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Abstract. We prove that the dynamical systems generated by first order partial
differential equations are K-flows and chaotic in the sense of Auslander & Yorke.

0. Introduction

The purpose of this paper is to apply a Brownian motion to the problem of the
existence of invariant measures for the dynamical systems generated by some first
order partial differential equations.

§ 1 contains basic notation and definitions. In § 2 we define a flow describing the
evolution of solutions of partial differential equations. In the last section we give a
construction of an invariant measure for such a flow. This measure is positive on
the open sets and non-trivial. The corresponding system is a K-flow and the flow
is chaotic in the sense of Auslander & Yorke [1]. These theorems generalize the
results of Lasota [5], [6], Brunovsky and Komornik [2], [3] and Dawidowicz [4].

1. Preliminaries
Let X be a topological Hausdorff space and let S,: X > X, te€R, be a group of
transformations. We call the group {S,} a flow if the mapping

RxXs(t,x)—»SxeX

is continuous in (¢, x). By a measure on X we mean any probabilistic measure u
defined on the o-algebra B(X) of Borel subsets of X. A measure u is called
non-trivial with respect to {S,}, if w(P)=0, where P denotes the set of all periodic
points of {S,}. Let X be a linear topological space, and let 1 be a measure on X.
We will say that u is a Gaussian measure if each continuous linear functional on
X has a Gaussian distribution. '

Denote by C"(U, V) the space of n-times continuously differentiable functions
defined on U with values in V, where U and V are non-empty intervals. Assume
that C"(U, V) is equipped with the topology of uniform convergence (with
derivatives of order = n) on compact subsets.

2. Flow
Consider the initial value problem

u,+a(x)u, = b(x, u) for (¢, x)e D, &)
u(0, x) = v(x) for x € U,.
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In this section and throughout the paper we shall assume that a and b are given
functions satisfying

(1°) ae C"(U,,R) for r=1;

(2°) a(x)#0 for xe U, and a(x)=0 for xegU;

(3°) there are constants K and L such that

la(x){= L+ K|x| forxe U;;

(4°) be C'(U, x Uy, R),

(5°) b(x,u)=0 for (x,u)e U, xaU,,

(6°) there are continuous functions M(x) and N(x) such that

|b(x, u)| = M(x)+ N(x)|u| for (x, u)e U; x U.,.

Here U, and U, are open intervals (bounded or not) of the real line, D=RxU,,
U, denotes the closure of U, in R, and aU, = U,\ U, These conditions will not be
repeated in the statements of the theorems.

We denote by 7,5 the unique solution of the equation

x'(t) = a(x(1))
with the initial condition x(0) = s, s € U,. By ¥(4, s, p) we denote the solution of the
equation
y'(t) =b(ms, y(1))

with the initial condition y(0) = p, p € U,. From (1°)-(3°) it follows that s is defined
for ali (1, s)eRx U, and possesses rth-order continuous partial derivatives. For
given xo€ U, the function t—> m,x, is a C'-diffeomorphism of R onto U,. From
(1°)-(6°) it follows that ¢ is a C'-mapping of R x U, X U, into U,. The functions
and ¢ satisfy the following equalities

Ts4tX = Ws(ﬂtx)a (2'1)
d’(s.i_t’ x’ J’)=l//(5, Trtxa ‘//(t,X,,V)) (2'2)
for each s, teR, xe U, and y e U,. Let v be a continuously differentiable function
from U, into U,. Then there exists exactly one solution of (E), namely
u(t, x) =y (t, m_.x, v(7-,x)). (2.3)
Let v be a continuous function from U, into U,. Then u(t, x) given by the formula
(2.3) will be called a generalized solution of (E).
For an integer n, 0=n=<r, we set X =C"(U,, U,) and Y =C"(R, R). We shall
consider solutions of equation (E) as the trajectories of the flow {S,},.q defined on
X by the formula

(S)(x)=u(t, x) = y(t, m_,x, v(7_,X)). (2.4)
We now define a mapping T:RXY > Y by
(To)(s)=v(s—1).

It is clear that {T,},.r is a flow on Y.

THEOREM 1. There exists a homeomorphism Q of X onto Y such that Qo S,=T,°Q
for each teR.
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In order to prove this theorem we need the following lemma.

LEMMA 2.1. Let V,, V,, W, and W, be open intervals of R. Assume that f: W, X V,>
W, and g: W, > V, are C"-maps, n=0. Then the map P:C"(V,, V,)»> C"(W,;, W,)
defined by P(v)(x)=f(x, v(g(x))) is continuous.

The proof of this lemma is simple, so it is omitted.

Proof of theorem 1. Given a point x,€ U,. The map t > m,x, is a C"-diffeomorphism
of R onto U,. Let h: U, >R be the inverse of 7x,. Then h is a C"-diffeomorphism
of R onto U,. Let p be a C"-diffeomorphism of R onto U,. Define the maps Q: X > Y
and N:Y-> X by

(Qo)(s)=p~ (Y( =, mx0, v(ms%0))) = p~ ((S-50)(%))

and
(Nv)(x) = ¢(h(x), xo, p(v(h(x)))).

