs of subsequent oscillations.

Table 4 summarises the maximum reverse flow for spanwise-homogeneous base flow
(u0,rev), spanwise averaged saturated base flow (ū2D,rev) and three-dimensional saturated
base flow (u3D,rev), for the three cases considered here. The difference between u0,rev
and ū2D,rev is an indicator of the magnitude of the mean flow distortion due to spanwise
modulation of the initially two-dimensional base flow. In all three cases, u3D,rev is larger
and ū2D,rev is smaller than u0,rev . However, for case A with β = 1.2, where only the
localised unstable mode is present, the bubble experiences a weak mean flow distortion as
the difference between peak reverse flows is very small. Case G, despite the comparatively
lower growth rate of its eigenmode, presents the largest peak mean flow distortion.

4.2.2. Base flow distortion induced by the three-dimensional instability
The nonlinear simulations discussed in the previous section recover steady saturated flows,
either because of the absence of spontaneously growing oscillations or because SFD is
used to damp the oscillations. In consequence, the simulated disturbance field u′(x, y, z, t)
corresponds to the nonlinear distortion of the two-dimensional base flow u0 induced by the
three-dimensional instability. To remark this and distinguish it from the disturbance fields
appearing in the simulations in later sections, the base flow distortion will be referred to
as ubd(x, y, z, t) = u3D(x, y, z, t) − u0(x, y). Note that the base flow distortion evolves
in time until the final saturated state is reached at time t ′ = t ′sat , which is different for
each case. Figures 14, 16 and 17 show the evolution of the base flow distortion for the
cases in table 4. The streamwise velocity field is shown at the spanwise location where
the base flow distortion at t ′ = t ′sat has its peak negative value. In the plots, the dividing
streamline for u0, the section of the dividing streamsurface for u′ and time t ′, the in-plane
streamwise inflection points (∂2u/∂y2 = 0) and the section of the u′ = 0 surface are also
shown. Table 4 summarises the peak negative base flow distortion at the saturated state for
the three cases considered here.

(i) Case G, β = 0.4 (figure 14). At t ′ = 3306, the perturbations are still experiencing
exponential growth (figure 13b) and the base flow distortion is very similar to the
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Figure 14. Contours of the base flow distortion ubd for case G (β = 0.4) at four different times. The streamwise
planes are plotted at the spanwise location with a peak negative base flow distortion value. The red solid
and dashed lines show the location of the dividing streamline for the initial two-dimensional base flow and
instantaneous flow, respectively. The dashed black line shows the location of the streamwise inflection point.
The thin grey dashed line shows the location of the reverse flow streamline. The colour bars are symmetric and
the negative limit at each panel shows the peak negative base flow distortion value at the corresponding time.
The figure is not drawn to scale.

global mode as expected. At t ′ = 4746, the nonlinear interactions start to become
visible as the change in slope of the blue curve in figure 13(b) shows and, as a
result, the bubble starts to deform. At t ′ = 6186, nonlinear interactions have further
distorted the bubble and moved the location of the peak negative ubd away from
the wall. Finally, at saturation (t ′sat ≈ 55 000) the bubble is distorted completely and
nonlinear interactions around the reattachment point introduce flow deformations that
extend downstream of the bubble. At saturation, the line of external inflection points
intersects the dividing streamline at x ≈ 334. Avanci et al. (2019) showed that, under
the parallel flow assumption, this is a necessary condition for absolute instability of
Kelvin–Helmholtz instability and self-excited oscillations. Note that downstream of
the reattachment point, based on the shape of the global mode, the base flow distortion
should be positive in the plane where the base flow distortion inside the bubble is
negative. However, from the figure it can be seen that the bubble has a strong distortion
in the vicinity of the reattachment point, and negative base flow distortion appears
even further downstream. Thus, it can be conjectured that the strong deformation of
the bubble, and also the negative base flow distortion downstream of the reattachment
point, is mainly due to nonlinearities resulting from the growth of the spread mode.
Further evidence is shown in figure 15, which illustrates the nonlinear growth of har-
monics of the wavenumber corresponding to the unstable eigenmode. First, the span-
wise Fourier decomposition of the streamwise perturbation velocity is obtained, i.e.

u′ =
N∑

n=0

û exp (inβz) + c.c., (4.2)

where β is the fundamental spanwise wavenumber of the simulation domain.
The amplitude of the individual spanwise harmonic mode is then defined at each
streamwise coordinate x as
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Figure 15. Spatial evolution of amplitudes of individual spanwise harmonics modes (Aû) for case G at four
time instances shown in figure 14. The separation and reattachment points are marked by vertical lines with
labels xs and xr , respectively. The amplitude of the fundamental mode (1β) and first five harmonics (2β − 6β)
are shown in the figure.

Aû(x) = max
y

|û(x, y)|. (4.3)

Figure 15 shows the amplitudes of the fundamental (β) and first five harmonics
(2β − 6β) for the same time instances as in figure 14. While the amplitudes of the
harmonics at the earlier times are nearly negligible, they grow over time showing
a progressive transfer of energy from lower to higher harmonics and their eventual
saturation at comparable amplitudes. Interestingly, the harmonics present their peak
amplitudes in the vicinity of the reattachment point, explaining the localised changes
during saturation observed in figure 14.

(ii) Case A, β = 1.2 (figure 16). At t ′ = 500, the perturbations are still in their linear
regime. Note that, as figure 12 also shows, the components of the global eigenmodes,
unlike for the spread mode, vanish along the shear layer, except in a small region in
the vicinity of the location where the global mode is maximum. For this reason, even
at saturation, the bubble does not experience noticeable modulation and expansion
except for a very weak distortion around x ≈ 360 where the localised mode is present,
and also upstream due to nonlinear interactions. This also explains the weak mean
flow distortion shown in table 4 for this case. An important feature of the saturated
base flow when only the localised mode is present happens in the vicinity of the
reattachment point, where the u component of the global eigenmode changes sign
(figure 12). This is consistent with the base flow distortion observed at all times. As a
result, in the vicinity of reattachment for this case, nonlinear interactions are in favour
of increasing the streamwise velocity perturbations and cancelling the negative base
flow distortion. Thus, negative-velocity base flow distortion does not happen outside
of the base flow’s recirculating region and the bubble does not expand. Unlike for case
G, the dividing streamline is practically unaltered.

