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Steady-state distribution functions can be used to calculate stability conditions for modes,
radiation energy losses and particle loss rates. Heuristic analytic approximations to these
distributions can capture key behaviors of the true distributions such as the relative
speeds of different transport processes while possessing computational advantages over
their numerical counterparts. In this paper, we motivate and present a closed-form ana-
lytic model for a distribution of particles in a centrifugal or tandem mirror. We find
that our model outperforms other known models in approximating numerical steady-
state simulations outside of a narrow range of low confining potentials. We demonstrate
the model’s suitability in the high confining potential regime for applications such as
loss-cone stability thresholds, fusion yields and available energy.
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1. Introduction

There has been growing interest in open field line configurations for magnetic
plasma confinement. This includes conventional mirrors, centrifugal mirrors and
tandem mirrors. In centrifugal traps with electric field E and magnetic field B, rota-
tion is induced by an E × B drift, which introduces a centrifugal potential that
improves plasma confinement (Lehnert 1971; Bekhtenev et al. 1980; Ellis et al.
2001; Teodorescu et al. 2010) and can improve plasma stability (Bekhtenev et al.
1980; Abdrashitov et al. 1991; White, Hassam & Brizard 2018; Kolmes, Ochs &
Fisch 2024). For tandem mirrors, end plugs generate a confining potential in the
center cell. Magnetic mirrors possess practical advantages over other confinement
configurations that are important to consider in the path to commercial fusion. In
particular, the open-ended axial magnetic system of mirrors is relatively simpler to
build and maintain than the closed toroidal systems of tokamaks and stellarators,
and mirror systems can contain plasmas with high beta, or ratio of plasma pressure
to magnetic pressure, in steady-state operation (Post 1987).

Advancements in mirror technology, as demonstrated in GAMMA-10 (Cho et al.
2005), the Maryland Centrifugal Mirror eXperiment (Ellis et al. 2005) and the gas
dynamic trap (Ivanov & Prikhodko 2013, 2017), have paved the path for further
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mirror development with experiments such as the Wisconsin HTS Axisymmetric
Mirror (Egedal et al. 2022), the Centrifugal Mirror Fusion eXperiment (White et al.
2018), the SMOLA device (Sudnikov et al. 2017) and multiple mirror traps (Be’ery
et al. 2018; Miller et al. 2021).

Apart from its use in fusion, centrifugal mirror confinement is effective in differen-
tial containment devices, namely devices used for mass separation (Hidekuma et al.
1974; Hiroe et al. 1975; Weibel 1980; Ohkawa & Miller 2002; Litvak et al. 2003;
Fetterman & Fisch 2011; Gueroult & Fisch 2014; Gueroult, Rax & Fisch 2014;
Timofeev 2014; Gueroult et al. 2015; Vorona et al. 2015; Dolgolenko & Muromkin
2017; Gueroult et al. 2018; Oiler et al. 2024). The regime of large plasma rotation
in centrifugal mirror devices is where differentiating particles on the basis of mass is
particularly effective. It also happens to be the regime of the greatest pertinence here.

In the literature on standard (non-centrifugal) mirrors, studies have heavily relied
on heuristic approximations to the steady-state particle distribution in phase space
(Rosenbluth & Post 1965; Post & Rosenbluth 1966; Futch et al. 1972; Tang,
Pearlstein & Berk 1972; Newcomb 1981; Smith 1984; Smith, Nevins & Sharp 1984).
This approach has been particularly productive for calculations of stability condi-
tions for loss-cone modes. However, despite the important role played by kinetic
physics in the centrifugal or tandem traps, the corresponding approximations are
far less well developed in the literature on mirror traps with an arbitrary confining
potential.

Previous approaches to capturing rotating loss-cone behavior include applying
prefactors that vanish at the loss-cone boundary (Volosov, Pal’chikov & Tsel’nik
1969; Turikov 1973; Khudik 1997), modifying a Maxwellian distribution to suppress
values in the loss cone (Catto & Li 1985; Kolmes et al. 2024; Kolmes & Fisch 2024)
and leveraging other known distributions with some loss-cone features and thermal
anisotropy (Summers & Stone 2025).

The purpose of this paper is to consider how best to construct a heuristic approx-
imation for the distribution of particles in a low-collisionality rotating or tandem
mirror. We propose a new analytic closed-form model that improves upon past
models and reflects the relative dominance of pitch angle scattering compared with
energy scattering. We also examine how different heuristic approximations per-
form in different contexts and how best to understand the suitability of a given
approximation for a given application.

The paper is structured as follows. Section 2 reviews previous models which moti-
vate the general form of the class of solutions that we consider in Section 3. Section
4 covers the numerical scheme from Ochs, Munirov & Fisch (2023) that we use
to validate our model. Section 5 presents our analytic approximation explicitly and
a useful parametrization of space. Section 6 analyzes the error of our model com-
pared with numerical simulations, finding that our model outperforms other known
models in the regime where the confining potential φ � 2. Section 7 examines the
suitability of the model in three applications: loss-cone stability thresholds, fusion
yields and free energy. To conclude, Section 8 discusses the suitability and potential
adjustments of our model for different confinement regimes.

2. Prior models

The distribution of particles in a centrifugal or tandem trap is typically not
Maxwellian. Rather, these traps have loss cones: regions of phase space in which
particles are not confined. It is constructive to explicitly review parameters and equa-
tions relevant to plasmas in magnetic mirrors with an arbitrary confining potential.
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We then examine previous proposed models before reducing our search to functions
of a certain form.

