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Abstract. We prove that the dynamical systems generated by first order partial
differential equations are K-flows and chaotic in the sense of Auslander & Yorke.

0. Introduction
The purpose of this paper is to apply a Brownian motion to the problem of the
existence of invariant measures for the dynamical systems generated by some first
order partial differential equations.

§ 1 contains basic notation and definitions. In § 2 we define a flow describing the
evolution of solutions of partial differential equations. In the last section we give a
construction of an invariant measure for such a flow. This measure is positive on
the open sets and non-trivial. The corresponding system is a X-flow and the flow
is chaotic in the sense of Auslander & Yorke [1]. These theorems generalize the
results of Lasota [5], [6], Brunovsky and Komornik [2], [3] and Dawidowicz [4].

1. Preliminaries
Let X be a topological Hausdorff space and let 5,: X -» X, t<= R, be a group of
transformations. We call the group {5,} a flow if the mapping

is continuous in (t, x). By a measure on X we mean any probabilistic measure fx
defined on the <r-algebra 9&(X) of Borel subsets of X. A measure /u. is called
non-trivial with respect to {S,}, if fi(P) = 0, where P denotes the set of all periodic
points of {5,}. Let X be a linear topological space, and let ft be a measure on X.
We will say that ju isa Gaussian measure if each continuous linear functional on
X has a Gaussian distribution.

Denote by C"(U, V) the space of n-times continuously differentiable functions
defined on U with values in V, where U and V are non-empty intervals. Assume
that C(U, V) is equipped with the topology of uniform convergence (with
derivatives of order < n) on compact subsets.

2. Flow
Consider the initial value problem

u, + a{x)ux = b(x, u) foT(t,x)eD,
(E)

M(0, X) = V(X) forxet/ , .
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438 R. Rudnicki 

In this section and throughout the paper we shall assume that a and b are given 
functions satisfying 

(1°) ae C r ( t 7 „ R ) f o r r > l ; 
(2°) a(x) * 0 for xeUi and a(x) = 0 for x e a 1/,; 
(3°) there are constants K and L such that 

| a ( x ) | < L + K | x | for x e l / , ; 

(4°) fc€Cr((/,xi/2,R), 
(5°) b(x, u) = 0 for (x, u) e 1/, x 5 t / 2 , 
(6°) there are continuous functions M ( x ) and N(x) such that 

|fc(x, w ) | < M ( x ) + 7V(x)|m| for(x, w)e UxxU2. 

Here C/j and U2 are open intervals (bounded or not) of the real line, D = R x t/,, 
Ut denotes the closure of Ui in R, and dl/, = ¿7, \ L/̂ . These conditions will not be 
repeated in the statements of the theorems. 

We denote by t t , s the unique solution of the equation 

x'(t) = a(x(t)) 

with the initial condition x(0) = s, s e {/,. By if/(t, s, p) we denote the solution of the 
equation 

y'(t) = b(Tr,s,y(t)) 

with the initial condition v(0) =p,pe Ut. From (l°)-(3°) it follows that i t is denned 
for all (t, j ) e R x [ / , and possesses rth-order continuous partial derivatives. For 
given x 0 g £/, the function t>^>irtx0 is a Cr-diffeomorphism of R onto From 
(l°)-(6°) it follows that ^ is a C r -mapping of R x t/, x U2 into U2. The functions i t 
and satisfy the following equalities 

irs+tx = irs(ir,x), (2.1)

tfi(s + t, x, v) = >l>(s, tt,x, i//(t, x, y)) (2.2

for each s, t e R, x e L/, and y e U2. Let u be a continuously differentiable function 
from [/, into l / 2 . Then there exists exactly one solution of (E), namely 

u(t, x) = i//(t, 7r_,x, i;(tt_ (x)). (2.3)

Let v be a continuous function from Ut into t/ 2 . Then u(t, x) given by the formula 
(2.3) will be called a generalized solution of (E). 