1011 A27-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.395


M. Moniripiri, D. Rodríguez and A. Hanifi

300 350

x
400 450 300 350

x
400 450

–2

0

2

4

y

–2

0

2

4

y

Case A, β = 1.2, (t – t0) = 2745

Case A, β = 1.2, (t – t0) = 500

Case A, β = 1.2, (t – t0) = tsat

Case A, β = 1.2, (t – t0) = 1230

–0.0451

0.0451

0

–0.0504

0.0504

0

–0.0161

0.0450

–0.0450

0

0.0161

0

Figure 16. Contours of base flow distortion ubd for case A (β = 1.2) at four different times. The annotations
are the same as for figure 14.
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Figure 17. Contours of base flow distortion ubd for case A (β = 0.7) at four different time instances. The
annotations are the same as for figure 14.

(iii) Case A, β = 0.7 (figure 17). In this case, two unstable eigenmodes coexist. Initially
(e.g. t ′ = 300), only the growth of the localised mode can be observed. No noticeable
change in the dividing streamline is visible for this time. At t ′ = 600, nonlinear
interactions start to become relevant as the dividing streamline is deformed in the
vicinity of the localised mode. Until this time, no sign of growth of the spread mode
is visible. However, after t ′ ≈ 2000, the spread mode becomes visible as shown by the
base flow distortion at t ′ = 2640; the base flow distortion resembles ubd(t ′ = 6186) for
case G. The interaction of the two unstable modes shows itself near the reattachment
point. It was shown for case G that the nonlinearities following the growth of the
spread mode distorts the bubble, especially near the reattachment point, pushing the
peak reversed flow region away from the wall. On the other hand, in the vicinity
of the reattachment point, nonlinearities following the localised mode intensify the
positive base flow distortion and prevent the bubble from getting distorted near
the reattachment point. Here, the interaction of these two modes is such that the
bubble deforms slightly at the reattachment point, but still the distortion is much
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Figure 18. Contours of the base flow distortion in the z–y plane for (a) case G (β = 0.4) at x ≈ 378, (b) case
A (β = 1.2) at x ≈ 363 and (c) case A (β = 0.7) at x ≈ 364. The annotations are the same as for figure 14.
The thin grey solid line shows the location of the reverse flow streamline for the initially two-dimensional base
flow.

weaker than in case G. One explanation can be that the growth rate of the localised
mode is almost one order of magnitude higher than the growth of the spread mode
and, in consequence, the nonlinearities due to rapid growth of the localised mode
prevent the slower-growing spread mode from distorting the flow effectively near the
reattachment point. In summary, the base flow distortion in this case results from the
combined effects of spread and localised modes: the rapid growth of the localised
mode suppresses bubble deformation near the reattachment point, while the slower
growth of the spread mode causes the bubble to expand upstream of the reattachment
point.

Figure 18 shows the base flow distortion in the z–y cross-stream plane at the streamwise
location of the peak negative base flow distortion for three cases, together with the sections
of the dividing streamsurface, the reverse flow surface and the local surface of inflection
points, following the same convention as in figures 14, 16 and 17. The spanwise modulation
of the bubbles is clear from this plot, showing that case G experiences the most intense
spanwise modulation, while case A with β = 1.2 is only slightly modulated. Interestingly,
due to strong nonlinear interactions for case G, the reverse flow region becomes very
localised in the spanwise direction, which explains the large value of negative base flow
distortion for this case compared with other cases, as given in the last column of table 4.

5. Self-excited oscillations developing on the saturated three-dimensional flow
Figure 13(a) showed that, for case G without using SFD, flow oscillations spontaneously
appear. The same phenomena is observed for an LSB on a flat plate (Rodríguez et al.
2021a), where it was shown that the oscillations were caused by a secondary instability of
the saturated flow. In this section the stability of the saturated flow is investigated first by
solving the pertinent three-dimensional eigenvalue problem. Then, the linear response of
the system to an impulse perturbation field is investigated.

5.1. Secondary global stability analysis
A three-dimensional global stability analysis of the saturated base flow u3D for case G,
which is obtained using SFD, is performed using the implicitly restarted Arnoldi method
implemented in Nek5000. A Krylov subspace size of 100 is used to ensure convergence
of at least the first 20 eigenvalues. The eigenspectra, shown in figure 19, contains two
unstable modes with (ω, σ) = (0.1479, 0.0065) and (ω, σ) = (0.1555, 0.0198). In the
proximity of ω = 0 (the zoomed inset in the figure), a family of stable low-frequency
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Figure 19. Secondary eigenvalue spectrum corresponding to the saturated flow for case G with β = 0.4.
The inset shows the spectrum close to the origin.
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Figure 20. Real part of the u component of the most unstable eigenmode corresponding to the saturated u3D
for case G with β = 0.4. The yellow isosurface corresponds to ubd = −0.25. The red and blue colours show
the positive and negative values, respectively.
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Figure 21. Same as figure 20 for the second most unstable eigenmode corresponding to the saturated u3D for
case G with β = 0.4.

modes appears. The shape and role of these modes in the dynamics is explained
in § 6.1. The spatial structure of the u component of the most unstable and second
unstable modes are shown in figures 20 and 21, respectively. In these figures, the yellow
isosurface corresponds to ubd = −0.25, i.e. 86 % of the peak negative base flow distortion
ubd,min . Both unstable modes are varicose (symmetric) on the spanwise direction and
are rooted around the peak negative base flow distortion. Note that both the peak reverse
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Figure 22. The time evolution of the perturbation energy (solid black line) as a result of an impulse perturbation
field imposed at t = 0, considering the saturated flow u3D for case G with β = 0.4 as the base flow. The red
dashed line shows the growth rate of the most unstable eigenmode in figure 19.

flow and base flow distortion ubd,min occur at the same spanwise plane; however, the
location of ubd,min , (x, y)bd = (378.4, 0.97), is located slightly downstream and above
the location of the peak negative reverse flow ((x, y)rev = (369.8, 0.62)). The second
unstable mode has a slightly longer wavelength compared with the most unstable one,
and it has a larger downstream spatial extension. Using a weakly non-parallel Wentzel–
Kramers–Brillouin–Jeffreys (WKBJ) analysis, Rodríguez et al. (2021a) approximated
the properties of the most unstable eigenmode responsible for self-excited secondary
instability in a pressure-gradient-induced LSB over a flat plate. The spatial structure of
the eigenmode found in that work looks qualitatively similar to both eigenmodes found
here using global stability analysis. Furthermore, the varicose eigenmodes here look
similar to the eigenmodes found in the wake region of a cylindrical isolated roughness
element with a diameter-to-height aspect ratio larger than one (Loiseau et al. 2014),
and also to those recovered for a cuboid isolated roughness element when the height of
the roughness is large compared with the boundary layer displacement thickness (Ma
& Mahesh 2022). It is anticipated here that these eigenmodes will give rise to self-
excited oscillations in the rear part of the bubble, in the vicinity of ubd,min , and will
cause a rapid transition to turbulence. The transition process is investigated in detail in
§ 6.1.