Suppose we have a mirror machine with magnetic field strength B, which is great-
est at the ends and smallest at the mid-plane, and confining potential ϕ, which could
include the electrostatic potential and centrifugal potential due to rotation (Post
1987). We define the mirror ratio R0 as

R0 := Bend

Bmid
, (2.1)

where Bend and Bmid are the magnetic fields evaluated at the mirror ends and mid-
plane, respectively. We also define a dimensionless difference of confining potential
evaluated at the ends and the mid-plane

φ := ϕend − ϕmid

T
. (2.2)

Here, ϕend and ϕmid are the respective potentials at the ends and at mid-plane of the
device, including both centrifugal and electrostatic components, and T is the plasma
temperature.

Assuming that the first adiabatic invariant, the magnetic moment, is conserved,
we can derive the confinement condition from Post (1987)

0� φ + R0x2 sin2(θ)− x2, (2.3)

where x is the dimensionless speed of the particle (normalized to the thermal speed)
and θ is the pitch angle, which is the angle between the direction of the velocity and
the direction of the magnetic field.

The loss-cone region of momentum space contains all the points (x, θ) such
that the above inequality does not hold. Any particles that diffuse into the loss-
cone region are lost from the system. Increasing either the mirror ratio R0 or the
generic confining potential φ will shrink the loss-cone region, thus improving the
confinement of the system.

We briefly review prior proposed models. One such analytic model is the truncated
Maxwellian, which is the Maxwellian distribution function with values in the loss
cone sent to zero, as used in Kolmes et al. (2024)

ftm(x, θ)= A
[
π−3/2e−x2]

Θ(φ + R0x2 sin2(θ)− x2), (2.4)

where A is the normalization constant such that the integral of the momentum-space
distribution over all space evaluates to unity and Θ is the Heaviside step function
that cuts out the loss-cone region.

This model has the advantage in its relative simplicity and recovery of the
Maxwellian distribution in the limit as φ→ ∞. The loss-cone vertex is located at
(
√
φ, 0), so in this limit, the loss-cone region shifts far away from the bulk of the

particle distribution. However, ftm has distinctly un-physical behavior at the loss-cone
boundary due to the infinite gradient there. This becomes an issue for applications
like fusion yield calculations in cases where the confining potential is not large.

For the steady-state distribution f solution to the linearized Fokker–Planck equa-
tion, Najmabadi, Conn & Cohen (1984) find an analytic prefactor g := f/ fM , where
fM is the Maxwellian and g has adjustable parameters

g(x, θ)= 1 − q0 ln

(
ea2 + ex2 +

√
ρ2 + (ea2 + ex2

)2

ea2 − ex2 +
√
ρ2 + (ea2 − ex2

)2

)
, (2.5)
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where

q0 :=
(

ln
(
w+ 1
w− 1

))−1

w :=
(

1 + 1
Z⊥,s R0

)1/2

a := (ln(w)+ φ)
1/2 ρ :=

(
2x2

Z⊥,s

)1/2

ex2
tan(θ).

(2.6)

The species-dependent constant Z⊥ is defined as the following for ion species a and
electron species e:

Z⊥,a := 1
2

⎛
⎝

∑
b

nb Z 2
bλab∑

b
nb Z 2

bλabmaTb/mbTa

⎞
⎠ , (2.7a)

Z⊥,e := 1
2

⎛
⎝1 +

∑
b

nb Z 2
bλeb

neλee

⎞
⎠ , (2.7b)

where Zb, mb, nb, Tb are the charge, mass, density and temperature of other species
b, respectively, and λab is the Coulomb logarithm. Faster species are excluded from
the sums.

We removed the correction term 1/4x2 in ρ and w to avoid divergence at the
origin. This formulation does not go to zero at the loss-cone boundary, but for
the sake of later comparison, we apply a Heaviside step function Θ that cuts out the
loss-cone region and then re-normalize the distribution. One advantage of this model
is the explicit dependence on Z⊥. However, in order to calculate the collisional end
loss rates, the focus is on approximating the region within one e-folding of the loss-
cone vertex. We will see later that this leads to a weaker approximation for the bulk
of the distribution if the vertex is sufficiently far away from the origin.

An earlier analytic model used by Volosov et al. (1969) and Turikov (1973) is as
follows:

fvol(x, θ)= A

[√
φ + R0x2 sin2(θ)− x2e−x2 sin2(θ)

]
Θ
(
φ + R0x2 sin2(θ)− x2

)
,

(2.8)

where A is the normalization constant. When φ = 0 and R0 = 2, fvol reduces to the
analytic model of a standard non-rotating mirror in Rosenbluth & Post (1965). The
prefactor term in the square root ensures that the model smoothly decays to zero at
the loss cone. However, in the limit as φ→ ∞, the analytic model does not recover
the Maxwellian distribution due to the exponential term’s dependence on only the
perpendicular component of momentum, x sin(θ).

More recently, subtracted-kappa distributions have been suggested to approximate
loss-cone-like regions for space plasmas by Summers & Stone (2025), particularly in
contexts where anisotropy is important. However, we will restrict our scope here to
models that vanish within the loss cone described by (2.3).

Trial functions h := f/ fM have also been used to find particle loss rates in mirrors,
where h serves as a prefactor to the Maxwellian distribution fM (Catto & Bernstein
1981; Catto & Li 1985; Khudik 1997). In particular, an iso-contours approach is
used where lines of constant h can be used in their integral calculations. However,
although their application did not require or provide an explicit analytic expression
for h, we find this approach informative and will pursue it further.
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3. Function properties

It is convenient to write candidate models as the product of a truncated
Maxwellian and some prefactor function. Note, only the restrictions on the pref-
actor itself limit the class of allowable functions for the distribution function. Let
our model be fmod and prefactor be gmod

fmod(x, θ; R0, φ)= A
[
gmod(x, θ; R0, φ)

(
π−3/2e−x2

)]
Θ
(
φ + R0x2 sin2(θ)− x2

)
,

(3.1)
where R0 and φ are included as parameters to emphasize the model’s dependency
on them. We provide the explicit normalization constant

