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Abstract. We express the cohomology of the complement of a real subspace arrangement of di-
agonal linear subspaces in terms of the Betti numbers of a minimal free resolution. This leads to
formulas for the cohomology in some cases, and also to a cohomology vanishing theorem valid for
all arrangements.
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1. Introduction

ConsiderR" with coordinates given by, ..., u,. A linear subspace of the form
u;, = ---=u,, is called adiagonal subspaceén this paper we study arrangements
of diagonal subspaces calldihgonal arrangementgr hypergraph arrangements
according to other authors).

The following problem has been of interest:

PROBLEM 1.1. Compute the cohomology of the complem#t := R* — A of
an arrangemen of linear subspaces.

The usual approach to computing the cohomology.t,,; k) is to

e compute the homology of lower intervals in thgersection latticeL 4 (see
Section 5) using technigues suchrempure shellabilityand then

e apply a result of Goresky and MacPherson [GM] (or further refinements such
as [ZZ, SWe]) which expresses & ) in terms of this data.

See [B]] for a nice survey of the subject of subspace arrangements. The goal in this
paper is to bring to bear algebraic techniques to attack Problem 1.1 for the diagonal
arrangements. We will use the following construction.
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CONSTRUCTION 1.2. LetS = k[xy,...,x,] be the polynomial ring over a
field k. Let I be amonomialideal in S, i.e. an ideal generated by monomials.

It has a unique set of minimal generating monomials, and among these let the
squarefreemonomials ben,, ..., m,. For a squarefree monomial, let U,, be the
intersection of the hyperplanes, = u, for monomialsx,x, dividing m;. Define
thecanonical arrangement; associated t@ to be the union of the diagonal linear
subspaced/,,,,i = 1,2,...,s. For example, ifl = (x}, x1x3, x3x2, xox3x4) C

k[x1, x2, x3, x4] thenA; := {u1 = us} U {up = uz = uy}.

For every diagonal arrangementthere exists an ideal such thatA = ;.
The squarefree generatorsiofre uniquely determined by the subspace#jthe
nonsquarefree generators can be chosen arbitrarily.

Furthermore, the homology Tor groups Jdxk, k) can be computed from the
minimal free resolution ok overS/I. SinceS/I carries a naturd\”-grading, this

ag

resolution may also be chosdli-graded, and for a monomiat = x7*-- - x* we
denote by Tat"’ (k, k), or Tor'’ (k, k)x« thea-graded piece of Tt (k, k). O

Our algebraic approach to solving Problem 1.1 is based upon the following:

THEOREM 1.3. Let I be a monomial ideal ir§ = k[xq, ..., x,], and 4, its
canonical arrangement. Thetf (M., k) = Tor (k, k)epo, -

Note that in Construction 1.2 there is a huge choice of adding nonsquarefree
monomials in the ideal without changing the canonical arrangemetyt This
is possible because the nonsquarefree monomials do not affect the multidegree
x1-++x, component of the Tor groups used in Theorem 1.3. Having such choice of
the generators of is very beneficial: for example for theequal arrangement in
Example 3.3 the choice allows to takeequal to a power of the maximal ideal (for
which the Tor-groups are well known).

The numbers diniTor’’’ (k, k) are the ranks of the free modules in the minimal
free resolution ofk over S/I, and are called th8etti numberf k. Thus, The-
orem 1.3 links the Betti numbers af ,, andk. The theorem is proved in Section 2,
using the Bar resolution of to compute Tay// (k, k) and relying on a specific
geometric realization ofi( 4,. In Section 3 we demonstrate some applications of
the theorem. An example is given which shows how,gif{-M 4; k) can depend
upon the characteristic of the fieldWe also comment there that the theorem opens
up the possibility to compute cohomology in specific examples by the computer the
algebra packages MACAULAY and MACAULAY 2.

In Section 4 we introducstable diagonal arrangementaotivated by the fact
that the minimal free resolutions of stable ideals are well known. For such ar-
rangements KM 4) is explicitly computed in Theorem 4.2. This class includes the
r-equal arrangements,, ., for which we are able to further refine our results and
describe the action of the symmetric group oh(M 4, .; C) (Theorem 4.4). The

n,r?
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r-equal arrangements have received much attention recently (see [Bj, BLY, BWe,
Ko, SWa, SWe]). The proofs of Example 3.3 and Theorem 4.4 are entirely based
on the algebraic approach and do not make use of the combinatorially established
properties ofA, .