5.2. Impulse response analysis
To investigate the linear response of the saturated flow u3D to perturbations, a linear
simulation is performed in which a spatially localised initial disturbance is introduced
at x ≈ 370, close to the location of the peak reversed flow. The spatial structure of the
initial disturbance is described in Appendix B.

The solid black line in figure 22 shows the evolution of the disturbance kinetic energy E
and the red dashed line shows the growth rate of the most unstable eigenmode calculated
using global stability analysis confirming that, after an initial transient growth, the linear
disturbance is governed by the most unstable eigenmode. Due to the large gap between the
growth rates of the two unstable modes, the most unstable mode becomes dominant very
quickly. As a result, a beating phenomena at the frequency difference between those of
the two unstable modes, as that recovered by, for example, Ehrenstein & Gallaire (2008),
does not happen here. Instead, an exponential disturbance growth in which the disturbance
field (figure 20) and the oscillation frequency closely follow the prediction of the global
stability analysis is recovered and it continues until nonlinearities set in.
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Figure 23. Spatio-temporal diagram of spanwise perturbation velocity for case G with β = 0.4, along a curve
parallel to the wavy wall that passes through the location of ubd,min . The dashed black lines show the location
of the separation and reattachment point, and the red dashed line shows the location of peak negative base flow
distortion. Note that the perturbations are calculated based on the saturated flow u3D .

6. Transition scenarios
In this section, transition to turbulence is investigated for two representative cases: case G
with β = 0.4 (Lz = 2π/0.4) considered in the previous section and that presents a single
three-dimensional unstable eigenmode, and case E with β = 0.6 (Lz = 2π/0.6), where the
base flow is globally unstable with respect to both two- and three-dimensional instabilities.
Note that, β = 0.6 corresponds to the spanwise wavenumber of the most unstable mode
for case E (figure 10).

6.1. Case G, β = 0.4
The simulation shown in figure 13 is continued without applying SFD after the appearance
of self-excited oscillations at t ′ ≈ 9000. Note that the oscillations start to appear before the
primary instability fully saturates and the peak negative base flow distortion (u′

bd,min ≈
0.27) is slightly lower than its value at the fully saturated state that is used to perform
the secondary stability analysis in § 5, namely u′

bd,min ≈ 0.29. Figure 23 shows the x−t
diagram for spanwise perturbation velocities for a line (x ∈ [275, 485]) parallel and close to
the wavy wall in the streamwise plane that passes through the location of the peak negative
base flow distortion corresponding to the saturated state. The perturbation velocity here
is calculated using the saturated flow u3D as reference, not the two-dimensional initial
base flow u0. The spatio-temporal diagram shows two specific features of this flow.
First, after the appearance of oscillations at t ′ ≈ 9000, breakdown to turbulence happens,
starting around x ≈ 378. However, the flow undergoes a relaminarisation after that.
This turbulent burst-relaminarisation cycle repeats itself subsequently, with an angular
repetition frequency ω ≈ 0.0048 − 0.0057, estimated from figure 23. Second, after each
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Figure 24. Top panel: the time evolution of the perturbation kinetic energy (calculated with respect to the
saturated u3D) for case G with β = 0.4. The inset zooms in on region ‘S’ corresponding to 11 950 < t ′ < 12 150.
Bottom panel: maximum y coordinate of the dividing streamline in the streamwise plane with peak negative
base flow distortion. The horizontal dashed line indicates the maximum y coordinate of the dividing streamline
in the saturated state. The shaded areas indicate the P, S and T temporal phases for the second turbulent burst.

turbulent burst, spanwise perturbations travel upstream within the bubble. In the following,
each of these observations will be explained in detail.

6.1.1. Turbulent burst-relaminarisation cycle
The top panel in figure 24 shows the kinetic energy of the perturbations integrated in
the domain for 280 < x < 490 (normalised by the energy at t ′ = 4000). The bottom panel
shows the maximum y coordinate of the dividing streamline of the bubble in the spanwise
plane with peak negative base flow distortion, which is an indicator of the instantaneous
height of the bubble. Starting from t ′ = 4000, the height of the bubble increases slowly
until t ′ ≈ 4900, when the nonlinear interactions become relevant and induce a strong
spanwise modulation of the bubble, as explained in § 4.2.2. Then, the height of the bubble
keeps increasing, which results in a strong peak negative base flow distortion and triggers
a self-excited secondary instability. Soon after the appearance of oscillations (figure 13),
for 9300 < t ′ < 9600, the secondary instabilities grow exponentially in the domain that
cause the rapid increase of perturbation kinetic energy. Once the flow oscillations arising
from the secondary instability reach nonlinear amplitudes, for 9600 < t ′ < 10 000, a rapid
transition to turbulence happens (which is also observable in figure 23). During this lapse
of time, the vortical structures formed inside the bubble pull the fluid out of the bubble and
cause the height of the bubble to decrease rapidly. Eventually, at t ′ ≈ 10 000, the vortical
structures leave the bubble and are advected downstream until they exit the computational
domain. This is also visible in figure 23 where, at t ′ ≈ 10 000, the leading edge of the
spanwise perturbations is leaving the domain, causing a rapid decrease in perturbation
energy. As a result, the bubble relaminarises and shrinks until it reaches an intermediate
state with a minimum height (t ′ = 10 200). Following from this initial turbulent burst, a
cycle of spanwise deformation, secondary instability and turbulent burst is repeated in a
quasi-periodic manner for the rest of the simulation.
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t ′ = 11 954 t ′ = 11 990 t ′ = 12 014

t ′ = 12 050 t ′ = 12 074 t ′ = 12 110

Figure 25. Instantaneous λ2 visualizations (coloured by streamwise velocity) of the vortical structures in the
flow for case G with β = 0.4. The red (positive) and blue (negative) isosurfaces show the spatial structure of
the second unstable global mode as shown in figure 21. The energy growth shown in the inset of figure 24
corresponds to the time interval shown in this figure. Note that different values of λ2 are used in the different
plots for better visualization.

The shaded areas in figure 24 show three time lapses named P, S and T, which denote the
main phases of the subsequent turbulent bursts. The regions are associated with primary
(P) and secondary (S) instabilities, and the transition (T) region. After the first turbulent
burst leaves the region adjacent to the wall waviness, the bubble reaches an intermediate
state, at t ′ ≈ 10 200, between its initial two-dimensional state and the saturated state where
no secondary instability is active anymore; however, the primary instability is still globally
unstable and drives the flow towards its saturated state again. This is clear from region P
in figure 24, where the kinetic energy growth rate changes and the bubble height starts to
increase until it reaches its maximum again. After that, in phase S, the negative base flow
distortion is strong enough to trigger the secondary instabilities and the ensuing turbulent
burst reoccurs in phase T.