A =
(∫

dxdθ 2πx2 sin(θ)
[
gmod ftm

])−1

, (3.2)

where the 2π comes from the distribution’s cylindrical symmetry in momentum-
space after assuming gyrotropy and ftm is the truncated Maxwellian model. Our
prefactor gmod is of the following form,

gmod(x, θ; R0, φ)= fmod(x, θ; R0, φ)

ftm(x, θ; R0, φ)
(3.3)

up to the normalization constant. For example, the normalized truncated Maxwellian
would correspond to the constant prefactor

gtm(x, θ; R0, φ)= 1. (3.4)

Instead of directly analytically approximating fmod to some numerical steady-state
distribution fsim, we can instead fit the prefactor gmod to a weighted simulation, which
is defined as gsim := fsim/ ftm. This quantity measures how similar the simulation value
is to the truncated Maxwellian value at a point. We will require our prefactor to
force a smooth decay to zero at the loss cone while having negligible effect on the
truncated Maxwellian in the limit as φ→ ∞.

Furthermore, our mirror system has cylindrical symmetry due to the lack of
azimuthal angle dependency. This symmetry forces us to consider a prefactor such
that

∂gmod

∂θ

∣∣∣
θ=π/2

= 0, (3.5)

where θ = π/2 corresponds to the plane of momentum phase space for particles
with velocities perpendicular to the magnetic field.

4. Simulation set-up

In order to validate different features of these heuristic models, we use Fokker–
Planck simulations. Here, we review those simulations. Namely, we explain relevant
parameters and coordinates as well as choice of source, temperature and species.
Furthermore, we expand on desired properties for the prefactor gmod that are tailored
to our numerical simulation’s domain.

To obtain a numerical steady-state particle distribution fsim of a magnetic mir-
ror, we simulate the collisional process governed by the Fokker–Planck diffusion
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equation for an arbitrary species a (Najmabadi et al. 1984; Ochs et al. 2023; Rosen
et al. 2025)

τ0,a
∂ fa

∂t
= 1

x2

∂

∂x

(
Z‖,a fa + 1

2x

∂ fa

∂x

)
+ 1

x3

(
Z⊥,a − 1

4x2

)
∂

∂ξ

[ (
1 − ξ 2

) ∂ fa

∂ξ

]
, (4.1)

where we have followed the convention in broader mirror literature by assuming
gyrotropy and using the following dimension-less coordinates:

x = v

vth,a
, ξ = v‖

v
, vth,a :=√

2Ta/ma. (4.2)

Here, vth,a is the thermal speed, v|| is the component of the velocity parallel to the
magnetic field, ma is the particle mass and τ0,a is the collision time of species a.
Intra-species collisions are included.

The coordinate-transformed diffusion equation contains two species-dependent
quantities, Z‖,a and Z⊥,a ,

Z‖,a :=
∑

b
nb Z 2

bλab/mb∑
b

nb Z 2
bλabTb/mbTa

, Z⊥,a := 1
2

∑
b

nb Z 2
bλab∑

b
nb Z 2

bλabmaTb/mbTa
, (4.3)

where Zb, mb, nb, Tb are the charge, mass, density and temperature of other species
b, respectively, λab is the Coulomb logarithm and Z⊥,a was defined above in (2.7)
as the constant for an ion species. Since the electron species expression, Z⊥,e, is
consistent with the ion species expression after ignoring ion–electron collisions, we
redefine Z⊥,a to hold for either ion or electron species. To repeat, faster species are
excluded from the sums. We take Z‖ = 1, which corresponds to species having the
same temperature. As an example of Z⊥ values, a pure, single-ion species plasma
has a Z⊥ value of 0.5.

We include appropriate modifications to the diffusion equation such as changing
the denominator of operators to avoid divergent behavior and adding a source term.
Zero flux is enforced at the loss-cone boundary as we consider low-collisionality
mirror machines. We simulate K e-foldings of the distribution past the loss-cone
vertex. That is, the simulation domain boundary is xmax = √

φ + K . The simulation
implements the finite-element method using the DolfinX library. More details of the
numerical simulation set-up can be found in Ochs et al. (2023).

Furthermore, we choose to neglect relativistic effects. For the rest of the paper,
we find it more convenient to work with the pair of coordinates (x, θ), where x is
the dimensionless speed defined in (4.2) and θ is pitch angle

θ := cos−1(ξ). (4.4)

We place a cold Maxwellian source fs(x, θ; Ts) at the origin of momentum space

fs(x, θ; Ts)= π−3/2e−x2/Ts . (4.5)

Here, Ts is the parameter determining the relative strength of the source’s physical
temperature to the steady-state system’s background distribution physical tem-
perature. The collision operator assumes a fixed hotter Maxwellian background
distribution that the source particles collide with. Cold sources correspond to smaller
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FIGURE 1. On the left, we numerically simulate fsim(x, θ) for φ = 7, R0 = 10, Z⊥ = 1 and
K = 7. The simulation is close to Maxwellian as evidenced by its near independence of θ and
exponential decay in x . On the right, we plot the weighted simulation gsim := fsim/ ftm for the
same parameters.

values of Ts , which reduces the source’s effect on the overall steady-state particle dis-
tribution. For the rest of the paper, we typically choose Ts = 0.1 as a sufficiently
small value to be considered cold.

To understand simulation-specific constraints on gmod, we look at the weighted
simulation gsim. An example of fsim and gsim is shown in figure 1. Our simulations
are limited to positive x and θ ∈ [0, π/2]. We can find our prefactor expression for
this region, and our constraint of cylindrical symmetry in (3.5) allows us to extend
the expression to all of momentum space.

Note, in this momentum-space Fokker–Planck equation, the relative velocity of
colliding particles is approximated with the velocity of the hotter, non-thermal par-
ticle. Due to this approximation and the effect of the source term, the simulated
solution will somewhat worsen for x < 1, impacting the low φ regime then. Our
model is intended as a general approximation that focuses on the tail behaviors of
distributions with a Maxwellian bulk, agnostic of any source terms. In the low φ
regime, the distribution is more sensitive to the specific source term, so finding any
single general model is inherently challenging.

