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Introduction

This paper is concerned with two main problems:

(@) the determination of the comjugacy classes in the finite-dimensional
unitary, symplectic and orthogonal groups over division rings or fields;

(b) the determination of the equivalence classes of non-degenerate sesquilinear
forms on finite-dimensional vector spaces.

To “solve’” these problems means to reduce them to standard problems of
linear algebra such as the similarity of matrices and the equivalence of
Hermitian or quadratic forms.

The matrix formulation of (b) is as follows:

(b)’ to find the conditions that two non-singular matrices A, B be “con-
gruent”’, i.e. that B = T* AT for some matrix T, where * is an operation of
the conjugate transpose type.

Now, if the characteristic of the coefficient domain is not 2, we may split
A, B into their “Hermitian” and “skew-Hermitian” components:

A = %—(A - A*)’ A — %(A — A*), B =

and then the single equation B = T* AT is replaced by the pair of equations
B'=T*A'T, B” = T*A"T. Thus problem (b) is substantially equivalent
to the classification problem for non-singular pairs of forms (f, g), f Herm-
itian, g skew-Hermitian. For earlier work on problem (b) in this form, see
Trott ([10]), Ingraham and Wegner ({4]), Turnbull ([11]).

The decisive contributions to the present subject were made by J. William-
son, who solved the conjugacy problem over perfect fields of characteristic
not 2 ([17], [18]) and the equivalence problem over arbitrary fields of
characteristic not 2 ([14], [15], [19]). T. A. Springer ([9]) later determined
the conjugacy classes, and the centralizers of the elements, in symplectic
groups over arbitrary fields of characteristic not 2. See also Venkatachalien-
gar ([12]), Klingenberg ([7]), Zassenhaus ([20]) and a forthcoming paper by
V. Ennola ([21]). A general survey is given in Pickert’s encyclopedia article
(8].
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In the present paper, Williamson’s work is coordinated and extended.
Firstly, I show that there is a quite simple reduction of the conjugacy
problem to the equivalence problem (§ 1). With each element of a classical
group is associated a non-degenerate sesquilinear form (§ 1.1) and two ele-
ments are conjugate if, and only if, their sesquilinear forms are equivalent
(thm. 1.3.1). This association of a sesquilinear form with a group element
generalizes the classical Cayley parametrization in orthogonal groups.

Secondly, I clarify and extend Williamson’s matrix methods for the
equivalence problem by putting them in a structural setting (§ 2). Let D
be a division ring with an involutory anti-automorphism J, f(z, ¥) a non-
degenerate sesquilinear form over D. The multiplier of f is the non-singular
linear transformation P defined by f(y, )’ = f(z, yP). Let € denote the
ring of linear transformations which commute with P. The adjoint Xt of a
linear transformation X with respect to f is defined by f(2X, y) = f(z, yX1).
The adjoint mapping X — Xt (X € ¥) is an involutory anti-automorphism
of €. In the equivalence problem we may, without loss of generality, sup-
pose that all forms have the one fixed multiplier P. Let /,(z, y) = f(z, yQ;)
(¢ = 1, 2) be two such forms, represented with respect to the fixed standard
form f by the linear transformations Q,. Then @, Q, are non-singular,
-symmetric (Q, = Q) elements of € and f,, f, are equivalent if, and only if,
Q1, O, are f-congruent in € (Q, = XQ, X' for some X € €). This preliminary
reduction of the equivalence problem is perfectly elementary and depends
only on simple calculations with forms or matrices (§ 2.1).

Now let 4" be the radical of €. The factor ring /4" is a direct sum of
total matrix algebras over certain division rings. The canonical mapping
X —X + A carries the anti-automorphism t over to €/4” and the problem
of f-congruence in €/A4" in fact reduces to the problem of congruence of
Hermitian matrices over division rings. In our formulation, Williamson’s
central result is that the following A pproximation theorem holds whenever D
is a field of characteristic not 2:

two non-singular, t-symmetric elements of € arve t-congruent in € if, and
only if, their canonical images in €| AN are t-congruent in €| A" (thm. 2.2.1).
Clearly, when the Approximation theorem holds, the equivalence class of a
non-degenerate sesquilinear form is determined by the similarity class of its
multiplier and the equivalence classes of the Hermitian matrices which arise
from the f-congruence problem in €/A4".

The Approximation theorem certainly holds when either (a) the charac-
teristic of D is not 2 or (b) the restriction of J to the centre of D is not the
identity or (c) I — P is non-singular (lemma 2.2.1, corr.). Thus, e.g., the
essential features of Williamson’s theory hold in the finite unitary groups
U(n, 22%), though not in the finite symplectic or orthogonal groups
Sp(2m, 2°), O(n, 2%).
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In § 3, I examine the exceptional case where D is a field of characteristic 2,
J is the identity and P has characteristic polynomial (1 — ¢)*. A weak form
of the Approximation theorem (in which .4 is replaced by a smaller ideal)
gives some reduction of the problem, though the resulting system of equations
is still formidable. A complete solution is obtained when D satisfies the
hypothesis:

every ternary quadratic form x® 4 xy + Ay? 4 pz? (A, u e D) represents
zero mon-trivially.

This hypothesis certainly holds when D is perfect or when every quadratic
extension of D is inseparable. Thus, e.g., the theory can be applied to the
symplectic and orthogonal groups over GF(2%).

In §§ 2.6, 3.7, I determine the total number of conjugacy classes, and the
individual class orders, in the finite groups U(n, %), Sp(2m, q), O(n, q).
This is a necessary first step in the more difficult problem of their matrix
representations.

0.1 Notation. D denotes a division ring with a fixed involutory anti-
automorphism J. Thus («+8)Y = «’ + #7, («8)’ = p'a’, «’" = « for all
o, f e D. We remark that if J is the identity D must be a field, for then
af = («B)’ = p’a’/ = fa whenever «, feD. The element ae D is called
symmetric if «/ = «, skew if &/ = — . The elements of D are usually called
scalars and denoted by lower case Greek letters.

$ (= 0 or a prime) is the characteristic of D. Z is the centre of D. D[], Z[t]
denote the rings of polynomials in an indeterminate ¢ over D, Z respectively.
¢(¢) e D[t] is called monic if the coefficient of the highest power of ¢ is 1.
If ¢(t) = 3 a,t', we define ¢7(¢) = 3 af t'.

All vector spaces considered are left vector spaces over D. Linear trans-
formations are regarded as right multipliers. Thus, if 4 is a scalar, v a vector
and T a linear transformation, we write Jg, vT. Composition of linear trans-
formations is defined by v(T,T,) = (vT,)T,. If T is a linear transformation
and ¢(f) = > «,t* € Z[t], then the linear transformation ¢(T) is defined,
as usual, by v¢(T) = Y «;(vT*). The commutator ring, €(T), of T is the
ring formed by the linear transformations which commute with 7.

Suppose that V is a vector space over D (of finite or infinite dimension).
A sesquilinear form on V (strictly: J-sesquilinear form on V) is a mapping
f:V XV — D such that f(u, v) is linear in # for each fixed v and anti-
linear in v for each fixed u, i.e.,

fAamy + Apuy, v) = A, f(uy, v) + Aaf(u,, v),
f, v + pav) = fu, v + Hu, v,)ps,

forall w, v, u;, v,e V and 4,, u, € D. f is called non-degenerate if f(u, v) = 0
for all v implies # = 0 and f(«, v) = 0 for all # implies v = 0; otherwise f
is degenerate. f is called Hermitian (strictly: J-Hermitian) if f (%, v)=f(v, )’
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for all u, v, skew-Hermitian if f(u, v) = — f(v, w)? for all », v. Let f,, f, be
sesquilinear forms on vector spaces V;, V,. Then f,, f, are said to be equi-
valent if there exists a linear isomorphism T : V, -V, (ie., 1 — 1 linear
mapping of V,; onto V,) such that f,(uT, vT) = f,(u, v) for all u, veV.
If f,, f, are equivalent, we write f, ~ f,.

Let @ = (w,;) be a matrix over D. The transpose and conjugate transpose
of 2 are denoted by 27, 2* respectively: 27 = (w,;), 2* = (o},). If
square matrices £2,, £, are similar we write 2, ~ £,; the same notation is
used for linear transformations. Two square matrices £,, £, are called
J-congruent if 2, = TR, T* for some non-singular 7.

Matrix notation is introduced as follows. Suppose that the vector space V
is finite-dimensional with basis e,, + - -, ¢,. Then = >¢,¢, € V is represented
by the row vector x = (&;), a linear transformation T on V by the square
matrix T = (z;), where ¢,T = > 7r,e; ({ =1,---#u), and a sesquilinear
form f on V by the square matrix @ = (¢,;), where ¢,; = f(e;, ¢;) (¢, =
1,.- - - n). With these conventions, zT is represented by xT, T, T, by T, T,
and f(z, y) = x@y*. Forms f,, f, are equivalent if, and only if, their matrices
@®,, D, are J-congruent.

0.2. Direct decompositions. Let V be a vector space over D, T a linear
transformation on V. Let

V=V,® - @V,

be a direct sum decomposition of V. If each V, is invariant under T, we
write

(0.2.1) T=T,® " @®Ts,

where T, is the restriction of T to V, (¢ = 1, - - - k). (0.2.1) is called a direct
decomposition of 7.

Suppose now that V is finite-dimensional. Let ¢(¢) be a non-constant ele-
ment of Z[¢]. Then there exists a unique Fitting decomposition

V=V,@V,, T=T,®T,,

where ¢(7T) is nilpotent and ¢(T,) non-singular. V, V, are respectively the
image- and null-spaces of ¢(T)" for sufficiently large 7.

More generally, let ¢,(¢), - -, #,(¢) be non-constant elements of Z[f]
such that ¢,(¢), ¢;(¢) are relatively prime whenever 7 # §. Then there is a
unique Fitting decomposition:

VZVOC“B"‘@V,,, T=To@"'@Ts,

where, for i = 1,- - - s, ¢,(T,) is nilpotent and ¢,(T;) (j # ¢) non-singular.
Let Se%(T). Because of the uniqueness of the Fitting decomposition,
S=5,®---@S,, where S;e¥(T,) ¢ =0,---5).
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0.3. Linear transformations of commutative type. Let V be a finite-dimen-
sional space over D, T a linear transformation on V. Let ¢(¢) be an element
of Z[t] which is irreducible qua element of D[t] (e.g., ¢(t) =t — «, a € Z).
Then T is called ¢-nul if ¢(7T') is nilpotent. The term ¢-nul will only be used
when ¢(¢) satisfies the conditions above. T is said to be of commutative
type if it is ¢-nul for some ¢.

For a ¢-nul linear transformation 7, the theory of elementary divisors
holds in its customary form. The matrix T of T with respect to a suitable
basis has coefficients in Z and the reduction of T to the direct sum of the
companion matrices of its elementary divisors gives rise to a splitting of T
into indecomposable parts (see Jacobson [6], Ch. 3, §§ 9—10). In view of the
Fitting decomposition, we may speak of the multiplicity of ¢° as elementary
divisor of an arbitrary linear transformation S on V.

Suppose now that T is indecomposable and ¢-nul, say with minimum

polynomial ¢°. Then there is a vector « such that «, »T, - - -, wT™! form a
basis of V. If g(f) = X «,t* € D[t], we may define the linear transformation
g(T) by

(0.3.1) (ShuT)g(T) = 3 hayuT*.

(The definition of g(T') depends on the choice of  unless g(t) € Z[f].) The
g(T) form a subring D[T] of the commutator ring € (T’). On the other hand,
an element S of ¥(T) is uniquely determined by %S, which has the form
ug(T) for some g. Hence D[T] = ¥ (T). It is easy to see that Z[T] is the
centre of ¥(T'). We have €(T) ~ D[t]/¢(t)°D[t], Z[T] =~ Z[t]/$(t)* Z[t].
The only ideals (left or right) of €(T) are the 2-sided ideals €(T)¢(T)*
(t=20,1,---¢). The only subspaces of V invariant under T are the sub-
spaces V(T)i(z = 0,1, --¢).

We remark that the division ring D[¢]/¢(¢)D[t] can be identified with the
ring of polynomials over D in a quantity  which commutes with the elements
of D and satisfies ¢(r) = 0. We say that this ring is obtained by adjoining a
root of ¢(t) to D.

1. Conjugacy

1.1 Parametrization. Let V be a left vector space over D, of finite or
infinite dimension, and F(z,y) = 2y a non-degenerate Hermitian or
skew-Hermitian form on V. Thus (y-2)’ =e(z-y), where e = 4 1.

Let M, NCV. We say that M is F-perpendicular to N (notation: M | N)
if z-y =0 whenever z¢ M, yeN. The subspace M* = {z| M L z, 2z eV}
is the F-perpendicular space of M. If W is a subspace of V, the subspace
W# =W ~ W+ is called the radical of W.

Let W,, W, be subspaces of V. A linear isomorphism X : W, — W, is
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called an ssometry of W, onto W, if
2X - yX =z-y forall =z, yeW,.

The isometries of V onto itself form the unitary group U(F) of F. This
formulation includes the symplectic and unitary groups as usually defined
and the orthogonal groups over fields of characteristic not 2. The orthogonal
groups over fields of characteristic 2 are treated separately in § 1.5. In this
section we obtain a parametrization for the elements of U(F) (cf. [13]).
Let X ¢ U = U(F). Write X =1 — T, where I is the identity mapping.
Then the subspace VT is called the space of X and denoted by Vx. The
dimension of X is defined to be the dimension of Vx. It is easily verified that
the finite-dimensional elements of U(F) form a normal subgroup Uy4(F).
In terms of T, the equation of invariance X - yX = « - y becomes

(1.1.1) 2 yT + 2T -y = 2T - yT.

(1.1.1) shows that the scalar z - yT is determined by the vectors 2T, yT
alone; therefore the equation

(1.1.2) (T, yT) = - yT

uniquely defines a function («, v) of the variables %, vin Vx. (1, v) is called
the form of X and denoted by Fx. By (1.1.1),

(1.1.3) (u,v) + (v, u)Y = - v.

Since X'=14+ X1T =1+ TX!, we have Vx-1=Vx. Let [u,v]
denote the form of X~!. Then, by definition,

z-yI = — [2XT,yT], y-2X'T = (yT,xX'T),
and, by (1.1.1),
— (@ yT) =2T - yX =X 1T -y = e(y - X1 T),
so that
(1.1.4) [u, v] = e(v, u).
LEmMA 1.1.1. Fx 1s a non-degenerate sesquilinear form.

Proor. This means that

(a) the mappings # — (%, v) and % — (v, ) = e[u, v] of Vx into D are
linear for each veVx, and

(b) if (w,v) =0forall ueVx, orif (v, u) =e[u,v]Y =O0forallueVyg,

then v = 0.
(a) is obvious from (1.1.2). (b) follows from (1.1.2) and the non-degeneracy
of F.

COROLLARY. V3 is the null-space of I — X.
This follows from the lemma and (1.1.2).
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LemMMA 1.1.2. X 4s uniquely determined by Vx and Fx.

Proor. Suppose that X =7 — T and Y =1 — S both have the same
space W and form (u#, v) Then

z-w= (2T, w) = (xS, »)

for all ze V, we W. Since (%, v) is non-degenerate, T = 2S for all zeV,
ie. T=3S. Hence X =Y, Q.ED
We consider the families

L={,veVx}, R=1{r,jveVx}, K= {kJreV},
where /,, 7, k, are the following linear functions on Vx:
L(u) = (u,v), r,(u)=1[uv],k(u)=u-z
Lemma 1.1.3. L = R =K.

Proor. The equation [v,2T] = v - z is an easy consequence of (1.1.2),
(1.1.4). Hence R = K and similarly L = K.

THEOREM 1.1.1. Let W be a subspace of V, (u,v)’ a non-degenerate ses-
quilinear form on W satispying
(1.1.3) (#,v) + e(v,w)Y =u-v
for all w, v e W. Suppose further that L’ = R’ = K', where
L'={llveW}, R ={rjveW}, K ={klzeV},
L) = (,0), 7(0)=-cl,w)’, Ko)=wz @)

Then Vy =W, Fx = (u, v)’ for a unique X € U(F).

Proor. Since R’ = K’, and since F and (%, v)’ are non-degenerate, there
is a unique linear mapping T :V —V with VT = W such that

(T, v) ==x-v forall zeV,veW.
Similarly, there is a unique linear mapping S : ¥V —V with V'S = W such that
(w,yS) =u-y forall ueW,yeV.

Let X =1 —T,Y =1 — S. We prove the theorem by showing that X and
Y are mutually inverse elements of U.

Using (1.1.3)", we get

—e(v,aT)Y = 2X v =e(v: 2X)’ = e(v, zXS)".

Since (%, v)’ is non-degenerate, it follows that —27 = XS andso —T = XS.
Thus XY = I and similarly YX = I. Putting » = 2T, v = yT in (1.1.3)’,
we get X - yX = x -y so that X e U. This completes the proof.

Theorem 1.1.1 simplifies when the dimension of W is finite.
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THEOREM 1.1.2. Let W be a finite-dimensional subspace of V, (u,v) a
non-degenerate sesquilinear form on W satisfying (1.1.3)". Let & = (w,,;) be
the matriz of (u, v)’ with respect to a basis e,, - - -, e, of W and let @ = (8,,)
be the inverse of L. Then the linear mapping

(1.1.5) X =2 — ) (v-¢)0,e

i,7=1
is an element of U such that Vy = W, Fx = (u,v)’.
ProoOF. Since W is finite-dimensional and (#, v)’ non-degenerate, each

of the families L’, R’, K’ coincides with the dual space of W. Hence there is a
unique X e Usuchthat Vx =W, Fx = (u,v) . Let X =1 —T,2T = Ae,.