For an integer n, 0 < n < r, we set X = C ( t/,, C/2) and F = C ( R , R). We shall 
consider solutions of equation (E) as the trajectories of the flow { S , } , e R defined on 
X by the formula 

(S,v)(x) = u(t, x) = tl>(t, tt-.x, u(tt_,x)). (2.4)

We now define a mapping T:R x y -» Y by 

(T,v)(s) = v(s-t). 

It is clear that { T ( } ( e R is a flow on Y. 

THEOREM 1. There exists a homeomorphism Q of X onto Y such that Q°S,= T,°Q 

for each teU. 
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In order to prove this theorem we need the following lemma.

LEMMA 2.1. Let V,, V2, W^ and W2 be open intervals ofU. Assume thatf: I V , X V 2 ^

W2 and g: W,-• V, are C-maps, n >0. Then the map P: C ( V,, V2) -* C"( Wu W2)
defined by P(v)(x)=f(x, v(g(x))) is continuous.

The proof of this lemma is simple, so it is omitted.

Proof of theorem 1. Given a point xoe U,. The map t -» TT,X0 is a C-diffeomorphism
of R onto U\. Let h: L/,->R be the inverse of rrx0. Then /i is a C-diffeomorphism
of R onto t/j. Let p be a C-diffeomorphism of R onto U2. Define the maps Q:X^> Y
and N.Y^X by

pl(il>(-s, TTSX0, v(irsx0))) = p\(S-sv)(x0))

and

(NvKx) = ^(h(x),xo,p(v(h(x)))).

From lemma 2.1 the maps Q and TV are continuous. Using (2.1) and (2.2) it is easy
to verify that N°Q= Q°N = I. Thus Q is a homeomorphism of X onto Y. We
verify that Q°S,= T,°Q,

(QoSl)(v)(x)=p-i((S-xoS,v)(x0)) = (Qv)(x-t) = (T,oQ)(v){x).

COROLLARY 1. The set of all periodic points of {S,} is dense in X.

Remark 1. F r o m t h e d e f i n i t i o n o f Q i t f o l l o w s t h a t f o r e v e r y s e R w e h a v e
(Qv)(s) = (Qw)(s) iff v(ir,Xo) = W(TTSX0).

Examples. (1) Let b(x, u) =f(x) + g(x)u and U2 = U. Then Qv = v0 + Lv, where L
is a linear isomorphism from C(UUU) onto C"(R,R) and voe C(R,R).

(2) Leta(x) = x, b(x, u) = AM(I-M), C/! = R+and t/2 = (0,1). We take xo= 1 and
p(u) = e"/(l + eu). Then

= In v(es)-In[eAs -eAst;(es)].

3. Measure on the space C"(U, R)
Let w,, 0< r<oo be a Brownian motion defined on a probability space (fl, X, P).
We may assume that the sample functions of w, are continuous. Set £° = e~xwy*
for x e R. Then f ° is a stationary Gaussian Markov process with mean value El;°x = 0
and correlation function Eg°£°x+h = e~w. The sample functions of £° are continuous.
The process f° is not differentiable in the mean. From the law of the iterated
logarithm it follows that

limff = 0 (3.1)
|x|^co |X|

with probability 1. We assume that all sample functions of g°x satisfy (3.1). Denote
by H the closed linear subspace of L2(fi) spanned by all variables %x, xeR. The
joint distribution of the random functions d,..., £„ e H is Gaussian. Denote by
SFT the a--algebra of events generated by the process w, on the set T.
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Starting from the random process g° we can define, by induction, some new
process. Set for k a 0

es~xg ds. (3.2)

By (3.1) the integral (3.2) exists for every wefl and consequently the sample
functions of f" possess nth-order continuous derivatives. The integral (3.2) exists
also in the mean and consequently £" is a stationary Gaussian process. Write TJX = £".
Then for every ia e fi we have

£ r ) i | < t »=^ (3.3)

The process f" is not (n + l)-times differentiable in the mean.