5. Finding our prefactor

We present a simple logarithmic prefactor to the truncated Maxwellian. To do this,
we observe a useful parametrization of momentum space that reduces our problem
to two dimensions. We then fit a logarithmic expression. To improve our model near
the loss-cone vertex, we implement a “shift” to our parametrization and evaluate its
effectiveness.

5.1. Parametrization by constant R curves
It is convenient to simplify our problem from finding a function of two variables to

one. If we can identify a parameter p that associates a value with each level curve of
gsim and also some independent parameter η, we can change our momentum-space
coordinates from (x, θ) to (p, η). Our prefactor gmod should only have dependence
on parameter p since we want gsim and gmod to have the same level curves.
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FIGURE 2. To the left, we have the gsim contour plot for φ = 7 and R0 = 10. We have added
some loss-cone curves used for parametrization. To the right, we plot gsim with respect to R for
the same φ and R0. For each R = Rc value, we averaged all the gsim values from points that had
R values within 0.002 of Rc. Note the close fit to the overlaid proposed prefactor for high R
values, which corresponds to the region around the physical loss cone.

Our intuition for a possible parametrization lies in the loss-cone condition. Setting
equality and rearranging, the loss-cone boundary can be written as the following:

R0 = x2 − φ

x2 sin2(θ)
. (5.1)

Let us vary R0 without changing φ. This results in another loss-cone curve that
goes through the same vertex as our physical loss cone. As shown in figure 2, we
notice that there is good agreement of these effective loss-cone curves with the level
curves of the weighted simulation. This motivates us to choose our independent
parameter R defined as the following:

R(x, θ)= x2 − φ

x2 sin2(θ)
, (5.2)

where constant-R curves in momentum space closely match the level curves of the
weighted simulation.

In other words, there is a physical value of R(x, θ) that corresponds to the loss
cone for the actual, physical magnetic field in the system, but it turns out that the
loss-cone curves we would have had with other magnetic fields trace out curves
that resemble the level sets of the distribution function. The case R = 0 corresponds
exactly to the vertical line through the physical loss cone’s vertex while R = R0 cor-
responds to the physical loss cone. The range R ∈ (0, R0) covers the region between
the vertical line and the physical loss cone in momentum space. This R identification
successfully captures an important behavior of the model, namely that the plasma
diffuses more quickly across θ than x .

5.2. Deviations
We analytically approximate gmod(R; R0, φ) by examining the level curves of the

weighted simulation more closely. For R � 0, which captures the bulk of the dis-
tribution, we expect the distribution there to be close to Maxwellian. We set our
prefactor for R � 0 to be unity. For R � R0, which is the loss-cone region, the dis-
tribution must vanish there. We set our prefactor for R � R0 to be 0. Note, this
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FIGURE 3. We plot gmod near the loss-cone vertex for φ = 7, R0 = 10 and Z⊥ = 1. On the
left, we use the unshifted parametrization which captures most of the smooth decay to the loss
cone from gsim in figure 1. On the right, we use the shifted parametrization, which noticeably
improves the behavior at the vertex.

behavior has already been accounted for by the Heaviside theta function in the
general form of fmod in (3.1), but we still enforce this choice for R for consistency.

What remains is to find an analytic expression for gmod(R; R0, φ) in the region
R ∈ [0, R0]. To ensure smooth decay to the loss cone, we require that this function
monotonically decreases and satisfies the following boundary conditions:

gmod (0; R0, φ)= 1, gmod (R0; R0, φ)= 0. (5.3)

Naturally, we must recast the weighted simulation to be a function of the vari-
able R. Then, gsim(R; R0, φ) corresponds to the average deviation of the numerical
simulation from the truncated Maxwellian over the constant-R curve. We find good
agreement of this recast gsim to a logarithmic function, which is shown in figure 2.
Our complete prefactor is the following:

gmod (R; R0, φ)=
⎧⎨
⎩

1 R < 0,
1 − log1+R0

(1 + R) 0� R < R0,

0 R � R0.

(5.4)

Overall, for a fixed φ value, we see that the gmod prefactor is a close match for
most R values except at low R. An example of gmod for fixed φ and R0 is shown in
figure 3.

This low-R behavior stems from our assumption that all the constant-R curves
intersect the same vertex, which is not generally true as R goes to zero. The assump-
tion forces an infinite gradient at the vertex, which is un-physical. When φ is large,
this is a safe assumption since the bulk of the distribution is Maxwellian and the
numerical simulation’s level curves appear compressed towards the vertex. However,
when φ is small, the assumption worsens as the loss cone cuts into the bulk of the
distribution. The numerical simulation’s level curves then appear spread out from
the vertex.

5.3. Shifts
One way to correct the infinite gradient issue at the loss-cone vertex is by shifting

the constant-R curves to lie at different vertices, which are the square roots of some
corresponding effective potential φeff.
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The challenge is to find some simple smooth interpolation connecting R and φeff

that satisfies the following behaviors. The original loss cone must be preserved at
R = R0. As R approaches R0, the loss cones need to stay compressed, and φeff ≈ φ.
As R approaches 0, the loss cones need to spread out, and the shift is maximal.
Lastly, as φ goes to infinity, we should also recover the unshifted prefactor.