Then
x-e;= (xT,¢;) => Aoy (f=1,--7)
and so
h=2@e); ((=1,7)
as required.
We note that the matrix formulation of (1.1.3)’ is
(1.1.6) L+ eR*%=¢

where £* is the conjugate transpose (w};)T of £ and @ the matrix of the
restriction of F to W.

ExaMpLE. Let U be the n-dimensional orthogonal group in the classical
Euclidean sense. Let W = V and let e,, - - - ¢, be an orthonormal basis of V.
(1.1.6) becomes £ 4 27 = I. The general non-singular solution is
2 = (I + S), where S is skew-symmetric. By (1.1.5), the matrix of X
is X=(S— I )(S + I)71. This is the Cayley paramatrlzatxon for the
‘“non-exceptional”’ elements of U.

1.2 Witt's theorem. This deals with the extension of isometries X : W; —
W, to isometries Y : V' — V, i.e. to elements of U. The present account is
rather more general than that of Dieudonné ([2]).

If zeV then (z-2)) = e(x - z). We call = trace-valued if - x = 1 + &2’
for some AeD.

LeMMA 1.2.1. The trace-valued vectors form a subspace V7. If p 2,
Vr =

ProoF. Let z,yeV7, so that x-x =24+ ¢eA’, y-y=pu + eu’/. Then

(02 + By) - (wx+ By) — p+ &p”, Where p— ada’ + fup’ + a(z - y)p”. Hence
V' is a subspace. If eV and p # 2, then z -z = }(z - 2) + ¢(3(z - 2))’;
hence V =Vr.

LEmMmA 1.22. If X e U, VxCVr,
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This follows from (1.1.3).

CorOLLARY. If X e U, X leaves the spaces V|V7™ and (V7)* pointwise
invariant.
This follows from the lemma and lemma 1.1.1, cor.

THEOREM 1.2.1. (Witt). Let W, W, be finite-dimensional subspaces of V7
such that Wyn (V7)* = Wy (V7)* = {0}. Then cvery isometry X of W,
onto W, can be extended to an element of U 4(F).

ProoF. The theorem is trivial when the dimension, #, of W,, W, is 0.
Suppose that » > 0 and that the theorem holds for lower dimensions. Let
ey, - ¢, form a basis of W,. Then f,, - -+, f,, where f; = ¢, X, form a basis of
W,. By the induction hypothesis, and since each element of U leaves V'~
and (V7)* invariant, we may assume that ¢, = f, for 4 =1,---,» — L.
Then, since X is an isometry, we have

(1.2.1) e-ctele-c)) =cc, ¢,,c=0 (i=1,"++,7—1)

where
e=e, ¢=¢€,—[.

We may of course assume that ¢ £ 0. Since W, n (V7)) = Wy (V7)* =
{0}, each of the sets ¢,,---¢,_,, ¢and e;, -+, ¢,_4, ¢ — c is linearly inde-
pendent modulo (V7).

If e: ¢ 5% 0, the 1-dimensional element

Y =x — (x-c)(e-c) e
of U extends X.

Suppose next that e-c¢ = 0. We seek a 2-dimensional element Z of U
which extends X. Choose a vector 4 € V7 such that

(1.2.2) e;*d=0(=1,---,r—1), e-d=1, c-d+*1

Since ¢,, * - - ¢,_,, ¢ and ¢ (= e — f,) are in V'* by hypothesis, such a choice
is possible when e, - ¢, ;, ¢, ¢ are linearly independent modulo (V'7)*.
In the contrary case, since ¢;,- -+ ¢, ;,eand e, -¢,_,, ¢ — ¢ are linearly
independent sets modulo (V7)*, we have a relation

r~—1
c = z }‘iei —|— A.e (mod(VT)J.))
1

where A 7 1. Then, choosing 4 € V7 such that the first  equations in (1.2.2)
hold, we have ¢-d = A 5 1 as required.

SincedeV7,d-d = o + eo/ forsome a ¢ D. Sincee-¢c = 0ande-d = 1,
¢ and d are linearly independent. Let W be the subspace with basis ¢, 4.
Then it is easily verified that the following conditions define an element
Z of U which extends X:
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Vz=W,
Fz(c,c) =0, Fz(c,d) =1,
Fz(d,c)=e((c-d)’ —1), Fz(d d) =a

This proves the theorem.
DEeFINITION. F 15 called trace-valued if V™ =1V.

CoROLLARY. If F is trace-valued, every isometry of finite-dimensional
subspaces of V' can be extended to an element of U4(F).

It is easily seen that F is trace-valued if, and only if, its matrix has the
form £ + ¢2* for some matrix 2. If p 5= 2, every F is trace-valued by
lemma 1.2.1. If p = 2 and J is the identity, F is trace-valued if, and only if,
it is an alternate form, i.e. -z = 0 for all «.

1.3 Conjugacy.
LeMMma 1.3.1. Let X, Y be conjugate elements of U(F):Y = Z1XZ,

where Z e U(F). Then Vy =VxZ and Fy(uZ,vZ) = Fx(u,v) for all u,
Ve Vx.

ProoF. Let X =1 — T.ThenY =1 — Z'TZandsoVy =VZ3ITZ =
sz. Also

Fy(TZ, yTZ) =2Z - yTZ = z-yT = Fx(aT, yT),
which gives the second part of the lemma.
COROLLARY 1. Conjugate elements of U have equivalent forms.

COROLLARY 2. Let X, ZeU. Then XZ = ZX if, and only if, Z leaves
Vx and Fx invariant. In particular, XZ = ZX if Vx, Vz are F-perpendi-
cular.

The following theorem reduces the conjugacy problem in finite-dimensio-
nal, trace-valued classical groups to the equivalence problem for finite-
dimensional, non-degenerate sesquilinear forms.

THEOREM 1.3.1. Let X, Y eU,(F) and suppose that Vxn (V7)* =
Vyn (V)= {0}. Then X, Y are conjugate in U4(F) (or U(F)) if (and
only if) Fx, Fy are equivalent forms.

Proor. By hypothesis, there is a linear isomorphism Z of Vx onto Vy
such that Fy(uZ, vZ) = Fx(u, v) for all », ve Vx. By (1.1.3), Z is an iso-
metry. Hence, by Witt’s theorem, Z can be extended to an element Z of
U,. Then Y, Z-1 X Z have the same space and form, so that Y = Z-1XZ.
This proves the theorem.

COROLLARY. Let I be trace-valued. Then two elements of U 4 are conjugate in
Uy (or U) if, and only if, their forms are equivalent.

1.4 Direct Sums and Products. We consider the direct and semi-direct
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decompositions of Fx and their relation to the group-theoretical properties
of X. We write Vx = W, Fx = f and assume throughout that the dimen-
sion, m, of W is finite.

Let M, N C W. We say that M is f-perpendicular to N (notation: MwN)
if (z,y) = 0 whenever x e M, y e N. The relation MwN is in general not
symmetric. The subspaces '

Me = {gMwz,xe W}, °M = {z|lzoM, ze W},

are called the right and left f-perpendicular spaces of M respectively.
Let

(1.4.1) W=W o aW,

be a direct decomposition of the vector space W. If W,wW, whenever
1 <:i<j =<k we write

(1~4-2) f=f1+f2+"'+fk,

where f; is the restriction fu of f to W,. We call (1.4.2) a semi-direct sum
and say that each f, is a semi-direct summand of f. Notice that the addition
in (1.4.2) is not in general commutative. If W,wW, whenever ¢ # 7, we write

(1-4-3) f=f1@fz+"‘®fk-

We call (1.4.3) a direct sum and say that each f, is a direct summand of f.
In this case

W?zwwizwl@"'@Wf—l@WiH@"'@Wk

for each 7, and it follows from (1.1.3) that (1.4.1) ¢s an F-perpendicular
decomposition, ie. W, | W, whenever 1 # 7.

Choose a basis of W adapted to the direct decomposition (1.4.1). If
(1.4.2) or (1.4.3) holds, the matrix of f has the form

2, Ry 0 Ry 2, 0 e 0
0 2, --- 82, or 0 2,5 -+ 0
0 0 te. ‘Qkk 0 0 A Qkk

and conversely. Clearly, £, is the matrix of f; and f, is non-degenerate.
LeEMMA 1.4.1. Let M be a subspace of W. Then fyy (the restriction of f to M)
is a semi-direct summand of f if (and only if) it is non-degenerate.

PrROOF. Since fy is non-degenerate, M n M = {0} and therefore
W =M ® “M. Hence f= fpr + fop, QE.D.

In order to have an analogous criterion for direct summands, we introduce
the multiplier of f. This is defined to be the (non-singular) linear transforma-
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tion P on W such that

(1.4.4) (v, 2)! = (x,yP) for all z,yeW.
In terms of the matrices 2, P of }, P:
(1.4.4) P = Q%1

We shall also refer to P as the multiplier of X and write P = Px.
It follows easily from (1.4.4) that

(1.4.5) (2¢(P), y) = (=, y¢’ (P71))

when é(t) € Z[t] (Z the centre of D).

LEMMA 1.4.2. Let M be a subspace of W. Then *M = M if, and only if,
M is invariant under P.

Proor. By (1.4.5), M= “(MP). On the other hand, since M is a sub-
space the relation “M = “(MP) is equivalent to the relation M = MP.

LEmMMA 1.4.3. Let M be a subspace of W. Then fry ts a divect summand of f if,
and only if, fyr ts non-degenerate and M is invariant under P.

ProoF. If fy, is a direct summand it is a semi-direct summand and
M = M¢*. By the previous lemmas, f;; is non-degenerate and M is invariant
under P. Conversely, if these conditions hold then “M = M¢ by lemma
1.4.2, so that the sum f = fy 4 fp in lemma 1.4.1 is direct.

THEOREM 1.4.1. Let (1.4.1), (1.4.2) hold. Then
(1.4.6) X =X,X,- X,

where X, is the element of U such that Vx, = W, Fx,=f, i=1,-+-R).
(1.4.3) holds if, and only if, X; X, = X, X, for all i, .

Proor. The first statement was proved in [13]. The second follows imme-
diately from the fact that (1.4.3) holds if, and only if, f =/, + -~ + f,,
for every permutation ¢;,---¢, of 1,---%.

We call (1.4.6) a semi-direct factorization. If (1.4.3) holds, we call it a
divect factorization, We mention, without proof, the

COROLLARY *. If Fx is not an alternate form, the m-dimensional element
X is a product of m 1-dimensional elements.
There is a simple direct relation between X and its multiplier P.

LEMMA 1.4.4. The restriction of X to Vx ts — ePL,
Proor. Let u,ve W. By (1.1.3) and (1.4.5),
w-v = (u(l + ePt'), v)
* The well known theorem that every orthogonal transformation is a product of symmetries

follows almost at once from this corollary.
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and by (1.1.2),
w-v= (u(l — X), v).

Comparing these formulae we get the lemma.

COROLLARY. W? is the null-space of I + ePL.
This follows from the lemma and lemma 1.1.1, cor.

It is clear that a direct decomposition of f gives rise to one of P. We now
consider two cases where the converse holds.

Notation: if ¢(t) = a0y + ;¢ 4+ - -+ + 7 is a monic element of Z[¢] such
that ¢(0) = «, # 0, we define the monic polynomial

$() = (@) (t7Y) = (V) + - + (o o)t 27
(1) Suppose now that

(a) ¢4, *, ¢ are monic elements of Z[¢], none of which is
divisible by ¢;

1.4.7 e .
AT b)) Go=g =1, )
(¢} ;. ¢, are relatively prime whenever 7 # 4.
Let
(1.4.8) W“_"Wo@"'@Wk; P=Py@ - ® Py

be the corresponding Fitting decomposition of P, so that

(i) ¢;(P;) is nilpotent (¢ =1,---, k);

(i) #;(P;) is non-singular (t = 1,---k;7=0,---k; 1 5£7).

LEMMA 1.4.5. The decomposition (1.4.8) of P gives rise to a divect decom-
position f=f, ®--- D [, of [.

Proor. By lemma 1.4.2, it is sufficient to prove that W,0W, whenever
i <j.LetxeW,, ye W, By (i), thereis a power ¢ of ¢, such that z¢(P) = 0.
By (ii) and (1.4.7) (b), there is a ze W, such that y= 2¢’ (P~!). Then, by
(L4.5), (z,y) = (=, 2¢'(P1)) = (z¢(P),y) = (0, y) = 0, so that W, oW,
as required.

We now apply the lemma to the element X, taking (for convenience of
exposition) ¢,(¢) =¢ + e Let u,,---, u, be a basis of W? and choose
v, U%e(Wo @ W, @ -+ @ W,)* so that u,-v; =6,(¢,7=1,--,7).
Then V' = W + {v,, - - -, v,} is a finite-dimensional subspace of V and we
have corresponding direct decompositions

V=V'oV'h6 F=F@®F',6 X=X &lX"
where V"' = (V')*, X"’ is the identity on V"’ and X’ the element of U (F’)
with the same form and space as X. We define
Vi=W,+ {vi, - 0l
V:' = Wi
Vo= (Vi+ -+ V)V
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Then it is easy to check that
V=Ve®Vi® @V,

is an F-perpendicular direct decomposition which gives rise to the Fitting
decomposition — eXg! @ « -+ of — €X’~1 corresponding to (1.4.7). Notice

that X; = — eP;" when 7 = 2, and that — ¢Py! is the restriction of X; to
W, =Vi{I — X7). These considerations yield the following immeidate
corollaries.

CoROLLARY 1. The Fitting decomposition of — eX1 corresponding to
(1.4.7) exssts and is F-perpendicular (even when the dimension of V is infinite).

COROLLARY 2. If u;, v, denote the multiplicities of (t— 1)), (t+ ¢)* as
elementary divisors of X', P respectively, then

py= v, (6 =23+, 3y =dimV’ — dim W.
i=1

If the dimension of V is finite and u; denotes the multiplicity of (t — 1)* as
elementary divisor of X, then
p=v,,00=23,+), Spu,=dimV — dim W.
i=1

COROLLARY 3. Two elements of Uy(F) are similar if, and only if, their
multipliers are similar.

(2) The second type of decomposition of P which gives rise to a decom-
position of f is more special. It applies when P is ¢-nul (cf. § 0.3). We remark
that in this case ¢ = $, by (1.4.5). Let the elementary divisors of P by
@, - -, Pr(ey, > ey, > - - - > ¢, > 0) with respective multiplicities »,, * - * v,.
Then there is at least one decomposition

(1.4.9) W=W1(~B"'®W', P=P1®°°'®Pr:

where P, has the single elementary divisor ¢* with multiplicity »;, (=1, -+ - 7).
Let £, denote the restriction of f to W,. Then we have

LeEMMA 1.4.6. f, s a direct summand of f.

Proor. By lemma 1.4.3, it is sufficient to prove that f, is non-degenerate.
Suppose f, is degenerate. Then W, contains a non-zero vector % such that
uwW,. Since W; n “W, is invariant under P (by lemma 1.4.2), we may
suppose that u¢(P) = 0. From the theory of elementary divisors it follows
that u = vé(P)*~1, where ve W,. Now let we W;, where ¢ > 1. Then
(v, w) = (v, wg’ (P1)r"1) = (v, 0) = 0, since § = ¢ and ¢, >¢;. Hence u
is f-perpendicular to W, + W, 4+ + - + W, = W, contrary to the non-
degeneracy of f. This contradiction proves the lemma.

COROLLARY. At least one decomposition (1.4.9) gives rise to a direct decom-
position of f.
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Proor. By the lemma, there exist corresponding direct decompositions
[=HL®F, P= P, ® P’ The corollary now follows easily by induction.

1.5 Orthogonal groups for p = 2. Let D be a field of characteristic 2 and J
the identity. Let Q(2) = |z| be a non-degenerate quadratic form on V' with
polar form F(z,y) = x-y. Thus

(L5.1)  liw + pyl = Az + @yl + dula-y) (B peD,myeV)
and
(1.5.2) |z + y| =0 (all y e V) implies that x = 0.

(1.5.1) shows that F is alternate (x-x = 0 for all xeV). Q is called
defective or nom-defective according as F is degenerate or non-degenerate.

The symbol | refers to F-perpendicularity., If W is a subspace of V,
the F-perpendicular space W+ and radical W? = W ~ W+ are defined as
before. The singular radical W7 is defined as the set of x ¢ W such that
l#+y| =y forally e W. By (1.5.1), Wo C We. The restriction of Q to W
is non-degenerate if, and only if, W7 = {0}, non-defective if, and only if,
we = {0}.

Let W,, W, be subspaces of V. A linear isomorphism X : W; - W, is
called an isometry of W, onto W, if

(1.5.3) |zX| = |x| for all xzeW,.
By (1.5.1), this implies that
(1.5.4) X yX =a-y forall z,yeW,.

The isometries of V onto itself form the orthogonal group O(Q) of Q. By
(1.5.4), O(Q) is a subgroup of the unitary (= symplectic) group U(F) of F.

The space, Vx, and form, Fx, of an element X =1 — T of O = 0(Q)
are defined as before. In place of (1.1.1), the equation of invariance

|zX| = [#| yields the stronger relation

(1.5.5) z-2T = |gT| for all zeV.
This implies that

(1.5.6) (w, ) = |u] for all ueVx.

LEmMmA 1.5.1. Vxn V*+ = {0}.