From lemma 2.1 the maps Q and N are contiftuous. Using (2.1} and (2.2) it is easy
to verify that NoQ=QoN =1 Thus Q is a homeomorphism of X onto Y. We
verify that Q¢ S,=T,oQ,

(Q8)(v)(x) = p~'((S_x°S,0)(x0)) = (Qu)(x — 1) = (T, Q)(v)(x).

CoROLLARY 1. The set of all periodic points of {S,} is dense in X.

Remark 1. From the definition of Q it follows that for every se R we have
(Qu)(s) = (Qw)(s) iff v(m,xo) = w(mm,xo).
Examples. (1) Let b(x, u)=f(x)+g(x)u and U,=R. Then Qv =uv,+ Lv, where L
is a linear isomorphism from C"(U,;, R) onto C"(R,R) and v, C"(R, R).

(2) Let a(x)=x, b(x, u)=Au(1—u), U,=R" and U, = (0, 1). We take x,=1 and
p(u)=e*/(1+e"). Then

(Qu)(s)=Inv(e®)—In[e — e v(e*)].

3. Measure on the space C"(R, R)

Let w, 0=t <00 be a Brownian motion defined on a probability space (Q, =, P).
We may assume that the sample functions of w, are continuous. Set £2= e *w,x
for x e R. Then £3 is a stationary Gaussian Markov process with mean value E£2 =0
and correlation function E£2£2,, = e ™. The sample functions of £2 are continuous.
The process £ is not differentiable in the mean. From the law of the iterated
logarithm it follows that

0
lim |—§x—|

=0 (3.1)
Ix|»c0 |X]

with probability 1. We assume that all sample functions of £2 satisfy (3.1). Denote
by H the closed linear subspace of L*(Q2) spanned by all variables £2, x e R. The
joint distribution of the random functions ¢{,, ..., ¢, € H is Gaugsian. Denote by
F the o-algebra of events generated by the process w, on the set T.
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Starting from the random process £2 we can define, by induction, some new
process. Set for k=0
FIARES J e* ¢ ds. (3.2)
By (3.1) the integral (3.2) exists for every w€{) and consequently the sample
functions of £ possess nth-order continuous derivatives. The integral (3.2) exists
also in the mean and consequently £; is a stationary Gaussian process. Write 7, = £5.
Then for every w € ()} we have
" (n
) ( )ni"’= £ (3.3)
kK=o \k
The process £% is not (n+ 1)-times differentiable in the mean.

(n—1

LeEMMA 3.1. Let n, = £%, n=1. The joint distribution of (1., M5, ..., Mx %) is
non-degenerate for every x.
Proof. The distribution of (7, %, ..., £2) is Gaussian and it is independent of x.
Assume that it is degenerate. Then for every x

agn,+aymit- - +a,_n" V+a,t0=0 ae. (3.4)
with at least one a; # 0. Set p =max {k: a; # 0}. The process aon,+a;ns+-- -+ a,&l
is not (n+1— p)-times differentiable. This contradicts the equality (3.4).

Set Y=C"(R,R) and 5, = £5, n=0. Let B(Y) be the o-algebra of Borel subsets
of Y. The o-algebra B(Y) is generated by the sets of the form {p € Y:(o(x),...,
¢'™(x)) € B}, where x €R and B is a Borel subset of R"*". Thus for every Ae B(Y)
we have {ne A}eX. We obtain a probability measure u on B(Y) by setting
pn(Ay=P(neA)forall Ac B(Y).

Now we shall investigate the properties of u. The following known property of
Wiener measure will be used in the next lemma:

(3.5) If ¢:[0, a]>R is a continuous function and ¢(0) =0, then for every £ >0
we have

P(lw,—o(t)|<e fortel0,al])>0.

LEMMA 3.2. u(U) >0 for each non-empty open set U.

Proof. If n=0, then the proof follows immediately from (3.5). We assume n=1.
We may assume, without loss of generality, that U is of the form

U={peC"(R,R):|e®(x)- o (x)|<e forxe[a, bland0=<k=n},

where g, C"(R, R), € >0 and a, beR. According to the definition of x we have
u(U)=P(A), where

A={weQ: |9’ ~ o (x)|<e forxela, b]and 0=k =n}.

Let ¢, be a continuous function satisfying the following equation

k £ (7)ot =euole™).
k=0

Set @ = ¢?® and B = e*”. By (3.3) and from the continuous dependence on the initial
values and the parameter it follows that there exists 8 >0 such that A; " B;< A,
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where the sets A; and B; are given by formulae

As={weQ: P -pi(a)|<é for0=k=n-1},
Bi={weQ:|w,—¢o(t)|<é forte[a, 8]}

It is easy to verify that the random variables ' are %_,-measurable and, therefore,

As € F.,. We also have B; € ... By lemma 3.1 the joint distribution of (7,,...,
28"V, £2) is Gaussian and non-degenerate. Consequently the joint distribution of
(May---» NSV, w,) is also non-degenerate. Thus we have R(A|%_,)>0 almost
everywhere on B;. According to (3.5) we have P(B;) > 0. From the Markov property

of Brownian motion it follows that

P(A8038)=J' P(A8|g=a) dP>0’

Bs

which completes the proof.