Let us consider the linear interpolation, where we choose to parametrize R ∈
[0, R0] and φeff ∈ [0, φ] as the following:

R(α)= αR0, φeff = αφ, (5.5)

where α ∈ [0, 1]. Note, the R = 0 curve, which is the vertical line, is shifted to x = 0.
We solve for R

R(x, θ)= x2 R0

R0x2 sin2 θ + φ
. (5.6)

This interpolation lacks the correct limiting behavior as φ goes to infinity, but by
recursively iterating n times, we get the following interpolation:

R(x, θ; n)= x2 R(x, θ; n − 1)

R(x, θ; n − 1)x2 sin2 θ + φ
. (5.7)

This recursion relation can be solved for any n ∈N

Rn(x, θ)= R0

(
φ − x2

)
(φ/x2)

n
(φ − x2)+ R0x2 sin2

(θ)
[
(φ/x2)

n − 1
] . (5.8)

For any n ∈N and (x, θ) on the physical loss cone, Rn(x, θ)= R0, so the loss cone
is preserved. This recursion interpolation also has the property that, for a given (x, θ)
that is not on the loss cone, R(x, θ, n − 1) > R(x, θ, n). Increasing n compresses the
constant-R curves closer to the physical loss cone. To see this, as n approaches ∞,
we recover the unshifted model. Note, our prefactor case gmod = 1 for unshifted
R < 0 is equivalent to setting R = 0 for the region x <

√
φ and Rn→∞(x, θ) indeed

approaches zero for that region and also approaches our unshifted R in (5.2) for
x >

√
φ.

We can find analytic expressions for n by fitting the prefactor from shifted R to
the weighted simulation for a range of R0 and φ. Specifically, for a given R0 and φ,
we find n value that minimizes an error metric described later in (6.1). We require
n � 1 since, below one, the loss-cone shapes for low R curve towards x = 0, which
is un-physical. In general, we find a nearly linear relationship between n and φ and
nearly square root dependence between n and R0, which we then fit to the simulated
best-fit n values. Below are two fits as seen in figure 4

n(R0, φ)=
(√

1.57R0 + 0.93
)
φ + 1 (Z⊥ = 0.5), (5.9a)

n(R0, φ)=
(√

1.8R0 + 1
)
φ + 1 (Z⊥ = 1). (5.9b)

We find that implementing some form of an interpolated shift improves the model
in the low φ regime, as seen in figure 3, but the precise form of n(R0, φ) does not
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FIGURE 4. Analytic fits for the simulated best-fit n values for Z⊥ = 0.5 on the left and Z⊥ = 1
on the right. The fit is worse for φ < 1, which makes sense since our model was found for φ > 3.
As Z⊥ decreases, the loss-cone curves should be shifted more due to decreased perpendicular
diffusion. The n values should then be correspondingly smaller, especially in the low φ region.

make much of a difference as long as n monotonically increases with respect to φ
and R0 and n(R0, 0) > 1.

We note here that our analytic model runs approximately 30 times faster than
a single run of the finite-element solver, with both using a mix of C and Python.
In conjunction with its independence of simulation codes, the analytic model has a
substantial computational advantage over the numerical simulations.

6. Error metric comparisons

In this section, we demonstrate an error comparison of analytic models with the
numerical simulation. We find that the proposed model fmod more closely matches
the numerical simulation compared with the truncated Maxwellian model for most
values of φ and R0. The exception is a region spiking for low R0 centered around
φ = 0.2.

We used the following error metric:

E(f) =
∑
(x,θ)

( f (x, θ; R0, φ)− fsim(x, θ; R0, φ))
2
, (6.1)

where f is an arbitrary analytic model for the steady-state particle distribution.
All points in our momentum space are weighted equally. Results for our proposed
analytic, truncated Maxwellian, Najmabadi and Volosov models for fixed Z⊥ = 0.5
are shown in figure 5. We note that the proposed model fmod outperforms the
truncated Maxwellian for regions of relatively good confinement, R0 > 5 and φ > 2,
as shown in figure 6. This makes sense because our model was originally fitted to
this region of stronger confining potential and larger mirror ratio.

The Najmabadi model fnaj does modestly better at fitting to the distribution than
the truncated Maxwellian around φ ≈ 2, but does significantly worse in the limit
of large φ. This is surprising since fnaj decays at the loss cone while the truncated
Maxwellian does not. However, Najmabadi’s model was developed for calculations
of collisional end loss rates near the loss-cone region. As the loss-cone vertex moves
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FIGURE 5. The values of E( f ) of the proposed model, Volosov model, Najmabadi model and
truncated Maxwellian over φ ∈ [0, 8] for fixed mirror ratios. The spike at low φ where the pro-
posed model has greater error than the truncated Maxwellian or Najmabadi model is much less
pronounced at R0 = 10 compared with R0 = 2. For φ > 3, the proposed model has less error by
around a factor of 10 compared with the truncated Maxwellian.

FIGURE 6. Difference of error metric results for the proposed model and the truncated
Maxwellian, E( fmod)− E( ftm). Blue regions where the difference is negative indicate where
fmod outperforms ftm in fitting to the numerical simulations.

further away from the bulk of the particles, fewer particles fall within the original
intended region of Najmabadi’s calculation. In figure 7, we see that fnaj overesti-
mates the distribution in the bulk and further along the loss-cone boundary. We
choose to look at the truncated Maxwellian in later analysis instead. Despite its inac-
curacy at the loss cone, the truncated Maxwellian is a more consistent competitor to
our model for much of parameter space. Surprisingly, the truncated Maxwellian can
even outperform our proposed model in estimating the simulation at low φ and R0.

https://doi.org/10.1017/S0022377825100792 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100792


Journal of Plasma Physics 13

FIGURE 7. We compare the proposed, truncated Maxwellian, Najmabadi and Volosov models
side by side for φ = 5 and R0 = 5 using relative error, ( fmod − fsim)/ fsim. Red indicates regions
where the analytic model overestimates the distribution; blue, underestimates.