Proor. Let 2T ¢ Vx nV+. By (1.5.5), |2T| = 0 and so 2T € V°. Since
Ve = {0} (by the non-degeneracy of Q), we have T = 0 as required.

With the help of this lemma, it is easy to show that lemmas 1.1.1 to 1.1.3
and corollary are still valid. Theorems 1.1.1 and 1.1.2 are valid if we replace
(1.1.3)" by

(1.5.8)’ (w,u) = |u| for all wueW.
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Trace-valued vectors are defined as before with reference to F. But since
F is alternate, every z is trace-valued and so V= V. Witt’s theorem
becomes

THEOREM 1.5.1. Let W,, W, be finite-dimensional subspaces of V such
that W, n V*+ = W, n V* = {0}. Then every isometry of W, onto W, can be
extended to an element of O4(Q).

From theorem 1.5.1 and lemma 1.5.1, we now deduce

THEOREM 1.5.2. Two elements of Oy are conjugate in Oy (or O) 1f, and only
if, their forms are equivalent.,

The results of § 1.4 carry over with the obvious minor alterations.

We add one simple result about the singular radical of the space of X.

LEMMA 1.5.2. Let W be the space, P the mulitplier, of an element X of
0(Q). Then WP n W(I 4 P)CWe.

Proor. Let v = w(l + P) e W?, where we W; we have to prove that
[v] = 0. By (1.5.6), |wP| = (wP, wP) = (w, w) = |w|. On the other hand,
|v| = |w| 4+ |wP)| since v e W*, Hence |v]| = 0 as required.

2. Equivalence

2.1 Preliminary transformation of problem. Let W be a left vector space over
D of finite dimension m. Let f,(z, y) = (x, y), and f,(2, ¥) = (%, y), be non-
degenerate sesquilinear forms on W. Our problem is to determine the con-
ditions that f, ~ f,.

Lemma 2.1.1. Equivalent forms have similar multipliers.

Proor. Let f, ~ f,, so that (z,y), = (zY, yY), for some non-singular
linear transformation Y. Let P,;, P, be the multipliers of f,, f,. Then
(¥, 2); = (yY, 2Y){ = (2Y, yY P,), = (=, yY P, Y1), so that P, =Y P, Y

By lemma 2.1.1, we may confine attention to forms with the one fixed
multiplier P. We choose one such form f(z, y) = (z, y) as a fixed reference
form and write

(2.1.1) (@, 9): = (. 90:) (E=12)

Q, is called the representative of f, with respect to f.
Let Y be a linear transformation on W. The f-adjoint Yt of Y is defined
by (¢Y,y) = (z, yYt). We say that Y is t{-symmetric (or f-symmetric) if

Yt =Y. Since

(v, 5Y P’ = (57, y) = (v, y¥1) = (¥, aP)’ = (y, zPY),
we have
(2.1.2) Ytt = P1YP,
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Also, since
(v, %)) = (%, yP) = (2, yP)” = (yP,zP)’ = (y, PPy,
we have
(2.1.3) Pt = P11,
Finally, since
(v, z); = (4, 2Q,)" = (2Q:, yP) = (2, yPQ}) = (z, yPQI O7)s,

we have
(2.1.4) P, = PQ! O,

where P, is the multiplier of f,.
Let € = €(P) denote the commutator ring of P. The next two lemmas
follow immediately from (2.1.2)—(2.1.4).

LEMMA 2.1.2. The mapping Y — Yt induces an involutory antiauto-
morphism of €. Every t-symmetric linear lransformation lies in €.

LemMma 2.1.3. }; has multiplier P if, and only if, its representative Q, with
respect to [ is t-symmetric.

Linear transformations Y,, Y, on W are called t-congruentif Y, =YY, Y?t
for some non-singular linear transformation Y belonging to €. The following

theorem reduces the original equivalence problem to a congruence problem
in ¥.

THEOREM 2.1.1. Let {,, f, be non-degenerate forms with multiplier P and let
Q1, Q, be their (non-singular, t-symmetric) representatives with respect to the
reference form f with multiplier P. Then f, ~ f, if, and only if, Q,, Q, are
t-congruent.

Proor. If Y is a linear transformation on W,
(@Y, yY), = (Y, 9Y Q) = (2, yYQ, Y1) = (2, yY O, Y103 7),.
Therefore f, ~ f, if, and only if, @, = YQ,Yt for some non-singular Y.

But this equation implies that Ye% :YQ, Yt = (YQ, Y1)t = Y11Q, YT,
hence Y1t =Y, hence, by (2.1.2), Y ¢ €. This proves the theorem.

2.2 Approximation Theorem. Let #” = A" (P) denote the radical of € =
% (P). The main theorem of this section is proved under the assumption that
€ satisfies the following trace condition:

(2.2.1) If FCAH is an ideal of € and N an element of S such that
Nt =¢eN(e= 4 1), then N = M + ¢M?* for some M e .

Apart from this, only the following properties of ¥ are used:
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(i) € is a ring with unit element I;
(ii) € has an involutory anti-automorphism 1;
(iii) A is nilpotent (Jacobson [6], Ch. 4, § 7).

The following simple lemma shows that the trace condition “usually”
hold in €(P).

LeMmA 2.2.1. If € contains a central element Y such that Y + Yt =1,
€ satisfies the trace condition.

Proor. If Nt = eN, N = (YN) + ¢(YN)t.

COROLLARY. If any one of the following conditions holds, € (P) satisfies the
trace condition:

(a) p #2;

(b) the restriction of J to the centre Z of D is not the identity;

(c) I + P is non-singular.

Proor. (a) Y = }I. (b) We may assume that p = 2. By hypothesis,
there is an ae Z such that « +a/ =8 #0. Let Y =af1I. (c) Y =
P(I + P)

(2.2.2) NotaTtIioN. The following conventions are observed both here and
in later sections. Suppose R is a ring with radical S. Then R denotes the
factor ring R/S and ¥ = Y + S the canonical image of an element Y of R
in R. If 1 is an anti-automorphism of R, the same symbol } will be used to

denote the induced anti-automorphism of R : (¥)t = (i/_’f). An element of a
ring with I is called non-singular if it has a two-sided inverse.

THEOREM 2.2.1. (Approximation theorem) Suppose that € satisfies the
trace condition (2.2.1). Then

(a) every mnon-singular, t-symmetric (or t-skewsymmetric) element of % =
€[N is the canonical image of a non-singular, t-symmietric (or t-skewsymmetric)
element of €;

(b) two non-singular, t-symmetric (or t-skewsymmetric) elements of € are

t-congruent if, and only if, their canonical images in € are t-congruent.

Proor. Let @ be a non-singular element of € such that @t = @, i.e.
Ot — e =NeAN (¢ = +1). Then Nt = — &N and so, by the trace con-
dition, N = Mt — &M, where M eA#". Let Q, = Q — M. Then @ = @,
and Q] = ¢Q,. Also Q, is non-singular. For, since @ is non-singular, there
exists an R € € such that Q; R = I — N,, where N, e #". Then R(I 4+ N, +
N} + - - +) is a right inverse of @,. Similarly Q, has a left inverse.

Suppose now that S;, S, are non-singular elements of % such that ST =S,
(e = + 1;7=1, 2). Obviously S,, S, are t-congruent if S;, S, are. Conver-
sely, let 8;, S, be f-congruent, so that S; — YS,Yt = N 4", where ¥ is
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non-singular. By the argument of the first paragraph, Y is non-singular.
Since 4" is nilpotent, it is sufficient to prove that if S; — Y,S, Y] =N, e 4
({ = 1), where Y, is non-singular, then S; — Y,S,Y} = N, ¢ #"+1, where
Y, is non-singular. Now N} = eN; and so, by the trace condition,
N, = M, 4+ eM}, where M, eA". It is now easily verified that Y, =
(I+M,(Y,S,Y]))Y, meets the requirements. This proves the theorem.

The following reduction theorem holds without any restriction on the
commutator rings involved. It is an immediate consequence of the uniqueness
of the Fitting decomposition.

THEOREM 2.2.2. Let f, g be non-degenerate sesquilinear forms on W and

[=Hh® - ®fx, £=8 D " D g

thetr Fitting decompositions corresponding to (1.4.7). Then [~ g if and
only if, f,~g, for it =0,1,---k.

The theorem shows, in particular, that the general case of equivalence
reduces to the two subcases: (a) P + I is non-singular and (b) P + I is
nilpotent. By lemma 2.2.1, cor., the approximation theorem is valid in
case (a), even when p = 2. Thus the essential difficulties are concentrated
into case (b).

Definition. Let R be a ring with 1 having an involutory anti-automor-
phism «. The group

N(«, R) = { € R|zz™ = 1}

is called the norm group of R with respect to «.

In the theory of the centralizers of the elements of a classical group, the
norm groups N = N(}, ¥) play an important part. Let N, = N, (}, ¥)
(f=0,1,---) denote the normal subgroup of N formed by the Y eN
such that Y =7 (mod 4'%). Let S = S*(},%) (1 =0, 1, - - -) denote the
additive group formed by the Y e 4% such that Yt = 4 Y.

THEOREM 2.2.3. If € satisfies the trace condition,
N|N, = N(t, %),
NNy = S7/Sn (1= 0,1,-+4).
Proor. Consider the group homomorphism 7(Y) = ¥ of N into N (%, %).

Let YeN(t, %), where Y € €. Then YYt=1 (mod A”) and the proof of the
approximation theorem shows that ¥ = ¥,, where Y, ¢ N. Thus n(N) =
N(t, ¢). Since the kernel of % is clearly N,, we have N/N, ~ N(t, %).

Consider next the mapping ((I — M) =M + S,,; of N, into S,/S,.1,
where S, denotes the additive group of A2, If ] — M and I — M’ ¢N,,
we have

I—M{I—-M)=I—M— M (modS,,,),
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whence-{ is a homomorphism with kernel N,,,. Also
I=I—-M)I—-—M)=I—-M— MtmodS,,,),

so that M + M*teS,,,. By the trace condition, M 4 Mt = M, + M1,
where M, e S,,,. Thus

(I — M) = (M — Ml) + Si+l € (S: + Si+1)/si+1

and so {(N,) C(S7 + Si)/Sin-

Conversely, let R € S;. We prove that R + S;,; € {(N,) by showing that
if R+S,,=R,+S;,;, where R, + Rl — R,R[¢S,,; ( =1), then
R+ S,;; = R, + S;,,, where R, + R} — R,R} €S,,,,,. In fact, by the
trace condition, R; + R} — R, R} = R, + R}, where R,eS,.;. Then
R, = R, — Ry(I — R})™ meets the requirements. This proves that
E(ND) = (57 + Siad/Sin-

We now have

NNy = (57 + Sea) /S = S7/Si,
which proves the theorem.

2.3. Multipliers. In the present section, we determine the conditions that
a given linear transformation /7 be the multiplier of some form.

Let IT be the matrix of /7. Then (1.4.5)’ shows that, if [T is a multiplier,
II is similar to IT*~1. We indicate this by the symbolical notation *

(2.3.1) I ~ IT*,

Let IT = II; @ * - - be a splitting of II into indecomposable parts and let
R be any indecomposable linear transformation. If % of the summands I7;
are similar to R, we say that R has multiplicity 4 in I1. Then (2.3.1) holds if,
and only if, R and R*~1 have the same multiplicity in I7 for every R.

LeEMMmA 2.3.1. Every linear tramsformation S @ S*7' is a multiplier.
This follows at once from the matrix identity

0 n /0 n*1 /S 0
R O [N S
S*-1 0/ \S*1 0 0 S*
LemMA 2.3.2. If IT satisfies (2.3.1) and [1? — I is non-singular, IT is a
multiplier.

Proor. By the previous lemma it is sufficient to prove this when IT
is indecomposable. By (2.3.1), there exists a non-degenerate sesquilinear
form f(x, y) such that I = II-1, where t denotes the f-adjoint. Let P be the
multiplier of fand write Y = P~1][]. Since the multiplier of g (z, ¥) = f(, yQ)

* ~ indicates similarity ot matrices or linear transformations.
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is PQ'Q-1, it is sufficient to prove that Y = Q'Q~? for some Q.

Let ¢ denote the commutator ring of 1. Since II'' = IT, we have Y ¢ o
by (2.1.2). Since I7 is indecomposable, " is a completely primary ring and so
every element of 4 not in the radical is non-singular. Since I — I is
non-singwlar and I — I = II(Y + I) — (IIY +I), at least one of ¥ - [
and ITY + I is non-singular. In the first case, take Q= (Y + I)~! and in
the second, Q = (IT 4 IN(ITY + I)~! (this choice being possible because
IT + I is non-singular). This proves the lemma.

LemMa 2.3.3. Let IT be an indecomposable ¢-nul * linear transformation
on W, where ¢ = §. Suppose that
(i) of J ts the identity and $(¢) = t — 1, then m s odd;
(ii) 2f J s the identity, p = 2 and $(t) = ¢ + 1, then m is even.
Then II is a multiplier ¥*.

Proor. Let 0 denote the involutory automorphism g(/7) — g’/ (II?)
of & = Z[II]. Suppose that we have determined a mapping y: Z — D
such that

() x is Z-linear;

(b) x(Y?) = x(YII)’ for all Y ¢ Z;

(c) x does not vanish identically on the minimal ideal .# == Z¢(II)*
of Z.

Let 4 be a vector such that u, «ll, - - -, «lI™ 1 are a basis of W. Then we

prove that the equations
(2.3.3) (wlli, wll’) = y(II*-7+1) (6i=0,1,---m—1)

define a non-degenerate sesquilinear form f(z,y) = (x,y) on W, whose
multiplier is /1.
We first remark that

(2.3.4) (I, y) = (=, yII7) (x, ye W),
(2.3.5) (uR, uS) = x(RS®II) (R,SeZ).

By (2.3.4), the “left radical” “W is invariant under I7. Hence, if *W # {0},
W4 C°W. By (2.3.5), this implies that y vanishes on ., contrary to (c).
Thus “W = {0} and so f is nondegenerate. Finally, since
(uR, uSII) = x(RSII°IT) = y(RS%) = yx(SR°IT)’
= (uS, uR)’ (R,SeZ),
IT is the multiplier of f.

* Cf. § 0.3.
** Zassenhaus ([20], theorem 1(b)) gives an interesting construction which essentially redu-
ces the present lemma to the case where ¢(I7) = 0.
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It remains to construct y. Let¢(t) =2 4+ - - + B, d(f)* =™+ - - -+ «a,
so that m = de, « = B°. We suppose first that m is odd: m = 24 + 1. Then
each Y ¢ & has a unique representation

,‘ .
Y=73 9l (n;i€ 2),
—4
and we prove that x(Y) = Azn_, satisfies (a)—(c) for suitable ie D.
(a) obviously holds for any A. Since II™#¢(II)*t = ge I+ A ---,
{c) holds provided that A 3= 0. Finally, since

Ll #
Y0 =3 0, YII =iz Mo dTF — 9, IT#(a + - - ),
= 2 |

(b) holds if, and only if,
(2.3.8) 2+ da=0.

Since ¢ = ¢, aa/ = 1. Hence 4 = va/ — 7/ satisfies (2.3.6) for any v e D.
Thus we get a non-zero solution 4 unless J is the identity, p # 2and « = 1.
But these conditions are excluded by hypothesis (ii), for « =1, m odd and
¢ = ¢ imply that (¢ + 1)|¢(¢)* and thus that ¢ + 1 = ¢(¢).

Suppose now that m is even: m = 2u. Each Y ¢ 2 has a unique represen-
tation

»
Y= 3nIl' (n: € Z),
1-p
and we prove that x(Y) = Az,_, + 477, satisfies (a)—(c) for suitable
AeD. (a) holds for any A. An easy calculation shows that (b) also holds
for all 4. If d > 1, the equation

H1—p¢(n)a—1 =B I - IJs—d+1

shows that (c) holds for any A0 If d =1, so that ¢é(f) =¢+ 8,
x(II*=#$(IT)*1) = Ap™ 1 + A’ is non-zero for suitable A, unless J is the
identity and ™1 = — 1 But these conditions are excluded by hypothesis
(i), for since g’ = p2 =1, p™1 = — 1 implies that ¢ + g = ¢ — 1. This
completes the proof.

THEOREM 2.3.1. Let IT be a linear transformation on the finite-dimensional
space W. Then II is the multiplier of a non-degenerate sesquilinear form on W
if, and only if,

(i) IIT ~ IT*1;

(i) 4f J is the identity, the multiplicity of (t — 1) as elementary divisor of
I 3s even (k=1,2,---);

(iii) ¢f J ds the identity and p # 2, the multiplicity of (¢ + 1)**7! as ele-
mentary divisor of IT is even (h=1,2,--).
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Proor. The sufficiency of the conditions is easily proved by splitting IT
into indecomposable parts and applying the preceding lemmas. Suppose,
conversely, that I is the multiplier of the non-degenerate form f(z, y) =
(z, y). We have proved that (i) is necessary. In proving (ii), (iii) necessary,
we may, by the Fitting decomposition and lemma 1.4.6, cor., assume that I7
is of commutative type with a single elementary divisor (¢ — 1)%* or
(¢ + 1)%*71, say of multiplicity 4. We may also assume that $ £ 2 in the
second case and that J is the identity in both cases. Then the left hand side
of the equation (z, y) — (y, #) = (y, *(IT —I)) is an alternate form, whence
the rank of IT — I, viz. u(2k — 1), is even. Thus the multiplicity u is even
as required. This proves the theorem.