Section 5 is inspired by a result of Backelin and Eisenbud et al. on the rate of
growth of Tog// (k, k) based on the minimum degree of minimal generatord for
We prove a sharp lower bound for the vanishing of the homology of the intersection
lattice of an arbitrary arrangement of linear subspaces in a vector space, based on
the minimum codimension of the maximal subspaces (Theorem 5.2).

2. Resolutions

In this section we prove Theorem 1.3 and discuss some consequences.

Proof of Theoreml.3. The first part of the proof is a computation of Betti
numbers by the Bar resolution. This idea has already been applied in [HRW1,
Thm. 3.1] and [PRS]. We present it in detail for the purposes of keeping this paper
self-contained, and we recapitulate the argument in a slightly different form here.

DenoteR = §/I. In order to compute T@r(k, k), we resolvek as a trivial
R-modulek = R/(x4, ..., x,) using the Bar resolution [Ma, Sect. IV.5]:

B:---—- B, —---— By— Bg— k— 0.

This is a free resolution in whiclB; is the freeR-module having basis indexed
by all symbols[n1|m;y]|- - - |m;] wherem;, j = 1,...,i, are monomials irR. We
interpret this symbol as 0 if any of the monomiais lies in 7. The differential
d;: B; — B;_1is definedR-linearly by

dilmqlmy| - - - |m;]

=malma| -+~ Imil+ Y (=DIImal--|mj-mjia] - m;].
1<j<i-1

The free resolutiorB is far from minimal. To compute T§|(k, k), we tensorB
with &, and then take the homologB.®x k is a complex ofk-vector spaces with
differential

diimalmal - lmd =" (=D7lma|---m; - mjal--- m].

1<j<i-1

Notice thatd; preserves the produg{; m; of the monomials appearing in square
brackets, i.e. it preserves th&-grading. This means th&® ® z k decomposes as
a direct sum of chain complexéB ®y k), for « € N”, and Tof (k, k), is the
homology of the chain compleB Q% k).
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Forx* = xp---x,, the chain complexB ®z k), x, = (B ®x k), may be
further identified with the (augmented) relative chain complex for a certain pair
of cell complexes which we now describe. Consider the decompositi®i ofto
cones of various dimensions by the union of all hyperplanes of the dpre u ;,

i.e. the classicabraid arrangemenof Type A, [OT, Sect. 1.2]. By restricting this
decomposition to the unit sphe®2 inside the hyperplan®_; u; = 0, one obtains
a simplicial decompositiom\, of this sphere commonly known as ti@oxeter
complexfor Type A,,_1.

A typical face inA,, is the intersection of the sphere with the cone defined by a
sequence of equalities and inequalities relating all the variahles. , u,, such as
Up = Us = U7 > Ug = U1g > Ug > Ul = U3 = Ug > Ug, TOr n = 10. Identify this
face of A, with the k-basis vectofxaxsxz|xaxiolxs|x1xaxg| x9] IN (B @g k)xy.o, -
Observe that the symbolsi,| - - - |m,,] which have been set to 0, namely those in
which somemn; € I, exactly correspond to the faces &f, which triangulate the
intersectionS*—2 N ;. We conclude that

(B ®g k)syox, = Co(S72, 872N A3 k),

whereC,(S'2, S'~2 N 4,; k) denotes the augmented relative chain complex with
coefficients irk for the pair(S*—2, S*=2 N #4,). Therefore

TorR (k, k) gy, = Hi 2(S"72, 872N sy k).

On the other hand{,;(S*~2) = 0 unless = n — 2, so the long exact sequence
for the pair, along with Alexander duality gives

Torf (k, k)syn, = Hisa(S720 A5 k),
= H(S72 — (872N A p)s k).
fori < n. A similar computation shows that
TorR (k, k)., = HOU(S'™2 = (S72N A k) @ K,
= HYS'2 — (872N )i k).