Recently, in an experiment of a pressure-gradient-induced LSB on a flat plate (Aniffa &
Mandal 2023), a similar phenomenon was reported: a low-frequency oscillation of the
shear layer and vertical motion of the inflection points that is accompanied by an
intermittent vortex shedding where the bubble alternates between a non-vortex-shedding
state and a shedding state. Here, it is also observed at t ′ ≈ 8400 that the external
streamwise inflection point crosses below the dividing streamsurface of the recirculation
bubble. However, no sign of oscillations was observed until t ′ ≈ 9000, when the height
of the bubble gets close to its maximum and the peak negative base flow distortion
becomes strong enough to trigger the secondary instabilities. This is in agreement with the
necessary condition for absolute instability of inflectional instability proposed by Avanci
et al. (2019) and its three-dimensional analog seen in Rodríguez et al. (2021a).

Figure 25 shows the vortical structures using λ2 visualizations (Jeong & Hussain 1995)
coloured by streamwise velocity for six different time instants during 11 954 < t ′ < 12 110,
corresponding to phase S before the third peak of disturbance energy in figure 24. The u
component of the second unstable secondary instability (same as figure 21) is also shown.
The inset in the top panel of figure 24 shows the growth of the disturbance energy for the
same time span. Figures 24 and 25 show that, after the appearance of oscillations, a train
of hairpin vortices starts to develop as a nonlinear consequence of the global eigenmode.
The train of hairpin vortices here is similar to that reported downstream of a cylindrical
roughness element by Loiseau et al. (2014), where the authors concluded that a varicose
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unstable global mode contributes to nonlinear generation of the hairpin vortices. From
t ′ ≈ 12 014 the disturbance energy increases exponentially until saturation, which occurs
at t ′ ≈ 12 110 due to nonlinear interactions. The growth rate of the secondary instabilities
estimated by using the disturbance energy from DNS for 12 014 < t ′ < 12 074 (the slope
of the red dashed line in the inset of figure 24) is σDN S ≈ 0.0161, which is slightly lower
than the value σ = 0.0198 found using global stability analysis. The growth of secondary
instabilities is also calculated for all other S phases, which are found to be in the range
σDN S = 0.014 − 0.016. The early presence of hairpin vortices, even at t ′ = 11 954, shows
the importance of nonlinear effects as soon as self-excited secondary instabilities are
triggered. This can contribute to the lower growth rates approximated from DNS compared
with those calculated from global stability analysis. Moreover, oscillations appear at a peak
negative base flow distortion that is slightly lower than its value at the fully saturated state
found with SFD. Also, as the bottom panel in figure 24 shows, the state of the bubble at
the end of each different P phase is different: for each S phase, secondary instabilities are
triggered for different values of peak negative base flow distortion, which might explain
the range of growth rates found from DNS.

To assure the quality of the results, simulations have been performed for a finer and
bigger domain, which the corresponding results are given in Appendix A.3.

6.1.2. Upstream propagation of perturbations
In figure 23 it was shown that after the occurrence of a turbulent burst, spanwise
perturbations propagate upstream within the bubble. The fastest speed of upstream
propagation of perturbations is estimated from the x−t diagram to be in the range
[−0.051, −0.048]; however, as they get closer to the separation point, their propagation
speed decreases. Figure 26 shows the spanwise velocity perturbations (with respect to
the saturated flow u3D) in the spanwise plane with peak negative base flow distortion
(ubd,max ) while figure 27 shows the same flow quantity for a plane parallel to the wall
that contains ubd,max . The panels in the first column show the instantaneous perturbation
field for three time instances before (top panel) and during (middle panel) the first burst,
and slightly after the leading edge of perturbations has left the bubble (bottom panel).
The panels in the right column show the same thing but for the second turbulent burst
(10 625 < t ′ < 11 550).

The first panel, at t ′ = 9401, shows the evolution of self-excited secondary instabilities
while still they are growing exponentially (figure 24). At this time instance the bubble
height is close to its maximum. The shape of the perturbations is the same as the
global eigenmode obtained by the secondary instability analysis. Note that since the u
component is global mode being symmetric (figure 20), the spanwise component must
be antisymmetric, which is visible in figure 27 at t ′ = 9401. Shortly after the secondary
instability saturates and nonlinear interactions become more intense, the disturbance
energy reaches a saturated state and a turbulent burst is formed in the aft part of the
recirculation bubble, as can be seen in the second panel at t ′ = 9665. Close to the
reattachment point (x ≈ 370), spanwise perturbations start to create a boomerang-shape
structure, which becomes more evident as the leading edge of the perturbation leaves
the bubble and the height of the bubble is close to its minimum. The boomerang-like
structures then start to propagate upstream within the bubble (third panel at t ′ = 10 025).
Note that after the boomerang-shape structures are formed in the flow, the symmetry of the
flow structure is broken as can be seen in figure 27 at t ′ = 10 025. Afterwards, the bubble
relaminarises and gradually expands in the wall-normal direction (phase P in figure 24),
while the spanwise perturbations that emerged from the vicinity of reattachment in the
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Figure 26. Spanwise perturbation velocity for six different times plotted at the spanwise plane with peak
negative base flow distortion. The red dashed line shows the location of instantaneous dividing streamline. The
colour bar is saturated to visualise the flow structures. The figure is not drawn to scale.
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Figure 27. Spanwise perturbation velocity for six different times plotted for a plane parallel to the wall
that passes through the peak negative base flow distortion. The colour bar is saturated to visualise the flow
structures. The figure is not drawn to scale.

previous turbulent burst keep propagating upstream in the bubble. Eventually, self-excited
oscillations reappear as can be seen in the first panel of the right column at t ′ = 10 625.
The formation of the boomerang-like spanwise perturbations is visible from the second
panel of the right column at t ′ = 10 949. Since the propagation speed of the perturbations
decreases as they get closer to the separation point, the new perturbations originated in the
second turbulent burst reach and interact with those from the first burst and create more
complex structures, as can be seen from the third panel at t ′ = 11 549. The same cycle is
repeated for later times as shown by figure 23.