Supplementary Remarks. The following discussion of the construction in
lemma 2.3.3. is required only in § 2.6. Since we shall be comparing the
constructions corresponding to different powers ¢¢ of the one fixed polyno-
mial ¢, we shall write I1,, &, - - - instead of II, &, - - -. We assume that J
is the identity, d > 1, p # 2. Since ¢ = §, dis even. A fortiori, the dimension
de of the Z-space Z, is even. Since d > 1, we may take 4 = 1 in the defini-
tion x,(Y) = An_, + 477, of x,. Let us now consider the quadratic form
p.(Y) = %,(YY?) on Z,. The matrix of p, is (2 + 27) = }(I + 1)L,
where £ is the matrix of f. Therefore p, is non-degenerate. If e is even,
p. is a form of maximum Witt index Lde. In fact, Z,$(I1,)¥ is a totally
isotropic subspace of dimension {de. If ¢ is odd, p, is a form Witt index %de
or Yde — 1; moreover, all the forms py, ps,* - have the same Witt type.*
To see this, we remark that %, = 2 ,¢(I1,)}**V is totally isotropic and that
¥, = Z,$(I1,)}* 1 is its perpendicular space. Hence if #; is any comple-
ment of %, in ¥",, the restriction o, of p, to #, has the same Witt type as p,.
We take #, as the subspace with basis elements 7513~ (T, )ite-D)
(¢ =0,1,---,d — 1). The first 4d — 1 elements span a totally isotropic
subspace, so that the Witt index of ¢, is 14 or 1d — 1. It is easy to see that
the matrix of ¢, with respect to the above basis is independent of ¢, whence
p1s P3, -+ - are all of the same Witt type. This proves our result.

2.4. Equivalence invariants. We consider t-congruence in € = €/A4.
This leads to explicit solutions of the equivalence and conjugacy problems
when the trace condition holds in €. We make constant use of the notational
conventions in (2.2.2).

Let P be a multiplier on W. We choose a direct decomposition of P into
multipliers, none of which is itself a proper direct sum of multipliers; say,

(2.4.1) P=P @®P® - -@®@P,®---® P,
where terms with like subscripts are similar. Then we choose a reference form

* Cf. Bourbaki [1], § 8.
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(2.4.2) f=hoh® L& -®f "

where terms with like subscripts are equivalent and where, if P, is decom-
posable, f, is constructed by the method of lemma 2.3.1. A reference form of
this kind will be called standard. When comparing forms with similar multi-
pliers, we shall always assume that the corresponding reference forms are
equivalent.

Suppose that P, is indecomposable for ¢ =1, - -+, 7, and decomposable
for ¢ =17+ 1,--+s. In a suitable coordinate system, the matrices of f, P
have the forms

(2.4.1) 2 = diag (2%, -, 2°), P = diag (P, -, P’),
where, if 1 £ i <7,
(2.4.2) 2! = diag (£2,,---, 2,), P'= diag (P;,---, P;),
| S —
m; m;

- P, = 2,2}, P, indecomposable,

and where, if r +1 =35 < s,

A

(2.4.3) IT' = diag (I, - - -, I,), I, indecomposable.
N S |
m;
Let Q € €. The matrix of Q has the form
(2.4.4) Q = (QY);j=1..0r

where P*Q% = Q% P’. The matrix Q' of Q' is given by
(Q'r)ta' — (Qi)*(Qii)*(Qi)*—ll
In particular, the diagonal block Q* belongs to the commutator ring €* =
€ (P') and (Q")* is the adjoint (Q*)' of Q% with respect to 2*. But the
mapping
¢>0"e- 00"
is an isomorphism of € onto the direct sum ¢* @ DE (Jacobson {6],
Ch. 4, § 8). It follows that @ is non-singular and }-symmetric if, and only if,
Q' is non-singular and }-symmetric (i =1, ---s) and that @, R (Re%¥)
are t-congruent if, and only if, QF, R are t-congruent (i=1,--"s).
Let 1 <7< 7. Then

(2.4.5) Q" = (QUr =1, -omp
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where Q}, belongs to the commutator ring €, = €(P;). Let J, denote the
2,-adjoint mapping in %;:

Y= QF y*Q*1 (Ye?)
Then

Q)" = (@27,
i.e. 1 is the conjugate transpose operation with respect to J,. The mapping

Q" - (QF)

is an isomorphism of € onto > the total matrix algebra M, () over %, and,
since P; is indecomposable, €, is a division ring. Suppose now that @, R are
non-singular and t{-symmetric. Then the matrices (Q_}'{'I,), (R—}\‘”) are non-
singular and J,-Hermitian, and Q%, R* are t-congruent if, and only if,

they are J,-congruent. The J,-Hermitian form with matrix (Qf\;) is called
the i-th Hermitian invariant of the t-symmetric element Q.

LEMMA 2.4.1. Let §, R be non-singular, t-symmetric elements of €. Except
when p = 2, J is the identity and I + P is singular, @, R are t-congruent if
(and only if) their corresponding Hermitian invariants are equivalent.

Proor. We have to prove that under the conditions stated @, R are
t-congruent for ¢ =7 4-1,---s,
First Case: II, ~ T}, The matrix Q% has the form

i vy, *
"= ( * vz) ’
where Y;, Y, belong to the anti-isomorphic commutator rings I =
€ (II*), I''* = € (II'*). Since IT*, (IT**)~! have no common indecomposable
part, the mapping Q¥ — Y; @ ¥, is an isomorphism of €* onto I'* @ I'**.
Since QF is non-singular and {-symmetric, and since
Yy o«
i = |2 ,
@ = (7 v
we have 172 = Vf and ¥, is non-singular. Similarly, R% >Z, ® ZF, where
Z, is non-singular. Then
SHQH(ST)t = R¥

St — (Zlyfl 0),
0 I

where

so that Q%, R are t-congruent as required.
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Second Case: II, ~ IIF*. By theorem 2.3.1, J is the identity and II, is
of commutative type with a single elementary divisor (¢ — 1)**or (¢ + 1)1,
It is convenient to modify the previous notation by taking

Pi = diag (II,, - - - II,)).
| NE——
2m‘

By hypothesis, p # 2. Hence, by theorem 2.3.1, — II, is a multiplier, say
of the form g; with matrix ¥,. Then — P* is the multiplierof gt =g, ® - - -
@ g;. Let T denote the adjoint with respect to g¢. It is easily verified that the
elements of * corresponding to Q¥, R¥ are }-skewsymmetric and that they
are t-congruent if, and only if, they are J-congruent. On the other hand,
these elements may be identified by our previous method with non-singular,
2m,-rowed, J;-skew-Hermitian matrices over the division ring €., where
€. = €(II,) and J, denotes the g,-adjoint. Now &, ~ D and J,is the identity,
since I, is (¢ - 1)-null and J is the identity. Thus the representing matrices
are essentially skew-symmetric matrices over the field D. Since any two
non-singular, skew-symmetric matrices are congruent, our result follows.
This proves the lemma.

We are now in a position to prove the main theorems about equivalence
and conjugacy. Let g be a non-degenerate sesquilinear form on W with
multiplier P and let f be a standard reference form with multiplier P. Let Q
be the representative of g with respect to f. Then the Hermitian invariants
of Q are called the Hermitian invariants of g with respect to f. If X is an ele-
ment of a unitary or orthogonal group, the Hermitian invariants of X are
defined to be those of its form Fyg.

THEOREM 2.4.1. (Equivalence theorem) Let D be a division ring with
involutory anti-automorphism J. Let [y, [, be non-degenerate J-sesquilinear
forms on the finite-dimensional space W over D. Let P,, P, be their multipliers.
If the characteristic of D is 2 and J leaves invariant every element of the cenire
of D, let Py +1I be non-singular. Then f,, f, are equivalent if, and only if,

(a) Py, P, are similar;

(b) the corvesponding Hermitian invariants of f,, f, (with respect to equiv-
alent standard forms) are equivalent.

This follows from the theorem 2.2.1 and lemmas 2.2.1 (cor.), 2.4.1.

COROLLARY. Under the conditions of the theorem, f, is directly decomposable
if (and only if) P; has a proper direct decomposition Py, = Py ® Py, where
Py, P are multipliers.

PrROOF. Write f, P instead of f;, P, and suppose that P has a proper
decomposition (2.4.1)". Choose a standard form f as in (2.4.2)". Let /' be
represented with respect to f by the matrix Q in (2.4.4). We choose a form g
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with multiplier P as follows. If s > 1, the matrix R representing g with
respect to f is taken as diag (Q,---, Q*). If s=1, and r =0, g is taken
as f. If s =7 =1, R is taken as any diagonal matrix J,-congruent to the
Ji-Hermitian matrix Q. Then g is decomposable and has the same Hermi-
tian invariants as f. Hence f is decomposable.

THEOREM 2.4.2. (Comjugacy theorem). Let D be a division ring with
tnvolutory anti-automorphism J, V a vector space over D. Let G be either the
unitary group of a non-degenerate J-Hermitian or J-skew Hermitian formonV
or (when D is a field and [ the identity) the orthogonal group of a non-degenerate
quadratic form on V. Let X, X, € G4, where G4 is the subgroup formed by the
finite-dimensional elements of G. If the characteristic of D 1s 2 and J leaves
invariant every element of the centre of D, let Wy n Wy = Wyn Wy = {0},
where Wy, W, are the spaces of X, X,. Then X,, T, are conjugate in G4
(or G) if, and only if,

(a) X, X, are similar;

(b) the corresponding Hermitian invariants of X,, X, (with respect to
equivalent standard forms) are equivalent.

Proor. The theorem follows from theorems 1.3.1. and 2.4.1. We have
only to check that the hypotheses of these theorems hold, viz. that

(i) if p = 2 and the restriction of J to Z is the identity, then P, 4 I is
non- singular

(i) W, n (V) = {0}.

(i) folows from lemma 1.4.4 (cor.) and our hypothesis that W? = {0}
in the case under consideration. If either $ = 2 or the restriction of J to Z
is not the identity, then (ii) is obvious because ¥ = V. In the contrary
case, (ii) follows trom the hypothesis that W# = {0}; for, since W, C V', we
have W¢ = W, n WD W, n (V7)t. This completes the proof.

Supplementary Remarks. With the notation of the beginning of this section,
let g be a form with multiplier P which is represented by Q with respect to f.
Let 1 denote the adjoint with respect to g. It is easy to see that the norm
group N (i, ¥) consists of the Y € € such that YQY'! = Q It follows that

N(1, % ) is isomorphic to the direct product H, X H, X ++- X H,, where H;
is the group formed by the Y*e@* such that }—"(—2"";’-‘* = Q. Using the
same methods as before, we see that

(i) if # < 7, H, is isomorphic to the unitary group of the ¢-th Hermitian
invariant of g;

(ii) if ¢ > 7 and I, ~ II}™, H, is isomorphic to the full linear group
GL(m,, F) where T, is the division ring € (H );

(iii) if # > 7 and I, = ¥, and if we assume that p 7% 2, then H,
is isomorphic to the symplectic group Sp(2m,, D).
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In order to determine these groups in practice, we need to know the
division rings and anti-automorphisms involved. The following lemma gives
some information or these points.

LEMMA 2.4.2. If P is indecomposable and $-nul, € ~ A, where A is the
division ring obtained by adjoining * a root T of ¢(t) to D. For a suitable choice
of the reference form f with multiplier P, € can be identified with A in such a
way that

Car ) =3 (@ fl)r (D),

where A = 4 A7 e D. A can be chosen as 1 except when D is non-commutative,
the restriction of J to Z is the identity and $(t) = ¢ 4- 1.

Proor. Using the definition (0.3.1), we may identify ¥ with the ring
D[P]. P commutes with the scalars «f ¢ D[P] and P' = P-1. Also, since

#(P) is nilpotent and € a division ring (because P is indecomposable),
¢(P) = 0. Thus the mapping >«;7* — ¥ &, P* is an isomorphism of 4 onto %.
It remains to prove that, for a suitable choice of §,

(2.4.6) (@) = (Aol 2) (x e D),

where A satisfies the stated conditions.

If the matrix of f with respect to the basis #, P, uP?, - - - has coefficients
in Z, it is clear that (2.4.6) holds with 4 = 1 (for «f ¢ D[P] has matrix «f
with respect to this basis). An examination of the proof of lemma 2.3.3
shows that such a choice of f is possible except when D is non-commutative,
J is the identity on Z and ¢(f) = ¢ 4 1.

Let us now consider this exceptional case. Write P = + I 4 M, where
M is nilpotent. Choose a form f with multiplier P and let 2 = (w;) be its
matrix with respect to the basis u, uM, ub?, - - -. Let (aI)t = D7 B, M".
It is clear that 8, = ¢, where 6 is an involutory anti-automorphism of D.
Comparing the last columns in the adjoint equation

Bo Bi "+ -\*
diag (s, -w) 2 =0 P T ),
0 0 --- B,

we get aw;, = w;,(«?)’ ({ =1, -m). Since not all w,, are zero, o’ has
the form A-1a’2 for some AeD. Since 6 is involutory, « = A7 147 a(A71)74,
whence &7 = A, £ e Z. Since £{/ =1 and J is the identity on Z, { = + 1
and so &7 = 4+ 1 as required. This proves the lemma.

* Cf. § 0.3.
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2.6 Centralizers. We investigate the centralizers of the finite-dimensional
elements of a classical group G. We suppose first that G is the unitary group
of a trace-valued form F(z,y) =z -y (=¢(y-%),e = 4+ 1) on V and later
describe the modifications necessary in the orthogonal case. Let X be a
finite-dimensional element of G with space Vx = W, form fx(», v) = («, v)
and multiplier Py = P. Let C = C(X) denote the centralizer of X in G,
% = ¥ (P) the commutator ring of P.

Each element Y of C leaves W and fx invariant. Let #(Y) denote the
restriction of Y to W. Clearly, the mapping Y —#(Y) is a homomorphism
of C into the group of invertible elements of €. The kernel C; = C,(X)
consists of the Y which leave every element of W invariant. Thus

C, = {Y ¢ G|Vy C W,

Lemma 2.5.1. C[C, is isomorphic to the norm group N (I, %), where
denotes the adjoint mapping with respect to fx.

Proor. We have to show that #(C) = N(], €). Let Y € C. Since Y leaves
fx invariant, we have

(u,v) = (un(Y), m(Y)) = (u, vp(Y)n(Y)?)

when %, ve W. Thus 5(Y)eN(], ¥) and so 5(C) CN(], ¥).

Conversely, let ReN(I, €). Since R leaves fx invariant it also leaves the
restriction of F to W invariant, i.e. it is an isometry of W onto W. By Witt's
theorem, R can be extended to an element Y of G. Clearly, Y ¢ C and R =
7(Y), whence N(, €) C#(C). This proves the lemma.

Notation. 1f L is a subspace of V, the equations
(z+LP)-(y+LP)==2-y (z,yel)

define a non-degenerate form on L/L? called the core of F on L.

Each element Y of C, leaves W' and (W*)? = W* invariant. Let #,(Y)
denote the linear transformation on W+/W? induced by Y. Then 7, is a
homomorphism of C, into the group of non-singular linear transformations
on W*/We. The kernel C, = C,(X) of #, consists of the Y which map every
coset ¢ + W#(x e W) into itself:

Co={Y eGIVyCW* and W(I — Y)C W¥).
LemMa 2.5.2. C,/C, = U(F'), where F' is the core of F on W+.

Proor. Itisevident that #,(C,) CU(F’). It remains to prove that U (') C
7;(Cy), i.e. that each S" e U(F’) can be “extended” to an element of C;.

Choose a basis #,, - -+, u, of W7 and elements v,, - - -, v, of V such that
#;*v; =04 (7,7 =1, -+ -, 7). Then the subspace M = H*, where H = W+
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{v,,* -, v}, is a complement of W#in W andof Hin V: W+ = M @ We,
V =M @® H. We now define a linear transformation S on V as follows:

AS =h (heH),
mS = m' when (m 4+ WP)S' = (m’ + W*) (m, m" e M).

Then it is clear that S e C, and #,(S) = S’. This proves the lemma.

Let Y eC,. Since Y is a finite-dimensional element of G, its restriction
7.(Y) to W+ has the form
(2.5.1) z—>x— > (T w)u, (wy, -, w, e W),

i=1

where, as before #,, * - -, %, are basis a of W#. The kernel C; = C,(X) of the
homomorphic mapping 7, consists of the Y which leave every element of W+
invariant. Thus

Cs = {Y eG|Vy C (W + W)t = We).

LemMMA 2.5.3. C,/Cy = A, where A 1ts the abelian group formed by all
linear transformations on W+ of the form (2.5.1).

ProoF. Let Y’ be the element (2.5.1) of A. It is required to prove that Y’
can be extended to an element of C,. Let v,,---, v, and M be defined asin
the proof of the previous lemma. Without loss of generality we may suppose
that the w, are in M. We now define a linear transformation Y on V by:

zY = xY’ when xze W+,

zY =x when zeW;
r

v, Y =0, —ew, — > Ayu; (f=1,---,7),
1

where the 4,; are arbitrary elements of D. Y is of course an extension of Y’.
It is easily verified that Y ¢ C, if, and only if, 4;; + i, = (w,; - w;) (1,7 = 1,
-+, 7). Such a choice of the 4;; is possible because F is assumed to be trace-
valued. This completes the proof.
The structure of C, is easily determined. Each of its elements has the form

r
(2.5.2) T2 — > (T U)o,
i,i=1
where u,, « - -, u, are a basis of W°. Conversely, the linear transformation
(2.5.2) is an element of C, if, and only, if, w,; 4+ ewf; =0 (5,7 =1, -, 7).
Thus we have

LEmMMA 2.5.4. Cg is isomorphic to the additive group formed by all r X r
matrices K over D such that K 4 ¢eK* = 0 (r = dim W?).
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The following important reduction theorem is an immediate consequence
of the uniqueness of the Fitting decomposition. It allows us, in particular,
to restrict attention to the two special cases: (a) W =V and (b) X — I is
nilpotent.