2.1)

It only remains to observe th&' 2 — (S'~2 N 4;) is homotopy equivalent to
My, = R" — A, for the following reason: one can first project perpendicularly
onto the subspacg’; u; = 0in R" since every subspace i, contains the kernel

u; = --- = u, of this projection, and then perform a straight-line homotepy-
(1 — 1)V + tv/|v| to project radially onto the unit sphegé—2.
This completes the proof of Theorem 1.3 O

The numbers Tgfr“(k, k) are equal to the ranks of the corresponding free modules
in the minimal free resolution df over S/I, and are called thBetti number®f k.
The multigradedPoincaré serie®f k is

Poir (1, x) := Y dimTor" (k. k)at'x",

i>0,aeN”
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where we are abusing notation by using the variables xq,...,x, as both
indeterminates it$ and as generating function variables in F’.’Spj(r, X).

For a power serieg in Z[f][[x1, ..., x,]] and monomiak: in the variablesg, x
denote by coeff(f) the coefficient ofn in f. In this notation, Theorem 1.3 can
be rephrased:

COROLLARY 2.1. LetI be a monomial ideal angb; its canonical arrangement.
ThenPoin(M.,: k) = 1" coeff,,...,, (Poirk , (7%, ).

Backelin showed in [Bal] that whehis a monomial ideal, Po’gr),(t, X) can

always be written as a rational fraction

A+1xy)...(A+tx,)
K;(t,X)

Poirl; , (1, ) = ,
whereK; is a polynomial which we call thé-denominator Furthermore, he gave
explicit bounds for the maximum degreeradnd eachy; in K;, so that in principle
one need only compute a finite number of steps in the minimal free resolution of
as anS/I-module to get enough information for computikg.

It was proven by Serre (see [GL]) that

A+1txy)...A+1x,)
1-120,(t,%)
where the above inequality means coefficient-wise comparison of power series, and

whereQ; (¢, X) is the Poincaré series for tli@ite minimal free resolution of as
anS-module,

Poirf , (1, ) < : (2.2)

Q;(t,x) := Poirk(t, x) = Z dimTory (1, k)at'x*.

i>0,aeN

We summarize all the above information in the next corollary of Theorem 1.3.
COROLLARY 2.2. Let], K, (t,X), Q(t,X), M4, be as above. Far > 1 we have

dimH (M, k) = dimTor " (k, k).,

. A4+1txy)...A+1x,)
e K;(t,X)

. A4+1txy)...A+1x,)
n=ixq.xp 1 — Z’ZQ](t, X) .

= coeff,

< coeff,

3. Applications

In this section we demonstrate how to apply Theorem 1.3.
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EXAMPLE 3.1. LetA be a hyperplane arrangement of diagonal hyperplanes
uj. Then we can choose a monomial idéajenerated by quadratic monomials so
thatA = ;. By [Fr], the minimal free resolution of overS/I is linear. Hence
Tor'/!(k, k),...., vanishes foi # n. This corresponds to the fact that (M 4, ; k)
simply counts the connected componentsityf, . O

Among other things, Theorem 1.3 opens up the possibility of calculatitigd, ;
k) by computer (viaGrobner bases The Betti numbers digTor’’ (k, k), can
be computed in the computer algebra package MACAULAY by D. Bayer and
M. Stillman [BS] using a script foN"-homogeneous calculations by A. Reeves.
Alternatively, the computations can be done by MACAULAY 2 [GS]. The minimal
free resolution ok is infinite, however note that IG(k, k)x,..x, Vanishes fof > n,
so only the first: Betti numbers need to be computed.

Next we illustrate how to apply results from commutative algebra in order to
obtain formulas for the cohomology o .

DEFINITION 3.2. Aring is calledGolodif equality holds in Serre’s upper bound
(2.2). It was shown by Golod, cf. [GL], that this happens exactly when certain ho-
mology operationsNMlassey operationsvanish in the Koszul complex computing
Tord(k, S/I) = Tor3(S/1, k). Thus, Golodness is encoded in finite data. It can be
used, via Corollary 2.2, to compute dikif (M 4, , k).

EXAMPLE 3.3. One class of subspace arrangements which have received a great
deal of attention recently are theequal arrangementsa,, .. This arrangement

has been studied extensively in recent years, see [BLY, BWe, Kh, Ko, SWa, SWe]
and see [Bj] for its history. The arrangeme#y, . in R” is the union of all sub-

spacesy;, = --- = u;, defined by setting coordinates equal. Equivalently, this
is the arrangement,,,» associated to theth powerm” of the irrelevant ideal
m = (x1,...,x,). For any fieldk, we will prove that

dimH "2 (M4, , s k)
=Tor /™ o (k. K)o,

n—s(r—

N r4+igr+ip - r4i j r—1 ’

(i1,.mis)
:r+Z/' i/én

and all other cohomology groups vanish. This formula can also be deduced from
[Bj, second formula in Equation 2.4].