L E M M A 3.1. Let r)x = f", n > 1. The joint distribution of (rjx, ri'x,..., T)x
n~l\ f°) is

non-degenerate for every x.

Proof. The distribution of {rfx, r)'x,..., £°) is Gaussian and it is independent of x
Assume that it is degenerate. Then for every x

aoVx~^~aiVx~l~' ' ' + On-iVx + an£x — 0 a.e. (3.4)

with at least one ak 5^0. Setp = max{fc: ak^0}. The process aor]x + a1'q'x + - • • + angx

is not (n + 1 -p)-times differentiable. This contradicts the equality (3.4).
Set Y = C(U, R) and -qx = £", n >0. Let S8( Y) be the o--algebra of Borel subsets

of Y. The o--algebra 3S( Y) is generated by the sets of the form {cp € Y: (<p(x),...,
(p(n\x)) e B}, where x e R and B is a Borel subset of Rn+1. Thus for every Ae^(Y)
we have {rjeAjei. We obtain a probability measure fi on 38(V) by setting
(i(A) = P(r) e A) for all A G S 8 ( F ) .

Now we shall investigate the properties of fi. The following known property of
Wiener measure will be used in the next lemma:

(3.5) If ip :[0, a]-»R is a continuous function and <p(0) = 0, then for every e > 0
we have

P(\w,-<p(t)\<e for te [0, a])> 0.

LEMMA 3.2. /x( U) > 0 for each non-empty open set U.

Proof. If n=0 , then the proof follows immediately from (3.5). We assume n > l .
We may assume, without loss of generality, that U is of the form

U = {<p e C"(R, R): |<p(lt)(*) - ^fc)(x)| < e for x £ [a, 6] and 0< fc < n},

where (poe C"(R, R), e > 0 and a, beU. According to the definition of fi we have
lx(U) = P{A), where

A = {« efl: \ilx
k) — <Pok\x)\ < e for xe[a, b] and 0< fc< «}.

Let i/»0 be a continuous function satisfying the following equation

Set a = e2a and /3 = e2b. By (3.3) and from the continuous dependence on the initial
values and the parameter it follows that there exists S > 0 such that As n Bs <= A,
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where the sets As and Bs are given by formulae

Aa={weCl:\r,ia
k>-9i

0
k)(a)\<8 forO< fc< n - 1 } ,

B5 = {<•> € ft: | w, - <po(t)\ <S forte [a, 0]}.

It is easy to verify that the random variables T?ik> are ^s a-measurable and, therefore,
^s £ ^s«- We also have Bs e ̂ Xa. By lemma 3.1 the joint distribution of (r)a,...,
V^^, £°a) is Gaussian and non-degenerate. Consequently the joint distribution of
(r)a,..., Tt{a~l\ wa) is also non-degenerate. Thus we have P(A\&=a)>0 almost
everywhere on Bs. According to (3.5) we have P(BS) > 0. From the Markov property
of Brownian motion it follows that

J
P(AsnBs)=\ P(As\&=a)dP>0,

which completes the proof.

LEMMA 3.3. The measure /x is invariant under {T,}.

Proof. The invariance of fi follows directly from the stationarity of the process ( TJX,

v'»-... vin))-
LEMMA 3.4. The flow {T,} on ( Y, 98 ( Y), fi) is a K-flow.

Proof. Let S80 be the smallest <r-algebra containing the sets of the form

A = W e C"(R, R): (<p(x),..., <P(n)(x)) e B}, (3.6)

where x < 0 and B is a Borel subset of R"+1. The cr-algebra T,38O is the smallest
a-algebra containing the sets of the form (3.6) with j < ( . Thus S5O

C ^ A for t > 0,
and 58(Y) is the smallest cr-algebra containing all the a-algebras r,S80 for teU. It
remains to verify that the o--algebra D,eR T,S80 contains only sets of measure zero
or one. Let A e f l , T,S80- Now we define E by E= {we ft: rj.(w) e A}. Then /x( A) =
P(E) and E ef~), stfsl, where si^t is the smallest <r-algebra generated by the random
variables t\x, x<t. Since s£sl <= &se*; this implies E e O,>0 S'sr Thus, according to
the Blumenthal's zero-or-one law, P{E) is one or zero. This completes the proof.