The upstream-propagating boomerang-like structures resemble a family of stable, low-
frequency eigenmodes recovered by the global stability analyses. Figure 28(a–c) show
the spanwise velocity component of three global eigenmodes of the saturated flow u3D ,
marked by Ms1, Ms2 and Ms3 in the part of the spectrum shown in panel (e). Panel (d)
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Figure 28. (a–c) Spanwise velocity component (real part) of global eigenmodes labelled by Ms1, Ms2 and
Ms3 in panel (e), at the spanwise plane with peak negative base flow distortion. (d) Three-dimensional view
of the spanwise velocity field of the Ms3 mode. The red and blue colours show positive and negative values,
respectively. (e) Eigenspectrum corresponding to global stability analysis of the saturated flow u3D (same as
the inset in figure 19). Panels (a-c) are not drawn to scale.

shows the three-dimensional shape of the Ms3 mode. The structures are very similar to the
shape of the perturbations shown in figures 26 and 27, although the streamwise wavelength
observed in the DNS is not the same as the wavelength of the individual eigenmodes shown
in figure 28.

The same family of eigenmodes is found in the global stability analysis of the two-
dimensional base flow u0 (figure 36). However, the shape of the eigenmodes in the
spanwise direction is modified on account of the absence of the spanwise distortion that
defines the saturated flow. An adjoint sensitivity analysis (analogous to that by Giannetti &
Luchini 2007) has been done for the same family of eigenmodes corresponding to the two-
dimensional base flow; the region slightly upstream of the reattachment point, located
in the vicinity of the peak negative base flow distortion was found to be the most
sensitive region. It should be noted that the adjoint sensitivity analysis is not done for the
saturated state due to its very high computational cost. However, since the low-frequency
eigenmodes for both two-dimensional and saturated flows share many similarities, it is
conjectured that the sensitivity characteristics of them are also similar.
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Figure 29. Maximum y coordinate of dividing streamline in the streamwise plane with peak negative base
flow distortion (left panel). Spatio-temporal diagram for the u component of perturbation velocity for case
E, β = 0.6, for a line parallel to and with distance �y ≈ 1.45 from the wall at the same plane (right panel).
Perturbations are calculated based on the two-dimensional base flow.

These observations suggest that the upstream-propagating spanwise perturbations are
associated with the low-frequency stable eigenmodes, which get excited through the
interactions with the self-excited secondary instabilities upstream of the reattachment
point. For further analysis, a three-dimensional resolvent analysis could be done, but this is
out of the scope of the present study. After their nonlinear excitation, these eigenmodes can
describe a non-modal behaviour or interact nonlinearly, explaining why the wavelength of
the perturbations from DNS is not constant and does not match the individual wavelength
of the global stability eigenmodes.

6.2. Case E, β = 0.6
The global stability analyses presented in § 4 show that the two-dimensional base flow for
case E sustains both two-dimensional oscillatory and three-dimensional steady unstable
eigenmodes. Nonlinear DNS simulations with β = 0.6 (Lz = 2π/0.6) are performed to
investigate the interactions between the unstable modes and their subsequent evolution.
Details of the DNS domain size and grid are given in Appendix A.3.

Figure 29 shows the x–t diagram for streamwise perturbation velocity (calculated with
respect to the initial two-dimensional base flow u0) at the spanwise plane with peak
negative base flow distortion, for a plane parallel to the wavy wall and separated by
a distance �y ≈ 1.45 from it. An initial transient has been eliminated from the figure.
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Figure 30. Instantaneous λ2 visualizations of the vortical structures in the flow (green isosurfaces) at t ′ = 2570.
The blue and red colour show the negative (u′ = −0.05) and positive (u′ = 0.03) isosurfaces of streamwise
perturbation velocity inside the bubble. The horizontal plane shows the streamwise perturbation velocity
for a plane at y = 0.2. The figure is shown only for a reduced part of the domain (300 < x < 485). For
λ2 visualizations, for x < 435, isosurfaces of λ2 = −0.0006 and for x > 435, isosurfaces corresponding to
λ2 = −0.005 are plotted. Two spanwise periods of the simulation domain are shown.

Self-excited vortex shedding, as predicted by global stability analysis (§ 4), develops
spontaneously and is identified by the dark blue spots in the figure.

The growth of three-dimensional instability can be inferred from t ′ ≈ 2000 onwards,
when the negative base flow distortion increases upstream of the reattachment point. As
shown in § 4.2, nonlinear interactions originated by the growth of the spread mode give rise
to a spanwise modulation of the bubble. Thus, the total streamwise velocity decreases in
the spanwise locations where the base flow distortion inside the bubble is negative, which
simultaneously increases the y coordinate of the dividing streamline of the bubble. As a
result of the nonlinear distortion of the underlying base flow, the self-excited oscillations
originating from the initially two-dimensional unstable eigenmodes experience a spanwise
shear and different advection speeds at different spanwise locations. This leads to the
formation of Λ vortices with a spanwise wavelength equal to the fundamental spanwise
wavelength of the dominant three-dimensional global mode, where the legs of the vortex
lie at the spanwise planes with peak negative perturbation inside the bubble. The Λ

vortices turn into hairpin vortices as they travel downstream and their breakdown triggers
a rapid transition to turbulence. The formation of these vortices is shown in figure 30.

6.2.1. Unsteady flow characteristics
To analyse the complex three-dimensional vortex shedding and ensuing laminar–turbulent
transition, spectral proper orthogonal decomposition (SPOD) is used (Schmidt &
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Figure 31. Leading SPOD mode energy in the domain. The red dashed line represents the sum of the energy
of all SPOD modes for each frequency.

Colonius 2020). The cross-spectral density employed is based on the kinetic energy. Here,
the data from t ′ ≈ 2400 to the end of the simulation (figure 29), which consist of 11 500
three-dimensional snapshots, are divided into blocks of 1150 snapshots with 50 % overlap
(19 blocks in total). This leads to a frequency-domain discretization with �ω = 0.0091 and
Nyquist frequency ωmax = 5.23. Figure 31 shows the SPOD energy of the leading mode
(the black solid line), while the red dashed line in the figure shows the sum of the energy
of all SPOD modes for each frequency.

The SPOD spectrum presents several clear peaks. Vertical solid lines denote specific low
and high frequencies, while dashed lines represent higher harmonics of each frequency
indicated by the same colour. Starting from high-frequency peaks, the black solid lines
specify two frequencies named ωKH1,0 = 0.1278 and ωKH2,0 = 0.1661 that are very close
to the frequency of two unstable two-dimensional global modes for case E (ωKH1,L ST =
0.1280 and ωKH2,L ST = 0.1650), as shown in figure 8. Note the higher peak for ωKH1,0
than for ωKH2,0 that is in agreement with the higher growth rate of ωKH1,L ST compared
with ωKH2,L ST , as figure 8 shows. The black dashed line specifies the first harmonic
(ωKH1,1) of ωKH1,0. The frequency peak at ω = 0.0894 is also very close to the frequency
of a globally stable mode with ω = 0.0882 in the eigenmode spectrum shown in figure 8.
Figure 32 shows the real part of the leading SPOD mode at ω = 0.1278 for two spanwise
periods and for x < 485. This mode consists of spanwise-modulated rollers appearing just
downstream of the reattachment point and extending further downstream. Its spatial shape
resembles the hairpin vortices from figure 30, where the heads of the hairpin vortices
are again visible at z ≈ ±5 and z ≈ 15. Moreover, the SPOD mode exhibits other sets
of hairpin-like structures that appear farther downstream (from x ≈ 470) and present a
different spanwise phase compared with the fundamental vortices: i.e. their heads are in
the spanwise plane with peak negative base flow distortion inside the bubble (z ≈ 0). These
secondary hairpin vortices are also observed in DNS and can be seen in the magnified view
shown in figure 30. Note that the SPOD mode corresponds to ωKH2,0 = 0.1661 (not shown
here) is very similar to the one for ωKH1,0 = 0.1278.