Proof. Forr > 2 it was first proved by Golod [GL] and is well known that
R = k[xq,...,x,]/m" is a Golod ring. Hence the"-denominator is

1—¢( > dim(Tor} (", k),) t'm

i=0
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Here Tof(m’,k)m are the Betti numbers of the minimal free resolutien of
m’” over the polynomial ring. This resolution is also well known, cf. [EK]: the
elements{(m;1 < i1 < --- < i,)|misamonomial of degregi; € N,i; <
(maximal variable dividingn)} denote a basis for the free module in homological
degrees of F,. The desired formula follows from a simple computation of the Betti
numbers of, and applying Theorem 1.3 (cf. also Remark 4.5(2)). O

Another class of Golod squarefree monomial ideals are the Stanley—Reisner ideals
of the complexes dual to sequentially Cohen—Macaulay complexes, as shown in
[HRW2].

4. Stable Diagonal Arrangements

In this section we compute M 4; k) for what we will call stable diagonal
arrangements, which include aHequal arrangements,, .. We refine these res-
ults to give a description of the representation of the symmetric gioumn
H*(MA,,,,; C)

A large source of Golod monomial ideals are the stable monomial ideals.
A monomial ideall is calledstableif it satisfies the following property: ifz is a
monomial in/ andy; is the variable of largest indexdividing m, thenx;m /x; € 1
forall1 < j < i.Itis enough if this property is satisfied by all minimal generators
of 1. Such ideals play an important role in Grébner bases theory: they appear as
initial ideals in generic coordinates [Ei, Chapt. 15]. The minimal free resolution of
a stable ideal as aftmodule was constructed in [EK]. The Golodness property for
stable monomial ideals is established in [AH].

Motivated by this, we define an arrangement of subspatde be astable
diagonalarrangement if4 = -4, for some stable monomial idealc S (the ideal
I will in general not be unique). It is easy to check that this is equivalent to the
following condition ons: all maximal subspaces i are of the formy;, = --- =
u; withi; < --- < i,, and whenever such a maximal subspace i$ Bnd we have
j <irandj & {iy,..., i}, thenu;, = ---u; , = u; is also contained in some
subspace of.

To describe the results of [EK] on Tui, k) succinctly, we introduce the
terminology of partitions and Young tableauxsee e.g. [Sa]). A partition. =
(A = -+ = A, = 0) is a weakly decreasing sequence of honnegative intégers
We say that hasweight|A| := >, A; andlengthl/(1) := r. TheFerrers diagram
for A is simply a set of boxes in the plane which is left-justified and hasoxes
in row i for eachi. Partitions of the form{r, 1"~") are callechooksbecause of the
shape of their Ferrers diagrams(iverse) column-strict tableaof shapeh is an
assignment of positive integers to the boxes in the Ferrers diagranstothat the
entries weakly decrease from left to right in each row and strictly decrease from
top to bottom in each column. A tableau is callgdndardif it contains each of the

n e

entries 12,...,n—1,n = |A| exactly once. Given a tabledy letx” := []"_, x;
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wheree; is the number of occurrences of the entrip T. We will also useskew
Ferrers shapes.; % - - - x A, obtained by placing the Ferrers diagrams for each of
the A; in disjoint rows and columns in the plane. Tableaux filling skew shapes are
defined similarly to tableaux of Ferrers shapes.

When dealing with a stable monomial idealgiven a column-strict tableaux
T filling some hook Ferrers shape, 1°), we say thatl" is I-appropriateif the
valuesiy, ..., i, occurring in the horizontal row of the hook form the indices of
some monomiat;, - - - x;, which is a minimal generator df. Similarly for a stable
diagonal arrangement, we say thatl’ is A-appropriateif the valuesiy, ..., i,
occurring in the horizontal row of the hook are all distinct and form the indices of
some maximal subspaeg = --- = u;, in A.

The Betti numbers in the minimal free resolution of a stable ideal were given in
[EK] and we interpret this result as follows:

THEOREM 4.1. For a stable monomial ideal C S = k[x3, ..., x,] and any
field k, the Poincaré serie®), (¢, X) for the finite minimal free resolution df as
an S-module isQ; (t,x) = >, xT#~1 where the sum ranges over all column-
strict tableauxT of hook shapes having entries boundednbgnd which arel-
appropriate. Herd (T') denotes the length of the partition whighfills.