THEOREM 2.5.1. Let
V=Vo@® - ®V, —eX1=(—eXp") @ - (— XY,

be the Fitting decomposition of — eX 1 corresponding to (1.4.7). Let G, = U (F,),
where F, is the restriction of F toV,, and let C(X,) be the centralizer of X, in
G, (4=0,---,k). If Y is a linear transformation on V, then Y ¢ C(X) if,
and only if, it hasthe form Yy @ - - @ Y, where Y, e C(X,) ¢ =0, - - -, k).

Although lemmas 2.5.2—2.5.4 are perfectly explicit, lemma 2.5.1 requires
further elucidation. When ¥ satisfies the trace condition, the finer structure
of N(I, €) is given by theorem 2.2.3. The group N({, %) was discussed in
detail in § 2.4. With the groups S; in mind, we now study the following
situation. Let # be an ideal of € such that # = #* CA". Consider its
additive subgroups

S = = (Y eS|V =0V} (0= +1)

The #9 are vector spaces over the subfield, Z,, of the centre Z formed by
its symmetric elements. We shall determine their dimensions dim, .#?
over Z,. We assume that the dimension of D over Z is finite and that, when
p=2and Z=Z,, I + P is non-singular. The first asumption ensures
that dim,¥ is finite, for the elements of ¥ are finite-dimensional Z-linear
transformations.

We begin with three simple observations. Firstly, our assumptions imply
that % satisfies the trace condition. Secondly, ¥ - Y + YV e f) is a
Zy-linear mapping of # onto S+ with kernel £, so that

(2.5.3) dimy £+ + dimy S~ = dim, £.
Thirdly, if % contains a non-singular central element M such that M* = —M,

then Y+« MY (Y € f*) is a Zlinear isomorphism between £+ and #—.
Hence, in this case,

(2.5.4) dim, #° — 3dim, & (0 = + 1).

(We shall regard dim,.# as known, so that (2.5.4), when it holds, is a com-
plete answer to our problem.)
Suppose that we are given a direct decomposition

fX=f1@"'@fk; P=P1@’@Pk

Let I = E, 4 - -+ + E, be the corresponding idempotent decomposition
of the identity. If J# is anideal of €, we write #,, = E;, FE, (4, =1,-*, k).
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Then each Y e # has a unique decomposition ¥ =3, ,Y,,, where Y
(= E,YE)) e £, - €, may be identified with the commutator ring of P,
and then I (applied to the elements of €,,) becomes the adjoint mapping with
respect to f, - A", is the radical of €;, #,, anideal of €,;. We prove now that

k
(2.5.5) (dimy #? — } dim,# z (dimy S5 — § dimy S y,).

Indeed let Y e f. Since E} = E,, we have (Y*),, = (Y,;)'. Therefore
Y ¢ #9 if, and only if, Yte.ﬁf‘(l SISk, Y, =0 ) 1=5i<] k).
(2.5.5) now follows after a simple computation.

In view of (2.5.5), we may now assume that f is directly indecompsable.
By theorem 2.4.1 (cor.), P has no proper direct decomposition into multi-
pliers. By theorem 2.3.1 and our assumption that I 4+ P is non-singular
when p = 2 and Z = Z, either P is directly indecomposable or P has a
proper direct decomposition P = (— P’) @ (— P'"), where P’ and P”
are directly indecomposable multipliers. If g is a form with multiplier P and
t the adjoint mapping with respect to g, it is easy to see that #~%(1) and
SO () are isomorphic Z,-spaces. We may therefore now assume that P is
directly indecomposable.

We distinguish two cases. First case: either Z s£ Z, or P* — I is non-
singular. Here % contains a non-singular central element M such that
M = — M and so dim,#? is given by (2.5.4). In fact, if Z, # Z, we may
take M = (4 — A7)I, where 1 is any element of Z not in Z,, and if P? —
is non-singular, we may take M = P — P~l. Second case: Z == Z, and
P = 4TI — R, where R is nilpotent and indecomposable. Let R°* =
R~ 3£ 0; then £ is one of the ideals S, = %Ri(1 =<7 <¢). Let now
Y = aR' + BRH + - -+ ({ < ¢). Bylemma 2.4.2, Y* = o/’ (— 1))R* + - - -,
where «/’ has the form A1a/A, A7 = + A. Let D? denote the Z,subspace
of D formed by its elements u such that u4”’' = 6 u. Then the dimensions of
D and D? have the forms

dim,D = k2, dim,D? = 1k(k + 67) (r==+1)

(cf. Dieudonné [2]). Since YV + Y* = (a £ o/'(— 1)) )R* +--+ and ¥
satisfies the trace condition, it follows that

dimoff - dimojfﬂ = dimo('ﬁf + L)l F i
= 1k(k 4 (— 1)*67).
Thus

(2.5.6) (dimy#? — Ldim,.#,) = (dimg.#Y,, — $dim,# ;) -+ §(— 1) kor,

from which the value of dim,.#? — } dim,.#; follows at once.
In particular, suppose that G is a finite-dimensional symplectic or ortho-
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gonal group over a field of characteristic not 2. Let uy be the multiplicity of
(¢t + o)* as elementary divisor of X (w = 4+ 1;¢=1,2,---). The above
methods give, for the group Sy in theorem 2.2.3,

(2.5.7) dim,Sg (], ) — $dimy A" = e 3 (uge1 — 1),

k21
where ¢ = 1 or — 1 according as G is symplectic or orthogonal.

Orthogonal groups. (G = 0(Q), Q(x) = lz|, » = 2). The principal modifica-
tions necessary (apart from the obvious replacements of F by Q, F, by Q,,
etc.) is to substitute the singular radical for the radical throughout. Thus,
the core of Q on L is the non-degenerate quadratic form on L/L? defined by

o+ L = lo| (wel).

Also W? is to be replaced by W7 in the definitions of C,, C5, A and in lemma
2.5.4, All the unitary results carry over with the possible exception of lemma
2.5.2. I do not know whether C,/C, is always isomorphic to the orthogonal
group O(Q’) of the core Q' of Q on W*. However, this is true if W° = We¢,
and in any case C,/C, is isomorphic to a subgroup of O(Q’) which contains
all finite-dimensional elements.

2.6 Example: finite classical groups. We suppose now that D is a Galois
field GF(q), where ¢ = $*, and that the dimension, #, of V is finite. The
symplectic and orthogonal groups over fields of characteristic 2 are excluded
from the discussion. Three cases arise.

(A) Unitary. Here q is a square 7*> and 2/ = A". Any two non-degenerate
skew-Hermitian forms on V are equivalent, so that the unitary group
U(n, »?) is essentially unique. Its order is

(2.6.1) (U (n, 72)] = oAt fI (r* — (— 1)%).

In this unitary case we allow p to be 2.
(B) Symplectic. Here n is even: n = 2y. We assume that p 7 2. The
2v-dimensional symplectic group Sp(2v, ¢) is essentially unique and

(2.6.2) Sp@v, 9)l = ¢TI @ — 1)

(C) Orthogonal. We assume that p # 2. If n = 2», a non-degenerate
quadratic form |z| on V is equivalent to

1 4

D Xy, 1%y (of Witt index »)
1
or

(@} — 62%) + 3 zp; 17y, (of Witt index » — 1),
2
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where 4 is a fixed non-square of D. The corresponding orthogonal groups
are denoted by O, (2v, q), O_(2v, ¢) respectively. Their orders are

v—1

(2.6.3) 0.2, 9)| = 2¢”""(¢" F 1) 1;[ (g% — 1).

If n =2v+ 1, |z| is equivalent to
Sa? or 8>l
1 1
The common orthogonal group is denoted by O(#, ¢). Its order is

(2.6.4) [0@2v + 1,9)| = 2q"’ l_:[ (¢ —1).

For notational convenience, we observe the following conventions. If # is
even, O(n, g) stands for an unspecified one of O (n, ¢) and O_(n, ¢). If n is
odd, 0,(n, q) = O_(n, q) = O(n, g).

Notation. X stands for a non-singular linear transformationon V. ¢ = ¢(t)
stands generically for an irreducible monic polynomial over GF(g), distinct
from ¢. |¢| denotes the degree of ¢ and m($*) the multiplicity of ¢~ as elemen-
tary divisor of X. |K| denotes the number of elements in a finite set K.

Case (A). This is the simplest case. In a number of respects, U(n, q)
behaves like the full linear group GL (%, ).

(i) X s similar to an element of U(n, q) if, and only if, X ~ X*71, f.e.
m(@<) = m($*) for all $, x.

(i) Two elements of U(n, q) are conjugate in U(n, q) if, and only if, they
are stmilar.

(iii) The number of conjugacy classes in U(n, q) is the coefficient of t* in

] 1 + A
};Il (1 — qit") )
(iv) Let X eU(n, q). Write
[U(m,, Q) (¢=4),
4 = # -
)= (G om0 (679
B(g) = QFwermm UL T A (g4),
»
where Q = q‘“’.', m, = m(¢*). Then the order of the conjugacy class of X in
U(n,q) is
U (m, Q)I/I;[ B(4).

Proof of (i). Suppose that X ~ X*-1 Let P be the restriction of X!
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to W = V(I — X). Since P ~ P*71, P is the multiplier of a certain form f,
by theorem 2.3.1. Let

(2.6.5) Gz, y) = f(z.y) — Hy, =)’

Now, since W=V (I — X), dimV — dim W = m, + m, + - -+, where
m; = m((t— 1)*). Also, by (2.6.5), the G-radical W# of W is the null-space of
I — P. Hence dim W? = m, 4 my + - - -. Since dim W? < dim V — dim
W, G can be extended to a non-degenerate skew-Hermitian form F on V.
Then X is similar to the element of U (F) with space W and form f, which
proves our result.

Proof of (ii). Suppose that X ~ Y, where X, Y ¢ U(#n, ¢). By theorem
2.4.2, it is sufficient to prove that corresponding Hermitian invariants of
X, Y are equivalent. Let y, y be the Hermitian invariants of X, Y corre-
sponding to the elementary divisor ¢* (where ¢ = §). Let m’ be the common
multiplicity of ¢* as elementary divisor of X, Y, 4 = D[] the field obtained
by adjoining a root 7 of ¢ to D, J' the involutory automorphism of 4 which
extends J and maps 7 into v~. Then g, v are both m’'-dimensional, non-
degenerate, J'-Hermitian forms over 4. Since J’ is not the identity, y ~ o
as required.

Proof of (iii). We use a method of W. Feit and N. J. Fine ([3]). Let &,
denote the number of conjugacy classes in U (%, ¢). By (i), &, is the number
of similarity classes of linear transformations X such that X ~ X*-1
Let f,(¢), 5(¢), - - - be the invariant factors of X, where f,_, is a divisor of f;
for each 7. In terms of the quotients g, = f,/f;,;, the condition X ~ X*-1
means that

g:(0)#0, gi=¢§ (=12-),
g1l + 2Ig,| + 3Blgsl + - -
Let ¢(d) denote the number of monic polynomials g(¢) such that

g0) #0, g=4§ lgl=a.

(2.6.6)

Then, by (2.6.6),
Fo= X cld)e(dy) -

d;+2dgt-=n
and so

@)Er (c(0) = ko = 1).

||M8

zknt” = H
0 A=1

An easy enumeration gives c(z) = q%" + g¥¢D, so that Dc(d)f = (1 + )
(1 — ¢¥¢)~1. This proves our result.

Proof of (iv). It is required to prove that [C(X)| = [[sB(¢). We use
the notation of § 2.5. By lemma 1.4.4 (cor.) and lemma 1.4.5 (cor. 2) we have
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dim W+ = Ym;, dim W? = 3 m;,

izl 122

where m; = m((t — 1)!). By § 2.5 and theorem 2.2.3,

ICICy| = IN(1, 6)| = IN(1, ©)IIS5 (1, €)l
= IN(1, ®) |/ 1},

|C1/Csl = |U (mi, 9)1.

|Cal = gH(Zsz1m®-m?,

The value of |[N(], €)| follows from the discussion in § 2.4 and | 47| is easily
evaluated from elementary divisor theory. We find that

IC/CII = ( 1__[ B(¢))q}zizl(i‘1)ma—1+Zl§6<iim;+lm;ﬂ,
¢#i—1

whence |[C| = JIsB(¢) as required.

Case (B). This case is similar to the unitary one, but with added compli-
cations due to the elementary divisors (¢ + 1)*. Notation. If X € Sp(n, q), let
va:(X), vz (X) denote the Hermitian invariants of X associated with the
elementary divisors (¢ 4 1)%, (¢ — 1)*~1 of P respectively, and thus, by
lemma 1.4.5 and corollaries, with the elementary divisors (¢ + 1)%, (¢ — 1)*
of X respectively (=1, 2, - --). The y5;(X) are symmetric bilinear forms
over GF(q).

(i) X is simalar to an element of Sp(n, q) if, and only if,

(@) X ~ X*, :
(b) each elementary divisor (t 4 1)*+1 of X has even multiplicity.

(i) Two elements X, Y of Sp(n, q) are conjugate in Sp(n, q) if, and only 1f,

(@) X~Y,
(b) ¥5(X) ~ v (Y) and y(X) ~ y(Y) ((=1,2,-).
(iii) The number of conjugacy classes in Sp(n, q) s the coefficient of t* in
00 (1 + tzA)«i
a [ 1— qt“] ‘

(iv) Let X € Sp(n, q). Then the order of the conjugacy class of X in Sp(n, g) s
1Sp(n, Q)III;I B($),

where B($), A(P*) are defined as in the unitary case, except that, when ¢(t) =
t+ 1,
Ay = [P0l G
gm0 (my, g (u even).
Here O(m,, q) is the orthogonal group of the corresponding Hermitian in-
variant yi(X).
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Proof of (i). Let X € Sp(n, ¢). (a) holds asin the unitary case. By lemma
1.4.5 and corollaries, the multiplicities of (¢ + 1)%+, (# — 1)2*+3 (¥ = 0) as
elementary divisors of X are the multiplicities of (¢ + 1)%*+, (£ — 1)%+2 a5
elementary divisors of P. By theorem 2.3.1, (b) holds for (¢4 1)%*+,
(¢ — 1)2*+3(k = 0). It also holds for (£ — 1), because the multiplicity of
this elementary divisor is the dimension of the (non-degenerate, alternate)
core of F on W*. Thus the conditions are necessary. Their sufficiency is
proved as in the unitary case.

Proof of (ii). As in the unitary case. The v, are the only Hermitian in-
variants for which the corresponding automorphism J’ is the identity (by
lemma 2.4.2).

Proof of (iii). Let F(t) = > k,¢" be the generating function for the number
of conjugacy classes m Sp(n, q) By the Fitting decomposition,

F(t) = Fo(t)F, () F_(9),

where F,, F_, F_ are the generating functions for the numbers of conjugacy
classes of X € Sp(n, g) such that X% — I is non-singular, X + I is nilpotent,
X — I is nilpotent, respectively. By the method of the unitary case,

t) =11 2@,
A=1 i=0 .
where ¢’(d) is the number of monic polynomials g(¢) such that
g(0)g(1)g(—1) #0, g=g Igl=4d.
Let ¢(d) be the number of monic polynomials g(¢) such that
g0) #0, g=¢ Ilgl=a.

Out of these ¢(d) polynomials of degree d, c(d — 1) are divisible by ¢ 4 1,
c(@d—1) by £t —1 and c¢(d — 2) by #* — 1. Hence

¢'(d) = c(d) — 2c(d — 1) + c(d — 2)

2@ =1 —t)23c()

t

and so

An easy enumeration gives Y c¢(¢)#f = (1 + #)?(1 — ¢¢2)~!, whence

Since X —1I is nilpotent if, and only if, (— X) + I is nilpotent, we have
F () = F_(2).
Let X be a linear transformation such that X 41 is nilpotent and let m,
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be the multiplicity of (¢ + 1) as elementary divisor of X. The conditions
that X be similar to an element of Sp(n, g) are:

Moy =0(mod2) (1=0,1,--°)

my+ 2my 4 - =m.
Each such set of m, gives rise to 2° conjugacy classes of Sp(n, g), where s is

the number of non-zero multiplicities m,, my, - - +; for if m,, # 0 there are
two possible equivalence classes for the Hermitian invariant ;. It follows

that
Fo) = (e +23m)Em 238
2 4
=(1—&)" (1 i ;) (1 — )1 (i i ;) cen
o2 (1421 — ) @ (1 42
—Anl (l_tzl)z —E[l_tzkz]'
Hence
=) 2A\ 4
FO) = PP 0 =TT [t ]
as required.

Proof of (iv). As in unitary case. We remark only that |Sg| differs from
[#°(P)]¥ in this case. The correction factor (2.5.7) is incorporated in the
modified definition of A((t + 1)%#).

Case (C) Two kinds of complication arise in this case, the first due to
the elementary divisors (f 4- 1)* and the second to the fact that there are
two orthogonal groups for a given even dimension. Nofation. If X e O(n, g),
let y; (X)), ¥3:41(X) denote the Hermitian invariants of X associated with
the elementary divisors (£ — 1)2-1, (¢ -+ 1)% of P respectively, and thus, by
lemma 1.4.5 and corollaries, with the elementary divisors (f 4 1)*7,
(¢ — 1)¥+1 of X respectively ( = 1, 2, - - -). The y;_;, y5, are symmetric
bilinear forms over GF(g). It is formally convenient to define yy as the core
of F on W+*. Then yi_, is defined fori =1,2,---.