The low-frequency oscillations, on the other hand, cannot be directly related to two-
dimensional self-excited mechanisms as there is no low-frequency unstable mode in
the global spectrum for this case. In the absence of external forcing, as is the case
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Figure 32. Real part of the u component of the leading SPOD mode for ω = 0.1278. Red and blue colours
correspond to u′ = ±0.0015 and u′ = −0.0015, respectively. Two spanwise periods of the simulation are shown
for visualization.

here, they must be due either to interactions between high-frequency oscillations or to
the nonlinearities resulting from the growth of three-dimensional instabilities and base
flow distortion. The blue solid line specifies a low-frequency peak with ω = 0.0383.
Interestingly, this frequency is equal to the difference between the frequency of ωKH1,0
and ωKH2,0, i.e. the beating frequency due to the interaction of ωKH1,0 and ωKH2,0. The
first harmonic of this frequency is also specified by the blue dashed line in the figure. The
high energy content in the very low-frequency range (ω < 0.03) suggests that there might
still be low-frequency dynamics in the SPOD spectrum that requires much longer time
series to be resolved. The low-frequency, high energy content in the separation bubbles
is attributed to the so-called breathing or flapping of the bubble (Zaman et al. 1989;
Sigurdson 1995), i.e. a quasi-periodic vertical movement of the separated shear layer from
the wall. This very low-frequency vertical movement of the bubble is shown in the left
panel of figure 29. Furthermore, when the height of the bubble increases, a strong vortex
is shed from the bubble that results in the formation of a Λ vortex (with head located
at z ≈ 0) just downstream of the reattachment point. This corresponds to the dark blue
spots downstream of the reattachment point coincident with the increase of the bubble
height (marked by horizontal solid lines in figure 29). Figure 33 shows λ2 visualization of
the vortical structures at t ′ = 6000. The hairpin vortices downstream of the reattachment
point are highlighted in the magnified view of the figure.
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Figure 33. Instantaneous λ2 visualizations of the vortical structures in the flow (green isosurfaces) at t ′ = 6000.
The blue and red colours show the negative (u′ = −0.05) and positive (u′ = 0.055) isosurfaces of streamwise
perturbation velocity inside the bubble. The horizontal plane shows the streamwise perturbation velocity for a
plane at y = 0.2. The figure is shown only for a part of the domain (300 < x < 485). For λ2 visualizations, for
x < 435, isosurfaces corresponding to λ2 = −0.002 are plotted and, for x > 435, isosurfaces corresponding to
λ2 = −0.08 are plotted. Note that two spanwise periods of the simulation are shown for visualization.

7. Conclusions
This study investigates the stability characteristics and transition to turbulence of a series
of wall-waviness-induced LSBs in the absence of incoming disturbances or external
forcing. Considering steady spanwise-homogeneous (two-dimensional) solutions of the
governing equations, an empirical relation is determined between the waviness height and
wavelength and the Reynolds number based on the local thickness of the boundary layer
that delimits the occurrence of flow separation. Using this relation, a set of base LSBs
with different lengths and reverse flow intensities are constructed. Their two- and three-
dimensional instability characteristics and subsequent self-excited transition scenarios are
investigated in detail using linear stability theory and DNS.

A global eigenmode analysis shows that bubbles with a peak reversed flow of
approximately 10 % − 12 % of the free-stream velocity can become globally unstable
with respect to two-dimensional instabilities. This value is lower than the threshold of
16 % − 25 % proposed by some researchers for the onset of the absolute Kelvin–Helmholtz
instability (Hammond & Redekopp 1998; Alam & Sandham 2000; Rist & Maucher 2002;
Diwan 2009). Incidentally, these bubbles also do not satisfy the geometrical criterion
proposed by Avanci et al. (2019), as their local inflection point is always located above
the dividing streamline. These observations suggest that they are rather originated by
non-parallel or elliptic effects, even if their spatial structure contains Kelvin–Helmholtz
disturbances.

The three-dimensional instability analysis of the spanwise-homogeneous base flows
recovers, for all cases analysed, the self-excited three-dimensional eigenmode typically
found in pressure-induced flat-plate LSBs (Theofilis et al. 2000; Cherubini et al. 2010;
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Rodríguez & Theofilis 2010; Rodríguez et al. 2013). This eigenmode is active almost in
the whole bubble and is thus referred to as the ‘spread mode’ here. This mode corresponds
to a centrifugal instability and is caused by changes in the curvature of the recirculating
streamlines (Bayly 1988; Gallaire et al. 2007). By analysing the recirculating streamlines
for the different base flows in this work, additional changes in the streamline curvature
are found for some wall-waviness geometries. For these base flows, an additional three-
dimensional, zero-frequency eigenmode is consistently found, coexisting with the ‘spread’
mode and with higher growth rates. This mode is localised in the vicinity of the region
where the streamlines attain their peak curvature, and vanishes along the separated shear
layer. The spatial structure of this ‘localised mode’ also relates it to centrifugal instability.

Analysing the spatial structures of these eigenmodes illustrates more fundamental
differences. At a streamwise plane, the real part of the u-velocity component
corresponding to the localised mode changes sign inside the recirculation bubble. The
effect of this on the nonlinear saturation of the instability is investigated using DNS. It is
shown that this property stabilises the structural shape of the bubble near the reattachment
point by prohibiting reverse flow to get intensified in that region. In the case of coexistence
of the localised and spread modes (case A, β = 0.7), although the initially spanwise-
homogeneous bubble gets strongly modulated and becomes fully three dimensional, no
sign of self-excited secondary instability was observed. On the other hand, in the case
of the presence of the spread mode alone (case G, β = 0.4), the rear part of the bubble
expands. As a result, the inflection point present in the separated shear layer crosses the
dividing streamline of the bubble (i.e. enters inside the recirculation region) that triggers
self-excited secondary instabilities and transition, in agreement with Rodríguez et al.
(2021a).