From Theorem 4.1 and Golodness, we will deduce

THEOREM 4.2. For any stable diagonal arrangement, we have thatdim,H'
(M 4; k) is the number of standard tableaux filling skew shapes of the férm
(r1, 1) s - - - % (ry, 1%) for which

¢ the skew shape hasboxes, i.eip + ijl(rj +i;—1) =n,
e it (i +2)=n—i,
e every hook shape is filled-appropriately.
Proof. Let I be any stable monomial ideal whose canonical arrangement

is equal toA. Using the fact that /I is Golod, along with Corollary 2.1, Defini-
tion 3.2 and Theorem 4.1 one concludes that

n

Poirf, (1, x) = 1_[

j=1

(l + th)
l _ t2 ZT XTtl(T)fl’

whereT ranges over the set of tableaux described in Theorem 4.1. By Theorem
1.3, dimH;(M; k) is the coefficient oft"~x; - -- x,, on the right-hand side in

this equation. This is exactly counted by the set of tableaux in the corollary: the
entries filling the leftmost (single-column) Ferrers shape correspond to a choice
of a monomial from the numerator, while the fillings of the remaining hook Fer-
rers shapes correspond to a choice of monomials from the denominator after it is
expanded as a geometric series. O
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EXAMPLE 4.3. Letn = 4andA = {u1 = us} U {us = uz = us}. The
diagonal arrangememnt is stable. There are four tableaux satisfying the conditions
in Theorem 4.2 (Figure 1).

1=0:

Figure 1. The tableaux contributing to’M 4; k).

These tableaux enumerate the dimensions ‘0f,; k) therefore (M 4; k) =
k?, HY(M4; k) = k? and all other cohomology groups vanish. This is consistent
with the fact thatm 4 is homotopy equivalent to a disjoint union of two circles.

This result raises two natural questions:

Questions. Is the intersection lattice of a stable diagonal arrangement shellable?
Can one use this to give a proof of Theorem 4.2 which uses the more standard
approach?

We next study the case of the reakéqual arrangememt,, ., where the above
result can be refined to account for the action of the symmetric gipuplote that
A, IS a stable diagonal arrangement singg, = Ay, wherem is the irrelevant
ideal (x4, ..., x,). Note that the symmetric group, acting onR” by permuting
coordinates preserves, , and, hence, acts on its complement,, .. In [BWe],
recursive formulas are given for the cohomology(#t 4, ) of the complement,
and the authors ask whether one can describe explicitly the representatipn of
on H* (M, ) in general. Such a description was given in [SWe], based on results
from [SWa] and our next theorem shows how one can apply the present techniques
to recover a different form of this result. First, we need to review some notions
from the representation theory of the symmetric gr@jmnd general linear group
GL(n, C) (see [Sa], [FH]).

The irreducible finite dimensional complex representationX,pfire indexed
by partitionsu. of the number:, and we let§, denote the irreducible representa-
tion indexed byu. The irreducible finite dimensional complex representations of
GL(n, C) are also indexed by partitions of any number, and we |&¥,, denote
the irreducible indexed by. Let x be the diagonal matrix in Glu, C) with ei-
genvaluegxy, ..., x,), i.e. a typical element of maximal torusn GL(n, C). One
can decompose a Gk, C)-representatiorv into its weight spacesv = &, W,
wherev runs over all vectors itN”, and'W, is defined to be th&” = x;* - - x)»-
eigenspace for the matrix representiig the GL(n, C)-action. If u happens to be
a partition ofn, then the(l, . . ., 1)-weight space&V,, 1. 1) of V,, is invariant under
the subgrou®, — GL(n, C). Furthermore, this representation$fonv, 1 . 1
is isomorphic to the irreducible representati§n Given any tuple, .. ., u,) of
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partitions, the tensor produdt,, ® --- ® V,, is isomorphic to a special case of
what is called asskew representatiofV,,.....,, of GL(n, C) corresponding to the
skew shap@uy * - - - x ;.