(i) X is similar to an element of some orthogonal group O (n, q) if, and only if,

(a) X ~ X*7,
(b) each elementary divisor (¢ & 1)2* of X has even multiplicity.

(i)' Let n be even and suppose that (a), (b) in (i) are satisfied. If any
elementary divisor (¢t -+ 1)%*+1 of X has positive multiplicity, X is symilar to an
element of O, (n, q) and also to an element of O_(n, q). If every such elementary
divisor has multiplicity zero, X is similar to an element of O, (n, q) (0O_(n, q))
if, and only if, 34 ,um($*) =0 (mod 2) (3,4 ,um($*) =1 (mod 2)).

(ii) Two elements X, Y of O(n, q) are conjugate in O(n, ) if, and only if,
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(@) X~Y,
(b) ¥51(X) ~ 31 (Y) and v (X) ~ v (Y) (6=0,1,---).
(i) Let &}, k;; denote the numbers of conjugacy classes in O, (n, q), O_(n, q)
respectively. Then

) _ = (1 + t2/\—1)4
+ n ___
2+ e =T[5
o) oo 1 — t4:\—2
Y — Ep)tn = (—)
nzo( ) }}1 1 — gt

(iv) Let X € O(n, q). Then the order of the conjugacy class of X in O(n, q) s
10(n, q)l/l;[ B(4),

where B($), A(P*) are defined as in the unitary and symplectic cases, expect
that, when $(t) =1t 4 1,

A= Ol (modd) )

g im(Sp(m,, q)|  (u even).

Here O(m,, q) is the orthogonal group of the corresponding Hermitian invariant
v (X).

Proof of (i), (ii), (iv). As in the symplectic case.

As a preliminary to the proof of (i)', we derive a formula for the Witt
type * of the fundamental quadratic form in terms of the conjugacy in-
variants of an element X of its orthogonal group O(n, ¢). (We may regard
O(n, q) either as the unitary group U(F) of the nondegenerate symmetric
bilinear form F{x, y) = x - y or as the orthogonal group O(|#|) of the quadra-
tic form || = 3F (, z).) There are 4 Witt types over GF(g),viz.0,1,6, o =
1 — J, corresponding to the forms 0, 22, 622, 22 — dy?, where ¢ is a fixed
non-square of GF(g). The Witt type of a quadratic form x is denoted by
7(x) and we write 7%, = 7(y5,,(X)).

Let W, g(z, y), P be the space, form and multiplier of X, f(z, y) a standard
reference form with multiplier P and Q the representative of g with respect
to f. The Hermitian invariants y%_;(X) are calculated with respect to f.
We suppose that the matrices of f, P, Q are as in § 2.4. By theorem 2.4.2,
we may assume that, in (2.4.4), Q = diag (QY, -, Q*). An index ¢
(1 =7 <) will be called exceptional when it corresponds to one of the
Hermitian invariants g, ¢, - - -, i.e. when (¢ < » and) the minimum poly-
nomial of Ptis (t — 1)**-1 or (¢ 4 1)2%. By (ii) above, we may assume that,
in (2.4.5), Q% is the unit matrix when ¢ is not exceptional, and a block-
diagonal matrix diag («f, 81, - - -) when ¢ is exceptional, where ax? -+ fy* + - -

* Cf. Bourbaki [1], § 8.
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is equivalent to the corresponding Hermitian invariant v, ;.

LEMMA 2.6.1. For a suitable choice of f,
(2.8.7) 7(|el) = (¢Z' pm($*)) o + éfzﬁ—p
Ny i

where summation >’ is over all powers ¢* of irreducible monic polynomials ¢ (t)
distinct from ¢, £+ 1, t — 1.

ProOF. Let |x|’ denote the restriction of |z] to W. By (1.1.3), [2|" = g(z, ).
Also it is easy to see that

(2.6.8) 7(l2l) = 77 + =(l=[).

Now let f¢, g%, |z|* denote the direct summands of /, g, ||’ corresponding to
Pt (1 =7=<s) and f; the direct summand of f corresponding * to P,
(1 =7 < 7). Suppose first that » + 1 < 7 < 5. Then fi(z, z) = g'(x, ) =
|z|. By (2.4.3), the matrix of |z|* is

H ((1) + (IT)*—1 g+ (H‘)*_l) ’

whence 7(jz|¥) = 0. (It is easy to see that this is true whether I + (II¥)*~1
is singular or not.) The corresponding part (3" um($#))@ in (2.6.7) is also
zero. In fact, summation is over the powers ¢# = (¢ 4- 1)?* (for which the
multiplicities m(¢$*) are even) and over the powers ¢# such that ¢ # ¢
(which occur in pairs ¢#, §# with m($*) = m(F*)).

Suppose next that 1 < 7 < . First let 7 be exceptional. By the way in
which g* was chosen, we have

z(l2l") = 1(g°(x, 7)) = 7(p) X 7(fi(=, 7)),

where y is the corresponding Hermitian invariant and where X denotes
multiplication in the ring of Witt types. The elementary divisor of P; is
either (¢ — 1)%-1 or (£ 4 1)2*. Since the matrix of f,(», z) is }(2, + 27) =
I+ P&, f(z, x) is a form of odd rank 2k — 1. Hence, replacing f*
by df* if necessary, we may suppose that 7(f,(z, )) = 1 and so

7(l2l¥) = 7(p).

These terms, with 77 in (2.6.8), give the part > 7%,_, in (2.6.7).

Finally, let ¢ be non-exceptional {(and =< 7). Then the minimum polyno-
mial of P, is a power ¢#, where ¢ = ¢, $(¢) # (¢ + 1). Since I + P; is
non-singular, f,(z, z) is non-degenerate. By lemma 2.4.2, the field obtained
by adjoining a root of ¢ to GF(g) has an involutory automorphism which

* There are actually m, different summands of f corresponding to the m; occurrences of P;
in (2.4.2). But all are equivalent because f is standard.

https://doi.org/10.1017/51446788700027622 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027622

[41] On the conjugacy classes in the unitary, symplectic and orthogonal groups 41

is the identity on GF(g). Hence |¢| is even, and so the dimension of f,(z, x)
is even. By the form of (2.6.7), and since fi(z, z) = g(», ) = |z|¥, it
remains only to prove that

(2.6.9) (1, 7)) = po,

i.e. that f,(x, #) has type 0, w according as y is even or odd.

To prove (2.6.9), it is convenient to change to the notation of the proof
of lemma 2.3.3. Thus we identify f,(x,z) with the quadratic form
p(R) = x(RR?) on the Z-space Z. The Supplementary Remarks in § 2.3
show that it 1s sufflClent to prove our result when x = 1. In this case,
Z ~GF(¢*), R = R+, where d = |¢|. Let £, be the subfield of £ of
index 2. There are ¢¥*~1 — 1 non-zero solutions S of ¥(S) = 0in 2, and,
for each such S, ¢} 4 1 elements R of & such that RR? = 'S. Hence the
number of non-zero solutions of p(R) = 0 in & is (g3 — 1)(g¥ + 1).
This shows that 7(p) = w, as required.

Proof of (i)’. This follows immediately from (i) and lemma 2.6.1.

Proof of (iii). Let

Fe(t) =3 (kg £ &),

where &% is the number of conjugacy classes in O, (n, q). Let Fg, Ft, F*, F%
be the similarly defined functions for the numbers of conjugacy classes of
elements X of O, (n, g) such that X* — I is non-singular, X + I is nilpotent,
X — I is nilpotent, ¢(X)$(X) is nilpotent, respectively.

By lemma 2.6.1, and the methods of the symplectic case, we have

(2.6.10) F+ = FEFEF* = FE(Fip,
(2.6.11) Fo=( II F5) H~F;§)’¥.
$=9¢# (+1) ¢+
© (1 — 24)
(2.6.12) Fi() =11 [TTqﬂTZ]

If § = § # (¢ 4+ 1), the coefficient of ¢* in F} is the number of similarity
classes of linear transformations X on V such that ¢(X) is nilpotent, i.e.,
the number of partitions of #/|¢|. Hence Fj(¢) = P(¢%'), where P(t) =
TI2. (1 — ). Similarly, if ¢ # ¢, F§(t) = P(2'%!). Hence

(2.6.13) Fr() = ﬁ Pt )N+ p (A )M
A=1

where N, is the number of ¢ such that ¢ = & % (¢ - 1), |¢| = 4, and M,
the number of pairs of ¢ such that ¢ #« &, || = A.
A similar argument, together with lemma 2.6.1, gives

(2.6.14) F;(¢) = ﬁ (P(— t})N2 P (122 )M4),

A=1
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‘Let @,(¢) be the generating function for the number of similarity classes
of linear transformations X on V such that X (X% — I) is non-singular.
Applying the two different methods used to evaluate Fg(¢), we get

=TI P({})Na+aMa

A=1

By (2.6.12)—(2.6.15), we have

(2.6.15)

Fg(t) = F(2)@o()[Fg ()P0 (t*)

(2.6.16) 2 =201 -t
o et

Let X be an element of O(#, ¢) = O(|z|) such that X + I is nilpotent and
let m,; be the multiplicity of (¢ 4+ 1)* as elementary divisor of X. Then

my; =0 (mod2) (1=1,2---),
my + 2my 4 0 =,
4 = ()

It follows, as in the symplectic case, that
Fit)=(1+ 228 () (1 + 23 (28) -
1 o
1+ A1
g [,

A=l 1 — g2

(2.6.17)

If s of the multiplicities m,, ms, - - - are positive and s > 0, then one half of
the 2* choices of the types 7{, 73, - - - give rise to an element of 0, (#, q)
and the other half to an element of O_(#, ¢). It follows that the coefficient of
¢* in F,(¢) is the number of solutions of

my;=0(mod2) ((=1,---)

2my, + dmy, + 00 = .
Thus

(2.6.18) F7(t) = (1 — 3y~
/\=1

The values of F%(¢) now follow from (2.6.10), (2.6.12), (2.6.16), (2.6.17),
(2.6.18). (Note that JIx.(1 — #-2) = [T, (1 + #4)~L)
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3. Equivalence (Exceptional Case)

Throughout § 3, D is a field of characteristic 2, J is the identity, W a
vector space over D of finite dimension M and P a linear transformation on
W such that N = I + P is nilpotent. We consider the equivalence of forms
on W with multiplier P. This is the simplest case in which theorem 2.4.1
breaks down. It is essentially more complicated than the cases treated
already and our results are complete only when D satisfies the additional
hypothesis:

(3.0.1) every ternary quadratic form x® 4 xy + Ay* + pz® over D is indefinite
(i.e. represents 0 mon-trivially).

We remark that (3.0.1) holds when D is perfect or when every quadratic
extension of D is inseparable. Hence we shall be able to solve the conjugacy
problem for the finite classical groups O{(», 2%) and Sp(n, 2%).

3.1 A matrix representation of €. For brevity, we omit most of the proofs
in this section. They are direct, though somewhat long, verifications.
Consider a splitting of P into indecomposable parts, say

W= o W.‘: Wi= @‘ Wu»

=1 =1

P=@ P, P,= & P,

i=1 i=1

where P, is indecomposable and has minimum polynomial (1 + ¢)¢, and
where some of the multiplicities #,; may be zero. By theoremn 2.3.1, m, is
even when 7 is even. By the same theorem, we may suppose that the standard

reference form f has the form
f=
where ¢, ,,is a form on W, ,, , @ W, ,,, which vanishes identically on each
of W, o1 and W, ,,.
We define the f,; and ¢, ,, explicitly as follows. Choose a basis of W, of
the form u,;, u, N, -, u ;N*-1. We first postulate that

(uy; PYED, 4 N2) = 1 (i0dd, 0 A <i—1),
(#s,09 . P¥ L 4, ,NA) =1 ({even, 0 <1 <1i —1).

™y im,
fo o= _@1 fu (odd), f, = ’@1 bs,25 (¢ €ven),
im -

i®-

Then we extend the definition to the whole of W; or W, 4,_; @ W, 4, by
requiring that (zP~,y) = (x, yP) = (y, z) for all z, y in these subspaces.
It may be verified that this definition is possible and unambiguous, and that
it yields a non-degenerate form f with multiplier P.

Let D, denote the ring of formal power series Y° a,#* over D and M the
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ring of m’ X m' matrices over D,, where m' = 37 m, (the number of in-
decomposable parts of P). We write the elements of M, as » X r block

matrices:
2= (9 H):

where £, is an m; X m,; matrix over D,, and we denote the element in the
k-th row and /-th column of £,; by wy, ;. The notation £(¢*) indicates a
matrix whose elements are power series in #%.

We now show that the elements of € = € (P) can be represented by
certain elements of M,. Consider the set C of all matrices

P = (tli_jl¢l'i(t2)) = (tli—jl¢ik;5l(t2))
and the subset K of all matrices

U= (W, () = (9 ().
It is easily seen that C is a D-algebra and K a (D-algebra) ideal of C.

LeMMA 3.1.1. If @ € C, there is a unique element (D) of € such that
ua[P] = }lj u, N¥—Hli-ig, (N) (1Si<r1<k<m,).
i

The mapping ® — [P] is a (D-algebra) homomorphism of C onto € with
kernel K, so that € ~ C|K.

Let o =Yt e D,, R = (wy,;) € M,.
We define

® = Y apt*, where =3¢,
1

Q* = (oik;a'l): where 0., = Dy % -
Then the mapping 2 — £* is an involutory anti-automorphism of M,.

Let T denote the 2 X 2 matrix (1-0H' 1(')* t). We define the matrix

W = diag (W, ---, W,),

where the m; X m; matrix W, is the unit matrix for odd ¢ and the block

diagonal matrix diag (7, T, ---, T) for even 7. Then W = W1 = W*, so
|

that the mapping (m

(3.1.1) 2> 2T = W*W

is also an involutory anti-automorphism of M,. It is easily seen that }
induces involutory anti-automorphisms of C and K, and thus of C/K.

LEmmA 3.1.2. If & C, [Pt] = [P
In other words, if we identify C/K with € according to the isomorphism
® + K [P], then the mapping (3.1.1) induces the f-adjoint mapping in €.
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3.2 Analogue of theorem 2.2.1. Although the Approximation Theorem
itself is false in the present case, we can prove a weaker result of the same
kind. Consider, in €, the set & of elements

X= @ Xr’:

=1

and the subset % of elements

Y = @ NMY,,
=1
where
L 3 (iodd) }
72 (teven) |’

Clearly & is a subalgebra of € and & an ideal of &.

LEmMMA 3.2.1. Every non-singular, t-symmetric element Q of € is t-con-
gruent to an element of &.

ProoF. Let E,; be the element of ¥ which maps W, identically onto itself
and every other W, onto {0}. Write

EEQE.» Q2= EEQE;: Qs = ZEQE

Clearly, Q, € &. Since Q,, Q3¢ A", Q, is non-singular. Since Q is }-symmetric,

Q, is t-symmetric and Q, = Q}.
Assume now that Q,e A (k = 1). We prove the lemma by showing that
Q is t-congruent to S, where (in the same notation) S, e A#*+1, In fact, let

S=(T+Q70)1QU + 07Qs) = 0, + Q107 Qs.
Then S, =, ;E;Q}01Q,E; ¢ (#/*)2 C A, as required.
The above proof actually gives the slightly stronger result:

COROLLARY 3.2.1. Let  be an 1deal of €, Q, and Qynon-singular, t-symmelric
elements of € such that Q, = Q, (mod ¥). Then Q,, Q, are t-congruent to
elements R,, R, of & such that R, = R, (mod ¥).

LeMMA 3.2.2. Let Q be a t-symmetric element of N*F (k = 0). Then Q has
the form R 4+ RY, where R e N*F.

Proor. By the method of proof of lemma 3.2.1 we may suppose f inde-
composable. Thus, either (a) f = f,; (£ odd) or (b) f = ¢,, (¢ even).

Case (a) ¥ is the polynomial algebra D[P] and N*% = N#+3¢, Let &
be the subspace of € formed by the {-symmetric elements. Write ¢ = 2¢ -+ 1.
Since the matrices P* (— ¢ < 4 < ¢) form a basis of €, the elements I and
P* + P* (1 <1<¢) obviously span 2. Hence the elements I and
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(P+ P2 (1 <A1=<e¢) also span 2. Since P+ P1=N2 4 N3 4 ...,
the elements (P + P1)* (k + 2 <A =<¢) span 2 n N*+3¢. But (P 4+ P1)A
= X, + X}, where X, = N(P + P12 and X, e N¥+3¢ when £ 4 2 <
A < e. This proves the lemma in case (a).

Case (b) Each S € % is determined by the pair of equations
2

upS =2 uy,s,(P) (A=1,2),
a=1
and therefore can be represented by the 2 X 2 matrix (s,,(P)) over D[P].
It can be verified that the lemma is equivalent to the following statement:

(3.2.1) <f g(P) s an element of N*+2D[P] such that g(P) = Pg(P™!), then
g(P) = h(P) + Ph(P™1) for some h(P) e N*+2D[P].

Let X be the subspace of D[P] formed by the elements g(P) such that
g(P) = Pg(P). Let ¢ = 2¢. Writing g(P) in terms of the basis elements
PA(— e+ 1 < 2 < e), we see that the elements PA + P-* span X. There-
fore 2’ consists of the elements of D[P] of the form #(P) + Ph(P~1). Hence
the elements N + P(N1)* = N(N*-1 4 (Nt)21) span 2, and so the ele-
ments N(N + Nt)* also span Z. Since N + Nt = NNt = N2 4 N3 - - -,
the elements N(N + Nt)* (£ 4+ 1 < 1 < 2¢ — 1) span X' n N*+2D[P]. But
Y, + PY{= N(N + Nt)*, where Y, = (N 4 Nt)*, and Y, e N*+2D[P]
when 2 4 1 < 4 < 2¢ — 1. This proves (3.2.1) and the lemma.