For the latter case (case G, β = 0.4), the saturated base flow is obtained using SFD
and a three-dimensional stability analysis on the saturated base flow, i.e. a secondary
global stability analysis, is performed. The results show two unstable modes with close
frequencies and very high growth rates, and a family of low-frequency stable modes.
The structure of the unstable modes resembles finite-span (symmetric) Kelvin–Helmholtz
instabilities, which are rooted from the region with peak negative base flow distortion
inside the bubble. A linear impulse response analysis consistent with the secondary
stability analysis is performed, showing a continuous shedding from the rear part of the
bubble with structures similar to the global modes.

Nonlinear simulations are then performed to study the ensuing transition scenarios
for two selected cases. In the first case (case G, β = 0.4), the two-dimensional base
bubble is unstable with respect to one (spread) three-dimensional global mode. After
the initial transient, a quasi-periodic turbulent burst cycle is identified. Analysing the
temporal evolution of the kinetic energy of perturbations in the domain reveals that this
quasi-periodic burst cycles consists of three mechanisms corresponding to (i) spanwise
distortion (three-dimensionalisation) of the bubble due to primary instability, (ii) a sudden
increase in energy of the domain due to explosive growth of secondary instabilities, and
(iii) formation of a turbulent burst that pulls recirculating fluid downstream, transiently
reducing the size of the separation bubble. After the occurrence of each turbulent burst,
upstream-propagating disturbances inside the bubble are identified. It is conjectured that
these perturbations are associated with the low-frequency stable eigenmodes (found in
the spectrum of the system obtained by secondary stability analysis) that get excited
through the interactions of self-excited secondary instabilities. In the second case (case E,
β = 0.7), the two-dimensional bubble is unstable with respect to both localised and
spread three-dimensional modes and also two-dimensional modes representing self-
sustained Kelvin-Helmholtz waves. The nonlinear interaction of two-dimensional waves
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and steady three-dimensional instability results in the formation of Λ vortices with a
spanwise wavelength equal to the fundamental spanwise wavelength of the dominant
three-dimensional global mode. The Λ vortices evolve into hairpin vortices as they travel
downstream and their breakdown leads to a rapid transition to turbulence.

This work shows that relatively mild surface waviness suffices to induce flow separation
and the formation of recirculation bubbles, and that such recirculation bubbles are
inherently unstable to self-excited three-dimensional instabilities of a centrifugal nature.
The spanwise deformation of the recirculation induced by the instability favours self-
excited secondary instabilities in the form of short-span Kelvin-Helmholtz waves.
This sequence of instabilities triggers laminar–turbulent transition in the absence of
external disturbances. Two different fully nonlinear transition scenarios are described
here; other scenarios may also appear owing to minute differences in the nonlinear
interactions. Transition scenarios originating from a self-excited instability are usually
robust and can prevail even if external disturbances are present. However, the possible
interactions between the instabilities discussed herein and external disturbances, like
Tollmien–Schlichting waves or streaks arising from the receptivity to FST, should
be addressed in future works. Depending on the FST intensity and boundary layer
receptivity mechanisms associated with the plate leading edge or surface roughness,
the amplitude and characteristics of incoming disturbances can widely vary, altering the
scenarios discussed here. The possibilities span from constructive interactions with the
self-excited instabilities (Rodríguez & Gennaro 2019; Rodríguez et al. 2021b), to the
formation of strongly coherent two-dimensional vortex rolls (Embacher & Fasel 2014),
to highly complex scenarios in which distinguishing between self-excited and convective
instabilities becomes difficult (Hosseinverdi & Fasel 2019), and even to the suppression of
laminar separation (Xu & Wu 2021).
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Appendix A. Technical details of numerical simulations and grid convergence
In this appendix, technical aspects of numerical simulations, such as the effect of grid and
domain size on the solutions of eigenvalue problems and DNS presented through the paper
will be discussed.

A.1 Two-dimensional eigenvalue problem: planar (β = 0) two-dimensional instabilities
To obtain the results presented in § 4 (figure 8), different Krylov subspace sizes are used
for different cases, but typically a subspace of size 250–350 is chosen and the first 50–80
eigenvalues for each subspace size are considered converged, respectively. The results
presented in § 4 correspond to a domain size with height and length equal to 700 and 1400,
respectively. The convergence with spatial discretisation is also checked by increasing
the polynomial order from 7 to 9, which recovers no significant changes in the growth
rates or frequency of the unstable modes. The two-dimensional modes being planar are
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Figure 34. Eigenvalue spectrum for case E. Effect of the height of the domain on the growth of planar global
modes for a domain with length L = 1400 (a), and the effect of the length of the domain on the growth of
modes for a domain with height H = 700 (b).

very sensitive to the size of the domain (both length and height) and outlet boundary
condition treatment. In the following, the effects these factors on the obtained eigenvalues
are investigated.

A.1.1 Effect of height and length of the domain
Figure 34 shows the effect of height and length of the domain on the frequency and growth
rate of the two-dimensional global modes for case E. Panel (a) corresponds to a domain
with length L = 1400 and different heights, while panel (b) corresponds to a domain of
height H = 700 and different domain lengths. The figure shows that the height of the
domain affects the growth rate of both low- and high-frequency modes; choosing the small
height for the domain (H = 60, panel (a)) results in under-predicting the growth of high-
frequency modes. By increasing the height from 400 to 700, no significant changes in the
growth of the modes are observed. The length of the domain, on the other hand, mostly
affects the growth of low-frequency modes.

A.1.2 Effect of fringe layer at outlet on growth rate of two-dimensional low-frequency
modes

Figure 35 shows the effect of using a fringe region at the outlet on the growth rates of
the global modes. The fringe region acts as a forcing in momentum equations to smoothly
force the perturbations to vanish. The strength of the forcing starts to increase smoothly
from the last 30 units upstream of the outlet and has full strength for the last 15 units. Other
widths for the fringe with different maximum strengths have also been tested, leading to
the same results. The fringe region affects the low-frequency region significantly. This
may be because the low-frequency modes, as shown in figure 9, extend until the end of the
computational domain. If no fringe is used in linear simulations to damp these disturbances
at the outlet, the upstream contamination from the outlet makes them artificially unstable.
The high-frequency modes, on the other hand, have a localised nature and decay before
reaching the outlet of the simulation. Thus, they remain unaffected by the fringe region.
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Figure 35. Eigenvalue spectrum for case E with and without using fringe at the outlet boundary condition.
A domain with a height of 700 and a length of 1400 is used.
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Figure 36. Eigenvalues of the two-dimensional eigenvalue problem close to the origin (ω = 0) for case E,
β = 0.6. Red plus signs show the eigenvalues obtained using Nek5000. Note that the second unstable mode
obtained with Nek5000 corresponds to the first harmonic (β = 1.2) of the fundamental spanwise wavenumber.