Similarly, if the sum of the numbers partitioned by thehappens to be, then
restricting’v,,, ..., to the(d, ..., 1) weight space&V,,, ..., (1....1) gives a special
case of what is called skew representatiod,,,.....,, of X,. Lastly, we recall that
a finite-dimensional complex (rational) representation of431C) is completely
determined up to isomorphism by itsrmal characterwhich is the polynomial
in x1, ..., x, obtained by taking the trace of the matrix acting Brwhich rep-
resentsx. For the skew representatiof,, this character is th&chur function
sp(x1, ..., x,) Which has the formulap (xy, ..., x,) = Y, xI asT ranges over
all column-strict tableawof shapeD with entries in 12, ...,n, andx” is the
product ofx; asi ranges over the entries @f. Analogously, the dimension of a
skew representatiofi, for ¥, is the number oftandard Young tableawf shape
D, where a column-strict tableaux is standarg’if= x; . . . x,

THEOREM 4.4. As X, -representations we have the isomorphisms

/m — . .
Torljfs(r72) (C’ C)x1~~~xn - @ 5(1’0)*(r,1’1)*---*(r,liS)’
(iQsig s is)
sr+)jij=n

-2 .
H* ¢ )(QM,,,,,C)= @ B i) # (1141, 7Ly (i +1,17-1)

(iQsig.-mis)
sr+dljij=n

Proof. In this case, Theorem 4.1 can be rephrase@as, x) = Y /o s¢.1i)
(X)t', wheres, 1i,(x) is the Schur function (defined earlier) corresponding to the
shape(r, 1'). Therefore by Corollary 2.1 and Definition 3.2,

[0+ tx;)
1— 12303 5400 (01
> oS 0t/
1-12 Z;:c} 8(r,20) (X1

Poirf, (¢, x) =

= Z r Z S(lio)(X)S(r!lil)(X) e 815y (X)

i=0 (iQsi1-enis)
igtYp>1(p+=i

= Z t' Z 8210y (r, 111 - (. 2y (X)

i>0 (iQriqs-msis)
i+ plip+2)=i

independent of the field. If we choosek = C, we can interpret the previous
equation in terms of Glu, C)-representations. Note that GL C) acts on
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Clxi, ..., x,] by invertible linear substitutions of the variables, and leawesnd

m’ invariant. Therefore Glu, C) acts onR = C[xg,...,x,]/m”, and on
Tor®(C, C). Since Gl(n, C)-representations are determined by their characters,
we conclude from the last equation above the following isomorphism @#3L)-
representations:

R ~
TOI’, (C, C) = @ v(lio)*(r,1"1)*"‘*(r,1i»?)’
(io,il ..... is)
iO+Zp;l<ip+2):i

Note that by definition, Td¥(C, C),,.., is the (1,...,1)-weight space of
Tork(C, C). Hence we deduce the following isomorphismsf-representations:

R ~ | |
Tori (C’ C)X1mxn - @ v(io)*(r,111)*...*(r,1ts),(1,...,1)a
(@iQ+ig.-mmnis)
0t p>1lp+=iits(r—2)=n
- @ /S(lio)*(r-,1i1)*~~*(r.,1is)'
(iQ,iq5--wsis)

S"+Zp20 ip=n,i+s(r—2)=n

which is equivalent to the assertion for f@C C)y,..x, In the theorem. The asser-
tion for H,(M, ) then follows from the following facts:

¢ the nondegenerate Alexander duality pairing from Theorem 1.3
TOI'[R(C, C)xl"'xn ® Hn_i (an,r; C) - Hn—Z(Sn_Z; C)

establishes an isomorphism Bf-representations
Hn_i(CM”*r; C) = (TOI’I.R (C, C)x1~~~xn >v® Hn—2(Sn_2§ 03]

e where denotes theontragredienor dual of a representation.

e Complex representations &f, are all self-dual.

e H,_»(S'?; C) carries the one-dimensionsign representation ok,, since
any transposition irE, acts by a reflection iR”~1 and hence acts by 1 on
the fundamental cycle of the sphese2.

e When one tensors a skew representatignby the sign representation of
>, one obtains the skew representatéy corresponding to theansposed
diagramD' obtained fromD by flipping across the diagonal. O

Remarks4.5. (1) The description of th&,-action in Theorem 4.4 could also
be deduced from the results of [BWa, SWa, SWe], although this computation is
not carried out in any of these three references. In fact, it is interesting to compare
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i=

Figure 2. The skew representations appearing me7,3; 0).