LEMMA 3.5. /A IS a Gaussian measure.

Proof. The map L defined by L(<p) = (<p(n), <p(0), ^ ' ( 0 ) , . . . . ^ " ' " (O) ) is a linear
isomorphism between C ( R , R) and C°(U, R) xR". From this, and by the Riesz
representation theorem every continuous linear functional defined on C"(R, R) is
of the form

where g is a function of bounded variation defined on some interval [a, b], and
{c 0 , . . . , cn_J is a sequence of real numbers. From the definition of /* it follows
that / has the same distribution as the random variable £ defined by

'b

~ia
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The random variable £ belongs to H, thus £ has a Gaussian distribution. This
completes the proof.

LEMMA 3.6. The measure ft is non-trivial.

Proof. We denote by P(t) the set of all periodic points of {T,} with period t
(P(0) denotes the set of all stationary points of {T,}). Let P(< t) be the set of all
periodic points with period s€(0, t]. Then P(t) and P( s f ) are closed invariant
subsets of Y. Suppose that fj.(P)>0, where P is the set of all periodic points of
{T,}. Then n(P(<t))>0 for some f>0. By ergodicity of {T,} it follows that
M(P(< r)) = l if ii(P(* 0 ) * 0 . Let to = inf{t>0:»(P(< t)) = l}. Then /i(P(lb)) =
1. We may assume, without loss of generality, that to>0. Let A be a Borel subset
of Y such that 0</J.(A)<1. Then the set AnP(t0) is invariant under Th and
0<fi(AnP(to))<l. This contradicts the total ergodicity of ft. •

We may summarize results of this section as follows.

THEOREM 2. For every n a 0 there exists a probability measure fi defined on the
o--algebra of Borel subsets ofC(U,U) satisfying the following conditions:

(a) /t is invariant under {T,};
(b) /x( U) > 0 /or eacfc non-empty open set U;
(c) {T(} isaK-flowon (C(U,R), «(C"(R,R)),/t);
(d) /A is non-trivial;
(e) /x is a Gaussian measure.

THEOREM 3. Let (X, S,) be the flow defined in §2. Then there exists a probability
measure m defined on 38(X) such that {X, 38(X), m, S,) satisfies the conditions
(a)-(d) of theorem 2. Moreover, ifb{x, u) is of the form b(x, u)=f(x) + g(x)u and
U2 = U, then m is a Gaussian measure.

Proof. According to theorem 1 there exists a homeomorphism Q between X and
C(R,R) such that Q°S, = T,°Q. Thus, we can define a measure m on 9&(X) by
m(A) = ft(Q(A)). The conditions (a), (b), (c) and (d) are a direct consequence of
theorem 2. If b(x, u)=f(x) + g(x)u and U2 = R, then Q is of the form Qv = Lv + v0,
where L is a linear isomorphism from X onto C(R, R). Thus, according to theorem
2(e), the measure m is Gaussian.

COROLLARY 2 (chaos). The flow {S,} satisfies the following two conditions:
(a) every point veX is unstable;
(b) there exists veX such that the trajectory of v is dense in X.

Remark 2. The construction of the measure m given in the proof of theorem 3
may be repeated as well replacing £ by & with arbitrary A > 0. It is interesting
that the measures mA, and mk2 corresponding to different A, and A2 are mutually
singular.
Remark 3. Let fx, xe Uu be the process given by the formula (.(<o) = Q~1i;?((o).
Then m(A) = P(£ e A) for each Borel subset A of X. From remark 1 it follows that
£„ xe ^ is a Markov process for n = 0.
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