COROLLARY 3.2.2. Let Qe &. Then Q + F is the canonical image of a
t-symmetric element of & if, and only if, Q = QF (mod &F).

Proor. If Q@ = Qt (mod &), then, by lemma 3.2.2, 0 + Qt = R + Rt
for some R e #. Thus Q + & is the canonical image of the t-symmetric
element Q + R. The converse is obvious.

THEOREM 3.2.1. Let & be an ideal of € such that ¥~ & CF. Let Qq, Qq
be non-singular, t-symmetric elements of € such that Q,=Q, (mod ¥). Then
Q. s t-congruent to Q,.

Proor. By corollary 3.2.1, we may suppose that Q,, @, € € and thus that
0, =0Q, (mod &). Assuming that Q, = Q, (mod N*%) (k = 0), we prove
the theorem by showing that XtQ, X = Q, (mod N*+2%) for some X € &.

By lemma 3.2.2, Q, + Q, = L + Lt, where L e N*&F. Let X =1 +
QL. Since * LYQ; L e N#%2 C N*+2#, we have Xt1Q, X = Q, + L1Q7'L
= @, (mod N#*+2%), as required.

* Up to this point, we could have taken A; = 1 (i odd) in the definition of &#. But here
we definitely require 4, = 2 (all ¢) in order that N*%2 < N2k+23% when k = 0. Since lemma
3.2.2 is only valid when A4; = i (mod 2) (all i), we are led to the values 4; = 3 (1 odd), 4, = 2
(¢ even) adopted in the definition.
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The results of this section reduce the problem of f-congruence to the
following one:

(8.2.2) given non-singular elements Q, R of & such that Q = Qt and R = Rt
(mod F), to determine the conditions that XTQX =R (mod ¥) for
some X € €. ‘

We may assume, where convenient, that Q, R are actually }-symmetric,
so that the forms

(3.2.3) gz, y) = (= 90), hlv,y)= (v yR)
have multiplier P. Then, since Q, R e &, g, » have direct decompositions
(3.2.4) g=g,® --®g, h=h ®- - ®h,.
If H= (s, -,14,) is a subset of (1, - - - 7) we write
(3.2.5) Eu=¢g;, ® - ®g, hu=h D - Dh,.

3.3 Detailed equations of congruence. We consider thé problem (3.2.2) in
terms of the matrix algebra C. Let E, F, G denote the subrings of C which
correspond to &, #, 4. Thus E consists of the matrices diag (X;, - - X,) eC,
and F of the matrices in E such that* X, = 0 (mod %), X; = 0 (mod )
(! 0odd and = 3), X, = 0 (mod #) (¢ even). We define G as the set of matrices
(£ ,(#2)) such that

diag (P, P, )€ F,

®D,,=0 (mod#) when | —j|=1 (all 7)

P, ,=0 (mod#) when |i—j]=2 (all odd 7).
It is easily verified that G is an ideal of C and that KCG, Gn E = F.
Thus, the corresponding ideal ¢ in ¥ satisfies ¥ n & £ F as required in
theorem 3.2.1.

Choose matrices Q, R e C which represent the elements Q, R in (3.2.2).
Write
WQ = dla’g (er T Qr)

WR = diag (Ry, ", R,).

Since @ is non-singular and Q = Qt (mod #), we have

Q, =S, (mod #)
Q, =S, + (P, + P + P;#* (mod #) (zoddand = 3),

(3.3.1)

(3.3.2)
where the S;, P, are matrices over D and the S, non-singular and symmetric;

" * A matrix congruence (a,) = (b;) (mod ¢*) means that a,; = b,; (mod #) for all 4,7j.

https://doi.org/10.1017/51446788700027622 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027622

48 G. E. Wall [48]

and
(3.3.3) (1+#Q,=P; 4 PT + P,#2 (mod ) (i even)

where the P, are matrices over D such that P; + PT is non-singular.
The form of Q, can be simplified by a preliminary transformation Q —
X1QX, where X is an element of E in which only the 7-th diagonal block, X,
differs from the unit matrix. Let the ¢-th diagonal block of WXt QX be Q,.
Taking X;=M,, I+ Y, I{ Z {* in turn, where M;, Y,, Z, are matrices
over D, we get, when ¢ is odd,
MISM, 4 ---
Qi=sz’+((ygvsi)+(yiTSi)T+P¢'+P,-T)t2+"' }
S;+ (P, + P) + ((Z7S,) + (Z7S)T + Pt + - -
and, when 7 is even,
_ MIP,+ PI)M, + - }
(P4 PT) - (YE(P,+ PT) 4 (YE(P,+ PT))T 4 P)A 4+

When m;, is even, let J; denote the “canonical’’ alternate * matrix

. 01 01 01
J‘=dlag((1 0)’ (1 0) (1 0))
‘ (3m)) '

A non-singular symmetric matrix over a field of characteristic 2 is congruent
to the canonical matrix if it is alternate and to a diagonal matrix otherwise
(Jacobson [5]). We may therefore suppose that, in (3.3.2),

1+ 90

(3.3.4) either S, =J; or S,= diag (s{, - sn),
and that, in (3.3.3),
(3.3.5) P, 4 P =J..
By the second and third equations for Q,, we may further suppose that, in
(3.3.2),
(3.3.6) ;= diag (1, - ph),
and that, in (3.3.3),
. AR pi 1 )

3.3.7 — U W ,
an e () ()
Thus

= 2
(3.3.2)’ Q, =S, (mod &),

Q. =S, + Pt (mod ) (ioddand = 3),

* An alternate matrix is one of the form M-+ MT.
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(3.3.3) 1+ 8Q,=J, + P2 (mod #) (i even),
where (3.3.4)—(3.3.7) hold. Similarly, we may suppose that

R, = Z, (mod #),
R,=2Z, + It (mod #) (ioddand = 3); .

(3.3.3)" R,=J,+ I, (mod #*) (7 even).
Let now X = (¢71U,(#?)), where

U,=X,+ Y, + Z,* (mod %),

U, = X, (mod ) (i #7),

the X, V;, Z,, X,; being matrices over D. Write

(3.3.9) K,= YTS.X; (iodd and = 3).

Then the equation XtQX = R (mod G), i.e. X* WQX = WR (mod WG),
yields the following system of equations:

(3.3.2)"

(3.3.8)

I(% odd).

(3.310) I, = XTS,X,

(3.311) Ky + 3 X7 aPrixXasea is symmetric (A = 3).
k=11

(3.3.12) I~ XITP, X, + K, + K, Z:*K7

A = 3).
+ 2 Xf+k,AsA+kX.\+k,A+ > Xf+k,APA+kXA+k,A ( )
k=t2 k=21

(3.3.13) 0= XfS/\XA,Aﬂ + Xf+1,/\"a\+1XA+1 (A =3).

(3.3.14) 0 = XT7S, X a2 + Xiuw, aara Xavsava + Xipe, aSara Xase-
A=3)
II (u even). '

(33.15) J,=X]J,X,.

33.16) O, ~X,P,X, +k£le+k,,‘s,‘+kx,‘+w.

(3.3.17) 0=XIJ,X, 11+ X1 uSpiXpna-

Remarks. (1) The symbol a in (3.3.12) and (3.3.16) means that the two
sides of the equation are equal apart from terms of the form M + MT,
Taking into account the form of these equations and (3.3.15), this simply
means that corresponding diagonal elements on both sides are to be equated.

(2) When 4 =1, (3.3.13) and (3.3.14) do actually form part of the equa-
tion system. But we can omit them because they serve only to define X,
and Xj; which do not appear in any other equations.
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(3) The complete set of equations (3.3.10)—(3.3.17) (for all 4, ) will
be denoted by 6. Let H be a subset of the indices 1, - - - 7. Then the system
of equations (3.3.10)—(3.3.17) (for all 4, x e H), with the omission of all
terms involving indices not in H, will be denoted by @y. Clearly, @4 ex-
presses the equivalence gy =~ kg of the forms in (3.2.5).

3.4 Case of a single elementary divisor. With g,  as in (3.2.3), we study the
equivalence g; ~ &, of individual summands in (3.2.4). (It should be empha-
sized, however, that the equivalence g ~ % does not in general reduce to
the system g, ~ h; (! =1, - - -7).) We always assume that (3.3.4)—(3.3.7)
hold.

Consider first an even index u. We associate with g, the non-defective
quadratic form

my
(3.4.1) ?p(x) =i§1 (ﬁé‘i—lxgi—l + @i 1 %o + P xgi)’

in the vector x = (z,," -, 2, ). Then we have

LEMMA 3.4.1. Let p be an even index and let p,(x), 7, (x) be the quadratic
forms associated with g,, h,. Then g, ~ h, if, and only if, p,(x) is equivalent
to m,(x).

Proo¥. The system O, consists of the two equations J, = X7J,X, and

IO, ~ X,P,X,. It is easily seen that these express the equivalence of

pu(x) and 7, (x).

The situation for an odd index 4 is more complicated and we require some
preliminaries on bilinear forms. Consider a non-degenerate symmetric
bilinear form ¢ = [z, y] on the m-dimensional space W. The mapping
0 : x — [z, ] is an additive homomorphism of W into D. Let ¥~ =-6(W),
Wo = 671(0). Since [ix, Ax] = A%[x, z],

(A) # is a D2-subspace of D of dimension k < m.

Let U denote the perpendicular space Wy of W, with respect to ¢ and
write % = 0(U). Let I be the dimension of % as D?space. Then

l=dimU — dim (Un W,) =m — dim W, — dim (U n W)
and, since the restriction of ¢ to W, is alternate,

dim Wy, — dim (U n W) = 0 (mod 2),
whence

(3.4.2) ! = m (mod 2).

Thus,
(B) % 1s a D2-subspace of #~ whose dimension I satisfies (3.4.2).
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Let #,, 25, ¥, ¥, be elements of U such that [, ;] = [,, z,] and

(%1, ¥1] = [¥2, 92]. Then 2, — 2, y, — Yy, U W, so that [z,,y,] =
[x,, ¥]. Therefore the equations

<[$, z], [y’ y = [=, y] (x:yEU)

uniquely define a function y = {4, u)> of the variables 4, u e %. It is easily
verified that

Gy eD
<}‘) lu’> = <:u: )*>

() At vy = By vy + 9
o, puy = ald, up
A, A =4

whenever A, u, v e %, « € D. One constructs a function y satisfying (C) by
choosing a D2?-basis s,, -+ +, 5, of % and defining

(3.4.3) <2 s, > ﬁ?3i> =2 pii%: B,

where p;; = p;; € D and p,; = s, for all 7, §. Conversely, every v is obtained
in this way. We call #~, %, y the invariants of ¢.

LEMMA 3.4.2. If #°, %, y satisfy (A)—(C), they are the invariants of a
non-degenerate symmetric bilinear form on W. Two such forms are equivalent
if, and only if, they have the same invariants.

Proor. Choose a fixed D?-basis sq, - - -, s; of #" such that s;,---,s,isa
basis of %. Let

A be the I X I matrix ({s;,s,)) (£,7=1,---10),

B be the (B — 1) X (£ — ) matrix diag (5.4, " ", S&),

J be the (m — 2k 4 1) X (m — 2k 4 1) canonical alternate matrix,
I be the (¢ — 1) x (¢ — ) unit matrix,

T be the m X m matrix

0 0 0 I
0 A00
(3.4.4) 6 0 J 0
1 0 0B

It is easily verified that a bilinear form with matrix T is symmetric and
non-degenerate, and that it has the invariants %, %, y.

Suppose now that ¢ is any form with these invariants. We prove the last
part of the lemma by showing that ¢ has matrix T with respect to a suitable
basis. Let dy, - - -, d;_, be elements of W such that 0(d) = s,,; (1 <:=<k—1).
Clearly, the d; are linearly independent and span a complement of U + W,
in W. Since U + Wy = (U n Wy)*, there exist elements a,, -, a,_; of
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U n W, such that [d;, a;) = 8,; (Kronecker delta) and there also exist
complements U’, Wy of U~ W, in U, W, which are perpendicular to
dy, , dyy. Let d; = d; + ;. ,[4;, d;]a;,. Then {d,, - - - d,_}} is a comple-
ment of U + W, which is perpendicular to U’, W, and [d4,, 4;] = d,s,,
[d;, a;] = é,;. The (unique) elements &,, - - -, b, in U’ such that 0(b;) = s,
clearly form a basis of U’. Since the restriction of ¢ to W, is alternate and
UnW,= Wy n W,, the restriction p of ¢ to W, is non-degenerate and

alternate. Hence there is a basis ¢y, - * *, ¢,,_geq; With respect to which y has

matrix J. It is now easily verified that ¢ has matrix T with respect to the

basis a,, -, by, -, ¢, ", 8, - of W. This completes the proof.
By § 3.3, ga ~ k, (Aodd) if, and only if,

(3.4.5) EA = st/\XA

(3.4.6) H/\ a1 XK’P/\X/\ + KI\ZIIKA + KA

for a non-singular matrix X, and symmetric matrix K. (3.4.5) states that
the non-degenerate symmetric bilinear forms with matrices Z,, S, are
equivalent. Let us suppose that this condition holds. For convenience of
notation, we take W to be equal to its summand W, . Then we may suppose
that £, = S, = T (see (3.4.4)). Let ¢ be the form on W with matrix T, X,
the linear transformation on W with matrix X,. By (3.4.5), X, leaves ¢
invariant. Therefore X, leaves U, W,, U n W, invariant and so X, has the
form

0 -0

00

000

It is also easy to see (e.g. by considering the corresponding quadratic forms)
that the matrix equation

YT(A O)YN(A 0)

0 B 0 B
implies that ¥ = I. Using these facts, we get
I 0 XY
0100
Xa= 0 0 Z W
0 0 0 I
where

ZTJZ =J, X=WTZ, Y + YT = WTJWwW.
We may take
Py = diag (P, P}, P3, P}), I, = diag (IL}, IT3, IT;, ITy),
Ky=(Ky) (7=1,--,4),
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where the P}, IT? are diagonal and K% = K;;. Then (3.4.6) gives

P} + I ~ K, + K, BK,, + K, A7IK

3.4.7
( ) P} + I} ~ Ky, + K3 BK;, + K, A7 K,

and two other equations which may be omitted since they serve merely as
“defining equations” for Kj;, K,,. (3.4.7) can be written as a single matrix
equation
m o P 0 B 0
pas (B0~ (% L) k(B D)k
where K is a symmetric matrix.
It follows that we can “‘normalize’” P,, IT, by taking

(3.4.9) P, = diag (P}, P},0,0), II, = diag (IT}, IT2, 0, 0),

where the P}, II* are diagonal. Then (with 2, = S, = T) ga~ k, if, and
only if, (3.4.8) has a symmetric solution K.

3.5 A reduction theorem. With g, h as before, we prove now that, under
suitable conditions, the equivalence g ~ 4 reduces to certain equivalences
g ~ hy (cf. (3.2.5)). We also obtain an important necessary condition for
equivalence in the general case.

THEOREM 3.5.1. With g, h as in (3.2.3), (3.3.4)—(3.3.7), let ¢ be an odd
index such that either m; = 0 or S; = 2, = J;. Then g ~ h 1f, and only if,
gr~hy and gy ~ by, where L = (1,4 — 1), M= (¢ + 1,---7).

ProoF. The system of equations @, forms part of the complete system 6,
except that the equations in @, corresponding to (3.3.12) for A =17 — 2
and (3.3.16) for 4 = ¢ — 1 lack the terms X?"‘_zs‘.X,., s and X:?',',._IS,.X,-,,._l.
But these terms are immaterial because, under our hypotheses, they have
the form M + MT. Hence © implies @, and similarly @ implies Oy.

Conversely, let g, =~ khp,, gy =~ k. 1t is obviously sufficient to prove that
g:~h; when 2, =S, =J,. But in thiscase X;=1I, K, =II, + P, is a
solution of the corresponding system @,. This proves the theorem.

COROLLARY 3.5.1. Suppose that, for each odd index A, either my = 0 or
Sy = 2\ = Ji. Then g ~ h if, and only if, the quadratic forms p,(x), 7,(x)
in (3.4.2) are equivalent for all even indices p.

Let
(3.5.2) A+, A0 << <g)
be the elementary divisors of P of positive multiplicity. With theorem
3.5.1 in mind, we now study the situation where

(3.5.3)  every odd integer k such that e; < k < e,1s an e;, and S;# 0.
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Let us also suppose for the moment that ¢, > 1 (i.e. f has no symmetric
bilinear form as direct summand). Suppose that g ~ & and, as before, let
Q, R be matrices in C which represent ¢, R. By slightly modifying the proof
of theorem 3.2.1, it is easy to show that Y'QY = R (mod #C) for some
Y eC. We take determinants of both sides of the congruence, or more
conveniently of the congruence Y*WQY = WR (mod 8 WC). It is easy to
see that |¥| has the form A(1 -+ uf? + »*)(mod ) and that therefore

VIV*] = (1 + p2 + ) (1 + 2 + »i8)
= 2(1 + (42 + p)#) (mod 5).