A.2 Two-dimensional eigenvalue problem: three-dimensional (β 
= 0) instabilities
To validate the mapping and the accuracy of the method introduced in § 2.3, the unstable
region of the spectrum for case E (β = 0.6) is cross-validated through a time-stepping
approach using Nek5000. The differences between the growth of the unstable eigenvalues
obtained with these two different methods is found to be negligible (figure 36). The
second most unstable mode obtained with Nek5000, which is absent in the solution of the
two-dimensional eigenvalue problem, corresponds to the first harmonic (β = 1.2) of the
fundamental spanwise wavenumber. The same growth rate as the growth rate calculated
with Nek5000 is obtained in the solution of the two-dimensional eigenvalue problem for
β = 1.2.

To obtain the results presented in § 4.2, different domain sizes were tested, showing
that a substantially smaller domain suffices to achieve convergence for three-dimensional
instabilities, compared with the requirements of the convergence of two-dimensional
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Case Lz β Nx Ny Nz L H

G 15.708 0.4 405 36 12 560 50
A 5.236 1.2 544 43 8 675 60
A 8.976 0.7 544 43 12 675 60
E 10.472 0.6 705 46 12 788 400

Table 5. Simulation parameters for nonlinear simulations. Here Nx , Ny and Nz are the number of spectral
elements in the x , y and z direction, respectively. Note that each element consists of eight GLL points (seventh-
order polynomial). Here L is the length, H is the height and Lz is the spanwise size of the simulation domain.

10–4

0 1000 2000 3000 4000 5000

t – t0
6000 7000 8000 9000

Case G, β = 0.4

10 000

10–2

100

‖u
′ ‖ ∞

Figure 37. Time evolution of peak of the absolute value of streamwise perturbation (‖u′‖∞) for reference
(solid line) and coarse (blue circles) grids. Different domain sizes are used for each simulation.

eigenmodes. The results shown in § 4.2 correspond to a domain with height and length 50
and 500, respectively, although the same results are obtained with a smaller domain size.
A grid study has also been done, and 3000 uniformly spaced discretisation points in the x
direction and 200 points in the y direction with an appropriate clustering at the wall are
used to compute the spectrum for different cases, although converged results were obtained
with coarser grids. Note that the domain used in the DNS simulations for the laminar–
turbulent transition is larger than the domain that is required to get the convergence of the
eigenvalue problem.

A.3 DNS for nonlinear saturation and transition to turbulence
The domain size and spatial resolution used for different cases for nonlinear simulations
are summarised in table 5. For all nonlinear simulations, the PN − PN−2 formulation in
Nek5000, with a polynomial order equal to 7 (P7) is used, except otherwise stated. The
height and length of the domain for simulations of case A are 60 and 675, respectively.
For case G, the height and the length are reduced to 50 and 560, respectively. To assure
the accuracy of the results with respect to the size of the domain and spatial resolution,
simulations corresponding to the results given in § 4.2.1 are repeated with different grid
and domain sizes: for case G, the height and length of the domain are increased to 75
and 960, respectively, and a lower polynomial order (P5) is used. Figure 37 compares
the temporal evolution of the peak perturbation velocity in the domain for this grid (blue
circles) and the reference grid (solid line) until the appearance of oscillations in the domain
due to self-excited secondary instabilities.

To check the convergence of the results for case A with β = 1.2, the length and height
of the domain are increased to 750 and 120, respectively, and a lower polynomial order
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(P5) is used. For this simulation, the peak perturbation velocity (u′) at the saturated state
differs by only 0.1 % from that for the reference grid. Using a lower polynomial order (P5)

for case A with β = 0.7 changed the peak perturbation velocity at the saturated state by
only 0.5 %, which shows the accuracy of the results.

To check the independency of the results presented in § 6.1.1 (case G, β = 0.4) with
respect to domain size and grid resolution, the length of the domain was extended from
560 to 675 and the height was increased from 50 to 60. Furthermore, the resolution in all
directions was increased by ≈ 20 %, which almost doubles the number of total elements
in the domain compared with the reference grid. Note that the grid spacing in the x and y
direction are not uniform, and a finer grid resolution is used in the vicinity and downstream
of the bubble. The simulation for the finer grid is restarted from the two-dimensional
base flow and is continued until four complete turbulent bursts happen (see § 6.1.1). Since
obtaining the saturated base flow for the finer grid is very expensive, the growth rate of
the secondary instabilities for four different S phases is approximated using the kinetic
energy of perturbations with respect to the initial two-dimensional base flow, and is found
to be in the range [0.0132, 0.0148]. The growth rates estimated in the same manner for the
simulation using the reference grid are in the range [0.0131, 0.0151]. The close agreement
between the growth rates assure that the reference grid is sufficient to capture the dynamics
accurately. To further check the dependency of the results to grid and domain size, the time
between subsequent turbulent bursts was also calculated for two grids, being [1106, 1313]
and [1073, 1378] for reference and finer grids, respectively.

As shown in Appendix A.1, the growth of the two-dimensional global mode is very
sensitive to the size of the domain. Thus, for simulations corresponding to § 6.2 (case
E, β = 0.6), the height and length of the domain are chosen as H = 400 and L = 788,
respectively, to capture the two unstable two-dimensional global modes as shown in
§ 4. The number of spectral elements used for this simulation in each direction is
(Nx , Ny, Nz) = (705, 46, 12), which results in 524520 (P7) total elements (≈ 269 million
grid points).

Appendix B. Construction of perturbation field for impulse response analysis
The localised initial perturbation field used in § 5.2 is by imposing an analytic v velocity
field as follows. First, the impulse field (I F) in each Cartesian direction is defined as

I Fi (Xi ) = exp

(
−0.5

(
Xi − x0,i

δxi

)2
)

· exp
(

i2π

λxi

xi

)
, (B1)

where i = (1, 2, 3), (x1, x2, x3) = (x, y, z) and Xi is the vector of grid coordinates. The
parameters δxi and λxi control the width and wavelength of the perturbations centred at
x0,i , respectively. The perturbation field is then taken as

I F = ε · Re[I F1 · I F2 · (I F3,p + I F3,n)], (B2)

where ε is a small amplitude. The same δx3 and x0,3 is used for I F3,p and I F3,n; however,
positive and negative λx3 (with the same magnitude) are used for I F3,p and I F3,n ,
respectively. The resulting field is then projected onto a divergence free space and applied
as the initial condition.
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