One possible reason for our model’s worse fit at φ close to 0 is due to the prefactor
and normalization. The decay primarily impacts the tail, which is proportionally
more of momentum space when φ is small. The prefactor cuts out more of the
distribution than in the simulation, leading to the normalization value to be non-
trivially less than unity. However, since the value of the prefactor at low R is fixed
at one, the normalization will boost values at the bulk of the distribution while
preserving the model’s under-prediction at the tail. This is evident in figure 8. This
would also explain the narrow strip at φ ≈ 0 in (φ, R0) parameter space where
fmod far outperforms the truncated Maxwellian in approximating the steady-state
distribution. As φ approaches zero, the region of low x between the origin and the
vertex becomes negligible, and there are no values to be boosted.

Choosing different Z⊥ ∈ {0.4, 0.6} and greater source temperatures Ts ∈ {1, 2}
yields roughly the same results as our choice of Z⊥ = 0.5 and Ts = 0.1. Generally, as
Ts increases or as Z⊥ decreases, the spiked region where our analytic model fails to
outperform the truncated Maxwellian grows larger. Likewise, using the error metric
that compares the weighted simulation and respective prefactors of the models led to
a more definitive outperformance of our model relative to the truncated Maxwellian.
The spike in (φ, R0) space becomes negligible. This makes sense because we had
originally found our prefactor by fitting to the weighted simulation.

Due to the significant error of the Volosov model, we have omitted analysis of
that model from most of the following applications. This is evident by the much
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FIGURE 8. Relative error of the proposed model compared with the simulation, ( fmod −
fsim)/ fsim. The left plot is for relatively good confinement φ = 5 and R0 = 7 while the right
plot is for relatively worse confinement φ = 0.1 and R0 = 2.5, where the proposed model is
known to be worse than other analytic models. The black line marks the simulation domain.

larger error in figure 5 and the significant overestimation of the distribution at the
tail in figure 7 due to the model’s exponential dependence only on the perpendicular
speed.

7. Applications
7.1. Stability boundary

In the limit of fast enough rotation, certain loss-cone instabilities such as the
high-frequency convective loss cone (HFCLC), drift cyclotron loss cone and Dory–
Guest–Harris mode can be stabilized. We are interested in the stability threshold, or
minimum value of confining potential φ for a given mirror ratio R0 that suppresses
a given loss-cone mode. In this paper, we restrict ourselves to studying the HFCLC
mode, comparing the predictions for the stability boundary from fmod with other
analytic models and numerical simulations. For more context on stability threshold
problems, see Volosov et al. (1969), Turikov (1973) and Kolmes et al. (2024).

We first review the stability condition for the HFCLC mode. We define the
perpendicular projected distribution as

ψa(x
2
⊥) := ψ̄

∫ ∞

−∞
fa(x

2
⊥, x2

‖) dx‖, (7.1)

where ψ̄ is the normalization constant. Note that we use the parallel and perpen-
dicular components of momentum, not x and θ . Perpendicular monotonicity is a
sufficient condition for stabilizing the HFCLC mode

∂ψ

∂z
� 0 (∀z � 0), (7.2)

where z := x2
⊥. The partial derivative with respect to z for both the truncated

Maxwellian and Volosov model can be calculated analytically as done in Kolmes
et al. (2024). However, due to the parametrization required for our analytic model,
the partial derivative with respect to z for fmod must be calculated numerically.

We find the stability boundaries φ(R0) of four distributions compared with the
numerical simulations in figure 9. The stability boundary of the Volosov model can
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FIGURE 9. Stability boundary curves for analytic distributions and the numerical simulations.

be shown to be directly proportional to R0, and it does not match our simulation’s
results. The truncated Maxwellian over-predicts the stability values for R0 < 7 and
under-predicts the stability values elsewhere. As for our proposed model, we get a
closer fit to the numerical simulation’s stability boundary when we use the shifted
as opposed to the unshifted parametrization. Both of our proposed distributions
under-predict the simulation stability value, but shifting lifts the stability values of
the model with unshifted parametrization.

This can be explained by understanding the region in (φ, R0) space where the
truncated Maxwellian outperforms fmod in our error analysis. The stability values
are precisely at low φ < 1 values, where our model over-predicts at low x and under-
predicts at higher x . This tendency of over and under estimation is visible in figure 8,
which is with respect to x‖ − x⊥ coordinates. The cumulative effect is to boost the
projected distribution at low z, enough to satisfy the perpendicular monotonicity
condition when the numerical simulation does not. Increasing the mirror ratio R0

improves the performance of the model compared with the truncated Maxwellian,
which is what we observe in the stability boundary curves.

7.2. Fusion yield
One use of analytic distribution functions is the ability to more quickly calculate

fusion yields. Since fusion yield is sensitive to the tail of the distribution, the accuracy
of a model in capturing behavior near the loss cone and further away from the bulk
of the distribution matters more. We compare the fusion yield of the deuterium–
deuterium reaction from the numerical simulation with various analytic models. We
find that proposed model more closely estimates the fusion yield compared with
the truncated Maxwellian. However, the model consistently underestimates fusion
yield as a result of over-suppressing values at the loss cone. For further context
on fusion yield problems, see the following: Kalra, Agrawal & Pandimani (1988),
Nath, Majumdar & Kalra (2013), Kolmes, Mlodik & Fisch (2021), Xie et al. (2023),
Kong et al. (2024) and Fetsch & Fisch (2025).
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FIGURE 10. We plot relative fusion yields Y f /Ysim for fixed temperatures and mirror ratios.
We vary confining potentials φ ∈ [1, 8]. Note, as φ increases, all the models converge to the
simulation results as they all look essentially Maxwellian in this limit.

To find fusion yield, the fusion reaction rate Y between two ion species can be
expressed as the following integral expression:

Y ( fa, fb)=
∫

d3vad3vbσ(w)w fa(va) fb(vb), (7.3)

where w := |va − vb| is relative speed, fa and fb are the distribution functions of
the ion species and σ is the respective cross-section between species a and b. This
six-dimensional integral can be reduced to a five-dimensional integral by using cylin-
drical symmetry for one of the ion species. To numerically evaluate the fusion
yield integral, we use the VEGAS Monte Carlo algorithm as described in Lepage
(1978).