LeMMA 3.3. The measure u is invariant under {T,}.

Proof. The invariance of u follows directly from the stationarity of the process (7,,
(n)
Mas-evs Mx )

LEMMA 3.4. The flow {T,} on (Y, B(Y), u) is a K-flow.

Proof. Let B, be the smallest o-algebra containing the sets of the form

A={pe C"(R,R): (¢(x),..., ¢ (x)) € B}, (3.6)

where x<0 and B is a Borel subset of R"*'. The o-algebra T, %, is the smallest
o-algebra containing the sets of the form (3.6) with x < t. Thus B,< T, %, for t>0,
and B(Y) is the smallest o-algebra containing all the o-algebras T,%, for teR. It
remains to verify that the o-algebra (" ),.g T;%B, contains only sets of measure zero
orone. Let Ac(), T.B,. Now we define E by E ={we Q: n.(w) € A}. Then u(A)=
P(E)and E €( ), o<, where £, is the smallest o-algebra generated by the random
variables 7,, x <t. Since &, < F..>, this implies E €[ -, F=.. Thus, according to
the Blumenthal’s zero-or-one law, P(E) is one or zero. This completes the proof.

LEMMA 3.5. p is a Gaussian measure.

Proof. The map L defined by L(¢)=(¢™, ¢(0), ¢'(0),..., ¢ V(0)) is a linear
isomorphism between C"(R,R) and C°R,R)xR". From this, and by the Riesz
representation theorem every continuous linear functional defined on C"(R, R) is
of the form

b
f(¢)=J ¢™M(x) dg(x) + cop(a)+- -+ ¢,y 90"(a),

where g is a function of bounded variation defined on some interval [a, b], and
{co, ..., €a1} is a sequence of real numbers. From the definition of u it follows
that f has the same distribution as the random variable { defined by

b
{= J " dg(x)+conat- -+ s Y.

a
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The random variable { belongs to H, thus { has a Gaussian distribution. This
completes the proof.

LeEMMA 3.6. The measure p is non-trivial.

Proof. We denote by P(t) the set of all periodic points of {7,} with period ¢
(P(0) denotes the set of all stationary points of {T;}). Let P(=<1) be the set of all
periodic points with period se (0, t]. Then P(t) and P(=<1t) are closed invariant
subsets of Y. Suppose that u(P)>0, where P is the set of all periodic points of
{T.}. Then u(P(=1t))>0 for some t>0. By ergodicity of {T,} it follows that
p(P(=1))=1if u(P(=1))#0. Let to=inf {t>0: u(P(=1t))=1}. Then u(P(t,)) =
1. We may assume, without loss of generality, that #,>0. Let A be a Borel subset
of Y such that 0<u(A)<1. Then the set An P(t,) is invariant under T, and
0<u(An P(1,)) <1. This contradicts the total ergodicity of u. O

We may summarize results of this section as follows.

THEOREM 2. For every n=0 there exists a probability measure u defined on the
o-algebra of Borel subsets of C"(R, R) satisfying the following conditions:

(a) u is invariant under {T,};

(b) w(U)>0 for each non-empty open set U,

(¢) {T.} is a K-flow on (C"(R,R), B(C"(R,R)), n);

(d) w is non-trivial;

(e) m is a Gaussian measure.

THEOREM 3. Let (X, S,) be the flow defined in § 2. Then there exists a probability
measure m defined on B(X) such that (X, B(X), m, S,) satisfies the conditions
(a)-(d) of theorem 2. Moreover, if b(x, u) is of the form b(x, u)=f(x)+g(x)u and
U, =R, then m is a Gaussian measure.

Proof. According to theorem 1 there exists a homeomorphism Q between X and
C"(R, R) such that QoS, = T;>Q. Thus, we can define a measure m on B(X) by
m(A)=u(Q(A)). The conditions (a), (b), (c) and (d) are a direct consequence of
theorem 2. If b(x, u) =f(x)+ g(x)u and U, =R, then Q is of the form Qv = Lv+v,,
where L is a linear isomorphism from X onto C"(R, R). Thus, according to theorem
2(e), the measure m is Gaussian.

CoOROLLARY 2 (chaos). The flow {S,} satisfies the following two conditions:

(a) every point v e X is unstable;

(b) there exists ve X such that the trajectory of v is dense in X.
Remark 2. The construction of the measure m given in the proof of theorem 3
may be repeated as well replacing £2 by £}, with arbitrary A >0. It is interesting
that the measures m,, and m,, corresponding to different A, and A, are mutually
singular.
Remark 3. Let {,, xe U,, be the process given by the formula {.(w)= Q 't (w).
Then m(A) = P({ € A) for each Borel subset A of X. From remark 1 it follows that
¢y, x€ U, is a Markov process for n=0.
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