Also
IWQ| = «(1 4 pi4) (mod ), |WR| = o,(1 + f,4) (mod ),
where
- I T
(354) Aodd i=1
my -}ml‘
B=23 2 pist+ X X phiath
A odd i=1 peven j=1

and similarly for «,, 8,.
Equating determinants, we get

(3.5.5) = i, By =+ p* +p.

We call « the first, 8 the second, discriminant of g. We say that the second
discriminants of g, 4 are essentially equal when they are related as in (3.5.5),
and we write #, ~ B. It is evident that the first discriminant is defined even
when e; = 1. We assign the value 0 to the second discriminant in this case.

Let us now return to the general case where (3.5.3) is not assumed. We
say that there is a gap between the indices e; and e,,, with respect to g when
at least one of the following conditions holds:

(@) e; < k < e, for some odd k;

(b) ¢; is odd and S, ~ 0;

(c) é;41 is odd and S ~ 0.

The gaps divide the indices e, " - - e, into component sets with respect to g:
(3.5.5)' Li=(e,- esl) L,= (381+1’ e esl+s,)’ Tt
The second discriminants of gL, 81, " are called the partial second

discriminants of g. (If L, consists of a single odd index 4 and S, ~ 0, we
define the corresponding second partial discriminant to be 0.) By (3.5.5)
and theorem 3.5.1, we have

THEOREM 3.5.2. With g, h as in (3.2.3), (3.3.4)—(3.3.7), let g~ h.
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Then g, h have the same component sets and their corvesponding partial second
discriminants are essentially equal.
3.6 Complete solution in a special case.

LEMMA 3.6.1. Let a, b(s~ 0) e D. If D satisfies (3.0.1), the equation
(3.6.1) 224+ zx4+a+byt=0
has a solution (x,y).

Proof. By (3.0.1), the equation & + &y + an? + 5% = 0 has solutions
(6,71, 8)#£(0,0,0). If £ 0, (%, y) = (&n, L/n) satisfies (3.6.1). If n =0,
(%, y) = (a, La/§) satisfies (3.6.1). Q.E.D.

Consider a non-defective quadratic form g¢(x) = >%%_; a2, over D.
In terms of suitable new wvariables y,

u

g(x) = E (b2i-1Y3i1 + YoiaYai + bysY3:)-

i=1
The pseudo-discriminant of q(x) is defined to be 3¥_; by, 1 by;. It is uniquely
determined up to essential equality, i.e. apart from additive terms A2 + 4
(2 € D). (Ci. Dieudonné [2]).

LEMMA 3.6.2. Suppose that D satisfies (3.0.1). Then two non-defective
quadratic forms q,(x), go(x) over D are equivalent if, and only if, their pseudo-
discriminants are essentially equal.

Proor. The result holds for binary forms over any field of characteristic 2.
By (3.0.1), a non-defective form in 2« > 2 variables is indefinite. By Cahit
Arf’s theorem *, it is equivalent to a form ¢ = z,2, + w (%3, * - - y,). If
Y = 2,7, + y(25, * * *Z,,) is another such form, then (again by Cahit Arf’s
theorem) ¢ is equivalent to y if, and only if, w is equivalent to x. The lemma
now follows obviously by induction.

THEOREM 3.6.1. Let g, h be as in (3.2.3), (3.3.4)—(3.3.7). If D satisfies
(3.0.1), g ~ & if, and only if,
(3.6.2) S, is congruent to X, for each odd index A;
(8.6.3) the corresponding partial second discriminants of g, h are essentially
equal.

REMARK. Necessary and sufficient conditions that (3.6.2) should hold are
given by lemma 3.4.2.

Proor. We have proved that the conditions are necessary. In proving
that they are sufficient, we may suppose, by (3.6.2), that

(3.6.4) 2y, =S8, for all odd indices A.

* ie. “Witt’s theorem’ in the case p = 2.
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Let ¥ denote the system of equations (3.3.10),(3.3.13)—(3.3.17) (for all
A, p). We now show that ¥ has a solution; in other words, we may make the
further assumption that

(3.6.5) I, = P, for all even indices pu.

Let (wy) = I, (py) = P, + Y1 S, Yy + Y5S, .Y |, where ¥y, V_,
are my,, X m,and m, ; X m, matrices respectively. In order to show that
¥ has a solution, it is sufficient to prove that « ~ v for suitable V,,,
where #, v are the pseudo-discriminants of the non-defective quadratic
forms Sw,,z,x,, dp,;x,%,. For if this is so, (3.3.15), (3.3.16) have a solution
X,, X, 11, , by lemmas 3.4.1 and 3.6.2, and then the remaining equations in
¥ can obviously be satisfied by choosing the X, X,4;,, and X, ,,, appro-

priately.
If the index u is itself a component set, then, by (3.6.3), we can take the
Y, as zero matrices. If not, S,,, is a non-singular matrix diag (s, - - *) for

e=1or — 1. We take Y_, = 0, the (1,1), (1,2) elements of Y, as para-
meters &, n and all other elements in ¥, zero. Then the equation # ~ v, i.e.

*’”» im,.
? Ry 7y ~ (P4 + &%) (ph + sn?) + 22 Phi1 Db

has the form
o + o + k 4 af? + bn? + s2E02 = 0,
and it is easily seen from lemma 3.6.1 that this has solutions.

We now complete the proof of the theorem by showing that the full
system, @, of equations for equivalence has a solution. We take the X, X,
as unit matrices and the X, , X ,1,, , as zero matrices, so that all equations
except (3.3.12), (3.3.14) are satisfied. Let ¥, denote these two equations for
a given 4 (¥, being empty when 4 = 1 or m, = 0). By theorem 3.5.1, we
may assume, without loss of generality, that e, - - -, ¢, (cf. (3.5.2)) form a
single component set. By lemma 3.4.1, we may also assume that at least one
e; is odd. Then the odd e;, arranged in descending order, form a consecutive
sequence

M=20+1,4=20—1,--", 4 =2+1(¢=w0—p+1=1).
To prove the theorem, it obviously suffices to show that v ¥, v L 2%
can be satisfied, assuming that ¥, u:--uU ¥,  holds (0 <u ={).
Thus, we may assume that ITy = Py (A= 4,, -, 4,_;). We shall take the
X422 and X ,,, as zero matrices for A = 4, - - -, 4,.

Consider now the equations ¥,, where 1 = A,. Excluding the trivial case
# = ¢, A = 1, we have to consider the cases (a) # = ¢, A > 1 and (b) u < ¢.
In (a), ¥, reduces to

(3.6.6) IO, ~ P, +- K, S;*K, + K, (Ki = K)).
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If S, =J,, take K, = II, + P,. If not, (3.6.6)" becomes

(3.6.6) ()7 +20) =:§ (kea)?fshss + (RaafsD)® + (Keufsd)

e A A
(=1, my; kpp = kg,).
We replace these equations by the first m, — 1 equations and the sum of all
equations, viz.

ms

(3.6.7) Y (sa) Ml +pa) =R+ &
a=1
where k& = 37 k2. [sh. We take all the elements of K|, zero, except those on

the main diagonal and in the last row and column. Then the first m, — 1
equations are satisfied for suitable k2, and & , (x=1,+--, my — 1) by
lemma 3.6.1. Finally, in view of (3.6.3), the sum equation has a solution
k;l'u."'z

In case (b), ¥, reduces to

(3.6.8) I, ~ P, + K;S* K, + K) + X135, :Sa2Xa2x (K{ = K)).

This gives (3.6.6) with an added term 3™ *s3 % (z,,/s3)? in the “‘«’’ equation
(w=1,---m,).

The first m, — 1 equations can be solved as before. The sum of all m,
equations, viz.

ma my Ma-z Z, 2
Fere = ety 3 o (%)
a=1 a=1 k=1 a

can be solved for k;‘n ,m, and the z,; by lemma 3.6.1. This completes the proof.
3.7 Ezxample: fzmte “classical groups. We consider the finite-dimensional
symplectic and orthogonal groups * over Galois fields D = GF(g), ¢ = 2*.
For brevity, some of the proofs will be omitted.
Let n = dim V. In the symplectic case, # = 2v and Sp(2v, g) is essentially
unique. The order |Sp(2v, ¢)]| is given by (2.6.2). In the orthogonal case, if
# = 2v the fundamental form [z] on V is equivalent to

(3.7.1) > Xy 1%y, (of Witt index )
. 1

or (x} + 2,2, + 6x3) + D Xy 1%, (of Witt index »—1)
2

where 6 is a fixed element of D such that 2 4 ¢ - 6 is irreducible (i.e.
¢ ~+ 0, in the notation of § 3.5). The numerical invariant which distinguishes
the two cases is the pseudo-discriminant ** A(|z|), defined up to essential

* The unitary groups (U(n, 2%) were considered in § 2.6.
** Cf. § 3.6.
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equality. The orthogonal groups of the forms (3.7.1) are denoted by 0, (2, q),
O_(2v, g) and their orders are given by (2.6.3). If » = 2» + 1, || is equivalent
to &% + Y¥x,;_,%,; and the corresponding orthogonal group is isomorphic to
Sp(2v, q). We shall therefore omat this case and assume throughout that n = 2v.
In the orthogonal case, let L be a subspace of V. Then the equations

s(x+ L) =|z|] (xel)

define a non-degenerate form s on L/L7, called the core of |x| on L. Notice
that s is an odd- or even-dimensional form according to whether L? % L7 or
L? = Le. )

Let X e G = Sp(2v, g) or O+(2v, q). As before, ¢(¢) denotes an irreducible
monic polynomial distinct from ¢ and m(¢?) is the multiplicity of ¢‘ as
elementary divisor of X. Then we have

2 ilm($) = n;
@,
(3.7.2) m($) = m($");
m((t + 1)¥1) is even (1 =1,2,---).

The last two statements follow from theorem 2.3.1, lemma 1.4.5 (cor. 2)
and the evenness of #.

Let W, f, P denote the space, form and multiplier of X. We may suppose
that the Fitting (¢ + 1)-component of f is represented (with respect to a
standard reference form chosen as in § 3.1) by the matrix Q in (3.3.1),
where (3.3.2), (3.3.3)", (3.3.4)—(3.3.7) hold.

A non-singular symmetric matrix over GF(2%) is congruent to the cano-
nical alternate matrix J or unit matrix I. Thus we may suppose in (3.3.2)’
that S, =J, or I, (A=1,3,---). Accordingly, we define an invariant
s {A=1,3,-+) by:

0 if S, =J, or the dimension of S, = 0, }
Sy =

1 if S, =1,.
Then clearly

s =0 when m((t+ 1)**!) =0,

(3.7.3) }
sa=1 when m((t+ 1)**1) is odd.

Further we have

LemMmA 3.7.1. In the orthogonal case, WP = W< if, and only if, s,=0.
(Proof omitted.)

The values of the s, determine the component sets L,, L,, - - - in (3.5.5)".
Let 6,, d,, - - - be the corresponding partial second discriminants. We may
suppose that d, = 0 or ¢ since J, is determined only up to essential equality.
It is convenient to define one further “partial second discriminant” d, by:
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5 _A(s) if 6G=0,5=1, :
™ 0 otherwise,
where s is the core of |x| on W*. With this notation we have

LEMMA 3.7.2. In the orthogonal case,

(3.7.4) A(lel) = X 0, + (qsziim(tﬁ"))a-

(Proof omitted.)
The 4§, satisfy the conditions

Gp=0 if G=Sp or G=0,5=0;
3.75) 6,=0 if s, =1;
d; = 0 if the corresponding component set consists of a single
odd index 4 such that s, = 0.
(Cf. § 3.5.)
With the methods of § 2.6 and theorem 3.6.1, the following two theorems
are now easily deduced.

THEOREM 3.7.1. Two clements of G are conjugate in G if, and only if,
they have the same invariants m($*), s,, 9,.

THEOREM 3.7.2. Choose a non-negative integer m'(p*) for each power ¢*
of a monic trreducible ¢, an integer sy = 0 or 1 for each index A =1,3,---
and an element 8, = 0 or 6 of D for each of the component sets formally defined
by the m' (¢*) and sy. Then the m’' (¢°), sy, 6; are the invariants of an element X
of G if, and only if, they satisfy (3.7.2)—(3.7.5).

It is now merely a combinatorial question to enumerate the conjugacy
classes in G. We define a sequence of polynomials y; = x;(a, &; ¢)
(t=1,2,---) and a power series y = x (a, b; t) as follows:

X1-1=24, X =120,
Kovt1 = Ko = ¥ xa, 4, (v =0),
Kovrz — Xaver = EFH(L + ) (ygp4q + (L — tsz)qu—l)
2{t) = xo () (mod¢") (r=0,1,2,---).

THEOREM 3.7.3. Let the numbers of conjugacy classes in Sp(2v, q), 0.(2v, q)
be the coefficients of 1% in the power series sp(t?), w, (£2). Then

sp(t2) = (0, 1; &) ﬁ (1 — gy,

0L () + 0 () = 2(1,1;8) ﬁ (1 — gy,
R o oo 1 — t4)t—2

0, (2) — w_(?) = E(T——éﬂ_‘)
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(Proof omitted.)

We determine finally the order of the conjugacy class of X in G.

Notation. A component set is called bsg if it contains an odd index 4 such
that s, = 1 and if, when G = Sp, it does not contain the index 1. An odd
index u + 1 is called ¢solated if esther u is positive and forms a component
set by itself or p = 0, G = O and s; = 0. With such an isolated index u + 1
is associated a partial second discriminant ¢’, viz. §' = §, when u =0,
¢’ = partial discriminant determined by x4 when > 0. O(m,,,, ¢) denotes
the orthogonal group of the form of pseudo-discriminant ¢’ and dimension

Myss = m( (¢ + 1))
We write

B(¢) = Q Zi<fimm, + 11‘2‘("‘1)"'331_‘[.'1‘1 (#%),

where Q = ¢!, m, = m(¢*) and 4 (¢*) is defined as follows:
i $(t) # (¢ + 1),

U@m., Q) (6=94),
Ald) = -
@)= \6Lim, Q) (4 aéqﬁ);:
if ¢(¢) = (¢t + 1),
¢™|Sp(m,, q)] ({even,s,_; = 0)
| ¢™|Sp(m, — 1, q)| (i even, s;_, = 1, m, odd)
A(¢) = gmmtiSpim, — 2, q)|
(feven, s;_, = 1, m, even)
g™ 0(m,, q)] (4 odd, isolated)
q—} A=&m¢ | Sp(m;, q)| (¢ odd, non-isolated),

where ¢ = + 1 or — 1 according as G = Sp or O.

THEOREM 3.7.4. The order of the conjugacy class of X in G 1is
|G]/2* 1} B(4),

where k is the number of big component sets.

OuTLINE OF PrOOF. By the methods of § 2.6 and the Fitting decomposition,
it is sufficient to consider the case where I 4 P is nilpotent. Let Q be the
representative of f = fx with respect to a standard reference form f"and let {
denote the adjoint with respect to f’. Let N denote the group of T ¢ % =
€(P) such that TtQT = Q, N the group of T ¢ € such that TtQT = @,
where the — now denotes passage to the quotient €/ (cf. § 3.3.) As in
theorem 2.2.3,

IN| = |F||g.
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The mapping ¥ — Y gives a homomorphism of C{X) onto N, whose
kernel H consists of the Y € G which leave every element of W fixed. Thus

IC(X)| = IN||H]|.
Since the calculation of |#| is straightforward, it remains to- consider ||
and |H|.
|N| is the number of ways of choosing the matrices X;( = 1,2, "),

Y(6=23,), Z3(A=3,5,""), X, 11, Xip1,0o Xiiner Xipos (0=1,2,-+)
so that (3.3.10)—(3.3.17) hold with S,, P,, P, in place of Z,, I, II, on
the left hand sides. This number is conveniently calculated as the quotient
ufv, where # is the number of ways of choosing the X,, Y,, etc. so that
(3.3.10)—(8.3.17) hold with 2, = S, and with II,, II, having the forms

IT, = diag (a1, * * - 7p,,)

! 7 1
n,= dlag((Oln") , ..)’
2

and where v is the number of ways in which such £, IT;, II,, can be chosen.
The calculation of %, v is straightforward except for the determination of the
number X, satisfying X7 S, X, = S,. By the methods of § 3.4, this number
is found to be
ISP(M,\, q)l if sA = J/\»
ISp(my — 1,9)| i S, =1I,,m, 0dd,
g™ Sp(my — 2,q)| if S, = I,, m; even,
where m, = dim S,.
It remains to calculate |H|. To fix ideas, consider the case G = 0, WP#£W?,
Write L = W+, m, = m((¢t + 1)!). Then
dmL =m; +my, + ---
1+dimL”=dimLP=m2+m3+...
If Y eH, let n(Y) denote the induced linear transformation on L/L?. By
Witt’s theorem, n(H) = O(m, + 1, ¢) = Sp(m,, q). Let K be the kernel of
7 and let {(Y') denote the transformation on L induced by Y € K. It is easy

to see that {(K) consists of the linear transformations which leave every
element of L/L” and L* fixed, so that

IC(K)! = qu(mz+m3+'.._1).

The kernel T of { consists of the Y e G which leave every element of W and
W+ fixed, i.e. the Y with spaces in (W 4+ W)t = W n W+ = W». Let
ey, €y, * - be a basis of W?, wheree,, - « + are a basis of W7, Each element of
T has the form
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z>x+ Y (T e)wye.
Conversely, it is found that such a linear transformation belongs to G if,
and only if,
wy = w; (all 7,9)
Wy = w?‘l (all 7).
Hence
|T| = 2gttmat - mat 1),

Putting these values together we get the required order |H|. The calculation
of |H| in the other cases is similar.
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