For simplicity, we find the reaction rate of a single-ion species, deuterium, for the
deuterium–deuterium reaction at temperatures 10, 20 and 50 keV for different mir-
ror ratios and confining potentials. The ion species then has Z⊥ value of 0.5 exactly.
We find the fusion yields of three models, the Maxwellian, truncated Maxwellian and
our proposed model as well as the fusion yield of the numerical steady-state simula-
tion. Our yield calculations are shown in figure 10 for varying confining potential,
and figure 11 for varying mirror ratios.

When ranging over both confining potentials and mirror ratios, we find that the
proposed model has less relative error compared with the truncated Maxwellian.
We first note that the model under-predicts the fusion yield while the truncated
Maxwellian over-predicts. The reason can be found in the tail behavior. The
Maxwellian slightly over-predicts compared with the truncated Maxwellian, with the
only difference between the distributions being the removal of the loss-cone parti-
cles and resultant change in normalization constant. From figure 8, since we are
considering relatively good confinement with φ > 1 and R0 � 2, it is evident that
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FIGURE 11. We plot relative fusion yields Y f /Ysim for fixed temperatures and confining poten-
tials. We vary mirror ratios R0 ∈ [5, 20]. The model better predicts fusion yield compared with
the Maxwellian and truncated Maxwellian for all mirror ratios.

our model over-suppresses the distribution values at the tail, leading to a consistent
under-prediction of fusion yield.

7.3. Free energy
Finally, we consider the calculation of free energy associated with the steady-state

particle distribution. Free (or available) energy is the maximum amount of energy
extractable from a given initial distribution after specifying rules on allowed
phase-space rearrangements. Equivalently, free energy also provides a bound on the
amount of energy that can go into instabilities before reaching a distribution called
the ground state, which is necessarily stable. If a relation can be found between
available energy and another stability-related quantity, available energy could
serve as a computationally simpler proxy measurement for that other quantity, as
demonstrated for turbulent energy flux in tokamaks and stellarators (Mackenbach,
Proll & Helander 2022, 2023a, b). We study the free energy of the proposed model,
truncated Maxwellian and numerical simulation subject to two different sets of
rearrangement constraints.

We briefly review necessary background on free energy and relevant constraints.
Free energy subject to the sole constraint that all rearrangements must preserve
phase-space volumes is called the Gardner free energy (Gardner 1963). Reaching a
ground state is equivalent to rearranging the initial velocity-space distribution into a
distribution f that is monotonically decreasing with respect to energy. The energy
of a distribution is commonly chosen as the total kinetic energy W . The available
energy is then calculated as the difference of the initial state’s kinetic energy and the
ground state’s kinetic energy. However, in constructing a coarse-grained model of
the distribution function that averages over some scale, we often perceive diffusion,
or phase mixing. Free energy subject to the constraint that rearrangements average
the densities of phase-space volumes is called diffusive free energy (Fisch & Rax
1993). Although diffusive free energy is more appropriate for the collisional diffusion
behind our model, it is sufficient to calculate the Gardner free energy since it has
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been shown that the two free energies are arbitrarily close in the continuous limit
(Kolmes & Fisch 2020). When we refer to the unconstrained free energy, we are
referring to the Gardner free energy.

Conservation of phase-space volume is often not a sufficient description of the
allowed phase-space rearrangements of the plasma for any arbitrary mode. It is
possible to impose additional constraints on allowed rearrangements such as the
conservation of adiabatic invariants (Helander 2017, 2020). An important class
of loss-cone instabilities are flute-like modes, such as the HFCLC mode, whose
wavenumbers k vanish in the direction of the magnetic field. One additional con-
straint for these modes is that only the projected distributions corresponding to a
specific x⊥ value,

fP(x⊥)=
∫ ∞

−∞
f (x‖, x⊥) dx‖, (7.4)

can be swapped with one another (Kolmes et al. 2024). This comes from the fact that
the quasilinear diffusion operator cannot differentiate between phase-space elements
of the same x‖. When we refer to constrained free energy, we are referring to the
available energy subject to both constraints of phase-space volume conservation and
this flute-like loss-cone constraint. For a more extensive discussion of calculating
available energy, see Kolmes, Helander & Fisch (2020) and Helander (2017, 2020).

To compare the free energy of different initial distributions, we are interested
in the accessible energy fraction, or the ratio of free energy A to the total initial
energy Wi . For our numerical calculations, we simulate more of velocity space by
setting K = 12. We also choose a smaller source temperature Ts = 0.01 so that the
source does not disturb the steady-state distribution for almost negligible confining
potentials.

For unconstrained free energy, the left column of figure 12 shows the accessible
energy fraction’s dependency on mirror ratio R0 for initial distributions for fixed
confining potentials. When φ = 10, all the distributions have zero available energy,
which is what we expect. For large φ, the loss cone moves further away from the
bulk of the distribution, and thus, the initial distribution approaches the Maxwellian,
which is monotonically decreasing in energy. The A/Wi values of fmod closely
match those of the numerical simulation for R0 > 2.5, even for low φ values, and
outperforms the truncated Maxwellian in the A/Wi calculations. However, for low
R0 values, fmod underestimates A/Wi and exhibits a non-monotonic behavior close
to R = 1. Our model was optimized for the R0 > 5 regime, so it makes sense for it
to do poorly at low R0.

The right column of figure 12 shows the accessible energy fraction’s dependency
on confining potential φ for different initial distributions for fixed mirror ratios.
The fmod curves seem to closely match the numerical simulation A/Wi curves for all
R0 and φ. Meanwhile, the truncated Maxwellian underestimates A/Wi in the low φ
limit and decays faster than the numerical simulation.