Theorem 4.3 with the cagseé= 1 in [SWe, Thm. 4.4] since one obtains a nontrivial
representation-theoretic identity by setting the two answers equal.

(2) The formula for the dimension of H (M, ,; C) in Example 3.3 comes
from the fact that the skew representati®p has dimension equal to the number
of standard Young tableaux of shape For D = (1) x (r, 1'1) % - - - % (r, 1) the
number of such tableaux is easily seen to be

n l—[ V—l+lj
r+iir4is - r i ; r—1 '

EXAMPLE 4.6. Letn = 7, r = 3, then we obtain the following formulas:

1, fori =0,
dimeH (Mo o ) — 351 fori=1,
' 350, fori =2,

0 otherwise.

This coincides with the values given in Table 1 in [BWe], where the compu-
tations are done using recursive relations. Furthermore, we conclude from The-
orem 4.4 that as a representation X, the vector spaces’HM7 3; C) for i =
0, 1, 2 are isomorphic to the direct sum of representations corresponding to the
skew shapes shown in Figure 2.

5. A Vanishing Theorem for Intersection Lattices

The main result of this section (Theorem 5.2) is a vanishing theorem for the ho-
mology of the intersection lattice associated to any arrangement of subspaces in
a vector space over any field, given a lower bound on the codimension of the
maximal subspaces in the arrangement. The theorem was inspired by a special
case (Corollary 5.1) that follows from a result of Backelin and Eisenbud et al. on
the rate of growth of Tar’ (k, k).
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We begin by reviewing the notion of intersection lattices. For any fieltet
A denote an arrangement of subspaceB”inThe intersection latticeL 4 is the
poset whose elements correspond to all intersections of the subspaces, ordered by
reverseinclusion, with top and bottom elements0 added on corresponding to
the 0-subspace and the whole spd€erespectively. Note that this means that in
the case when all of the subspacestiintersect in some nonzero subspatd.e.
when 4 is not essential then V already would have been a top element and so
the top elemeni  V is anextraelement on top oV in L. The posetL , is
actually a lattice as its name indicates, with the jgiv W of two subspace®, W
given by their intersectiof¥ N W, and mee¥ A W given by the intersection of all
subspaces igh that containV UW. Theproper partL, is the subposet , — {0, 1}.
Abusing notation, we can think of any poset suchLasas a topological space by
identifying it with the geometric realization of therder complexA(L ). Here
A(P) is the simplicial complex having vertices corresponding to the elements of
P and simplices corresponding to the chains (totally ordered subsefs) in

Next we discuss Backelin’s result. For an idéah S = k[xq, ..., x,] which is
homogeneous with respect to the standditejrading (degx;) = 1), the following
invariant of R = S/I was introduced by Backelin in [BaZ2]:

a;

-1
rate(R) := sup{ — ‘i > 2}, where q; :=maxj | Tor] (k, k); # O}.

The rate ofR measures the degree complexity of the infinite minimal free resolu-
tion of k over R, and plays a similar role to that played (yastelnuovo—Mumford)
regularity for finite graded resolutions. If is a monomial ideal then Backelin
stated that rates/7/) < d — 1, whered is the maximal degree of a minimal
generator off, cf. [ERT, Prop. 3]. This fact implies a vanishing theorem for the
homology ofL ,:

COROLLARY 5.1. Let I be a monomial ideal ir§ andd be the maximal degree
of a minimal generator of. Let B; be its canonical arrangement intersected with
>, u; = 0in R". Then for any field we have

I .oon—1

HZ(L;BI,k)ZO for 1 <dT1—2
The reason for considering the intersectionof with > . u; = 0 instead of
A, itself is that.; is never essential, because the line= --- = u, is in the

intersection of all its subspaces. This means that the proper part of its intersection
lattice would be a cone and have no homology, so the vanishing property would be
vacuously true.

Proof. By Backelin’s result

Tor(k,k); =0 if j>d-1G—-1+1,
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where the subscripj refers to the usuaN-grading by total polynomial degree
on S/1 and on Tof/! (k, k). Since To}'’ (k, k), contains Tal’ (k, k)y,...., in our
N"-graded notation, we conclude that

Tor (k, k)yyo, =0 i n>@—-1G -1 +1
Equation (2.1) from the proof of Theorem 1.3 allows us to rewrite this as

H 38" 2NB;;k)=0 if n>d-1DG-1)+1,
n—1

(S 2N B, k) =0 if i<

Onthe other hand, Corollary 2.5 of [ZZ] shows thB(L 3, ; k) is a direct summand
in H; (S'=2 N B;; k), so the theorem follows. 0

Inspired by Corollary 5.1, the next result generalizes it.

THEOREM 5.2. LetF be any field A an arrangement of linear subspacesHfi,
and assume every maximal subspacetihas codimension at most Then

H(L,:Z)=0 for i< ? — 2.

Proof. We can first reduce to the case whérg is anatomiclattice, meaning
that every element ot is the join of the elements below it which covér or
equivalently, every subspace i is the intersection of the maximal subspaces
in A containing it. To achieve this reduction, consider thesure relationon L
defined by sending any subspacd.ito the join of the elements coverifigwhich
lie below it. The closed sets’ C L form a sublattice, and it is well known that
the inclusion of the proper paris’ — L is a homotopy equivalence (see [BWa,
Lem. 7.6)).

So assume thdt, is atomic, and leH be a maximal subspace., i.e. an atom
of L 4. Our method is essentiallydeletion-contractiorinduction on the number of
subspaces igb, in which we apply Mayer—Vietoris to the following decomposition
L=XUY:L=(L-{H})U(L)>y, where(L)-y denotes the subposet of ele-
ments inL which lie weakly above. Note that(L — {H}) N (L)sy = (L)op =
Ly, , WhereL 4, is the proper part of the intersection lattice for the arrangement
of subspacest|y := {V N H : V € A}, sitting inside the ambient spadé.
Also, we can define a closure relation bn— {H} which sends a subspace to the
intersection of all subspaces #fother thanH which contain it. Then the inclusion
of the closed set& 4_(xy — L4 — {H} induces a homotopy equivalence, where
L 4—(my is the proper part of the intersection lattice for the arrangemient {H}.
We conclude that part of the Mayer—Vietoris exact sequence looks like this:

Hi(La_imy;; 2) @ Hi(D)>i3 Z) — Hi(La; Z) — Hi_1(L oy, 2).
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Since the posetL)-y has a bottom elemerf, it is topologically a cone, and
hence has no (reduced) homology. We can apply inductief-to{/ } to conclude
thatH; (L 4—(uy; Z) vanishes foi < (m/c) — 2. The codimensions (withif/) of
all the subspace® N H are again bounded hysince

dimgH +dimgV <dimgV v H +dimgV A H

dimgH —dimgV v H <dimgV A H —dimgV

dimgH —dimgV N H

dimgeH —dimgV N H

<m—dmgV
<L c.

Thus, we can also apply induction t6|y. Note that since dimH > m — c,
induction says thalf-l,»_l(fmﬂ; Z) will vanish fori — 1 < (m — ¢/c) — 2, that is
fori < (m/c) — 2. Thus the ternH; (L 4; Z) in the exact sequence is surrounded
by terms, which vanish far < (m/c¢) — 2, and the result follows. O

REMARKS 5.3

(1) To see that the vanishing theorem is sharp for evetgke arrangements of
a maximal number of subspaces of codimensgiamhich are pairwise ortho-
gonal.

(2) The case of the theorem whare= 1 follows from a well-known result of
Folkman [Fo] since in this instande, is known to be geometric lattice

(3) Using the formulas of Ziegler-ZivaljeviZZ] and Goresky—MacPherson [ZZ,
Corol. 2.5] which express the homology Rt — 4 andS"~! N A in terms of
the homology of the lower intervals in the intersection latiicg one obtains
other new and interesting vanishing theorems.

(4) Itis known that every finite latticé is isomorphic toL 4 for somex, so one
can think of the theorem as ambedding criterior- it gives a lower bound
for the codimension of the subspaces one will need to usk ifhe bound is
based on the homology @f and the dimension of the ambient space. 0O

Abstracting the essential features from the proof of Theorem 5.2 we obtain the
following more general result:

THEOREM 5.4. Let L be a finite lattice with a functiom: L — N which is
semimodular(x) +r(y) < r(xVvy)+r(x Ay), and order-preserving, with(0) =
0,7(1) = m andr(x) < ¢ for all atomsx in L. ThenH;(L;:Z) = 0 for i <
(m/c) — 2.
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