For constrained free energy, the left column of figure 13 shows the accessi-
ble energy fraction’s dependency on mirror ratio R0 for initial distributions with
the additional flute-like mode constraint. The chosen fixed confining potentials are
smaller than the unconstrained counterparts. In the low φ limit, both the truncated
Maxwellian and fmod find zero available energy. In cutting out values near the loss
cone, the prefactor of fmod boosts values for x‖ ≈ 0 and low x⊥, which can force
the initial projected distribution to be monotonically decreasing with respect to x⊥.
The truncated Maxwellian gets closer to the immediate shape of the numerical simu-
lation’s accessible energy fraction curves. In the high φ limit, the calculated available
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FIGURE 12. Accessible energy fraction A/Wi for the unconstrained case.

energy of fmod approaches the numerical simulation’s available energy values while
the truncated Maxwellian underestimates.

The right column of figure 13 shows the accessible energy fraction’s dependency
on confining potential φ for different initial distributions with the flute-like mode
constraint. The chosen fixed mirror ratios are the same as the unconstrained case.
The model fmod appears to overestimate A/Wi and then decay more quickly than the
numerical simulation while the truncated Maxwellian underestimates A/Wi (except
for R0 = 2) while decaying closer to the rate that the numerical simulation does.

8. Discussion

In this paper, we have presented a closed-form analytic model of the steady-state
particle distribution function for low-collisionality mirror traps like tandem or cen-
trifugal traps subject to arbitrary confining potentials. The proposed distribution has
the following desired qualities: (i) recovering the Maxwellian in the limit that the
confining potential goes to infinity, (ii) smoothly decaying to zero at the loss-cone
boundary, (iii) diffusing more rapidly in pitch angle than speed and (iv) main-
taining cylindrical symmetry. Motivated by the level curves similarity to loss-cone
shapes, we formulate both an ‘unshifted’ and ‘shifted’ parametrization for the model.
Although the shifted formulation requires an extra parameter depending on the Z⊥
value, a simple approximation suffices, and we provide two such fits. Otherwise, our
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FIGURE 13. Accessible energy fraction A/Wi for the constrained case.

analytic model is written explicitly below and remains flexible enough to be modified
for different uses

fmod(x, θ; R0, φ)= A
[
gmod(x, θ; R0, φ)

(
π−3/2e−x2

)]
Θ
(
φ + R0x2 sin2(θ)− x2

)
,

(8.1)

gmod (R; R0, φ)=
⎧⎨
⎩

1 R < 0,
1 − log1+R0

(1 + R) 0� R < R0,

0 R � R0,

(8.2)

R(x, θ)= x2 − φ

x2 sin2(θ)
(unshifted), (8.3)

Rn(x, θ)= R0

(
φ − x2

)
(φ/x2)

n
(φ − x2)+ R0x2 sin2

(θ)
[
(φ/x2)

n − 1
] (shifted), (8.4)

where fits for n are provided for Z⊥ = 0.5 and Z⊥ = 1 in (5.9).
We then compared several analytic models with the numerical steady-state simu-

lated distribution with an error metric. We find that our model has nearly a factor
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of 10 less of error compared with the truncated Maxwellian for mirror ratio R0 > 5
and confining potential φ > 2. In this region of relatively good confinement, our
model tends to underestimate the distribution values for larger values of momen-
tum and more severely at the loss-cone vertex. In general, our model does better in
approximating the distribution than the truncated Maxwellian except for the spike
at φ = 0.2 in (R0, φ) space. We have also compared the truncated Maxwellian with
other models and found that it performs better than expected despite un-physical
behavior at the loss cone. The truncated Maxwellian is a simpler alternative to our
model that has the trade-off of somewhat worse performance for much of parameter
space. Note, this model is better suited for bulk-behavior applications. The truncated
Maxwellian is consistently worse than our model for tail-specific applications such
as fusion yield.

These analytic functions are often useful heuristic devices for studying the stability
of loss-cone modes and tail behaviors. We have explored three applications for our
model: the HFCLC stability boundary calculation, fusion yield for different temper-
atures of a deuterium-deuterium plasma and both unconstrained and constrained (by
a flute-like loss-cone mode) available energy. There are a few key trends, which we
review here. For the low φ
 1 regime, our model boosts the distribution values at
low momentum, which causes a noticeable under-prediction of the minimum stability
value and available energy in the constrained case. For the region of relatively good
confinement, our model over-suppresses the distribution values at high momentum,
in particular at the loss-cone boundary. Specifically, this behavior results in under-
prediction of fusion yields, which are sensitive to the higher energy particles at the
tail. Note, for relatively good confinement or sufficiently high mirror ratios for small
confining potentials, our model will often more closely recover the limiting behavior
of the numerical simulation compared with the truncated Maxwellian model.

It can be anticipated that improvements to our model functions can be made
by refining the shift. The shift was based off a recursive linear interpolation, but
other interpolations (polynomial, logarithmic, etc.) between R and φeff are options.
By either using another interpolation or finding a closed-form expression for the n
parameter that accounts for different Z⊥ values, a further simplified expression for
the model could be found that does not compromise the fit of the model to the
numerical simulations.

Our analytic distribution can also be used to calculate radiation loss quantities
in rotating mirrors to judge the viability of the configuration (Mlodik et al. 2023;
Munirov & Fisch 2023; Ochs, Mlodik & Fisch 2024). Additionally, the yield calcu-
lation shown in § 7.2 could be extended to calculate the birth distribution of fusion
products in phase space, which is important for alpha-extraction problems (Fisch
& Rax 1992; Mynick & Pomohrey 1994; Fisch 2006; Zhmoginov & Fisch 2008;
Bierwage et al. 2022; Gudinetsky et al. 2025). Comparisons between the proposed
model and numerical simulations could then be made with respect to these calcula-
tions to judge the accuracy of our model. Improving upon these heuristic models is
essential to better understanding and more quickly calculating quantities of interest
in centrifugal and tandem mirrors.
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