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Buoyancy segregation suppresses viscous
fingering in horizontal displacements
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We consider the axisymmetric displacement of an ambient fluid by a second input fluid
of lower density and lower viscosity in a horizontal porous layer. If the two fluids have
been segregated vertically by buoyancy, then the flow becomes self-similar with the input
fluid preferentially flowing near the upper boundary. We show that this axisymmetric
self-similar flow is stable to angular-dependent perturbations for any viscosity ratio. The
Saffman–Taylor instability is suppressed due to the buoyancy segregation of the fluids.
The radial extent of the segregated flow is inversely proportional to the viscosity ratio.
This horizontal extension of the intrusion eliminates the discontinuity in the pressure
gradient between the fluids associated with the viscosity contrast. Hence at late times,
viscous fingering is shut down even for arbitrarily small density differences. The stability
is confirmed through numerical integration of a coupled problem for the interface shape
and the pressure gradient, and through complementary asymptotic analysis, which predicts
the decay rate for each mode. The results are extended to anisotropic and vertically
heterogeneous layers. The interface may have relatively steep shock-like regions, but the
flow is always stable when the fluids have been segregated by buoyancy, as in a uniform
layer.

Key words: gravity currents, fingering instability, porous media

1. Introduction

Displacement flows in porous media occur in many important environmental settings
including geological CO2 sequestration, underground hydrogen storage, geothermal
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energy generation and the infiltration of sea water into freshwater aquifers. If the displacing
fluid is of lesser viscosity than the ambient or displaced fluid, then the fluid–fluid interface
can become unstable. This phenomenon is known as the ‘Saffman–Taylor instability’ or
as ‘viscous fingering’ owing to the fingers of low viscosity input fluid that penetrate the
ambient fluid (Saffman & Taylor 1958; Paterson 1981; Homsy 1987). In many applications,
understanding this instability is a key concern. For example, sequestered CO2 is much
less viscous than the host brine in the aquifer, and viscous fingering may significantly
reduce the fraction of the aquifer that can be accessed by the CO2, which in turn reduces
the storage efficiency (Bachu 2015). Multiple strategies have been developed to suppress
viscous fingering, including controlling the flow geometry and varying the volume flux of
the input fluid (Al-Housseiny, Tsai & Stone 2012; Zheng, Kim & Stone 2015a). Significant
miscibility between the fluids has also been shown to shut down fingering at later times
(Nijjer, Hewitt & Neufeld 2018; Sharma et al. 2020).

In the case that the two fluids have different densities and cross-layer gravity is
important, as is relevant to CO2 sequestration, variations in the hydrostatic pressure
provide an extra horizontal force that drives (or opposes) the fluid displacement; such flows
are known as ‘gravity currents’ (Huppert & Woods 1995). There has been much research
into gravity currents in porous media, particularly in confined layers in which the ambient
fluid must be displaced (Hesse et al. 2007; Juanes, MacMinn & Szulczewski 2010; Zheng
& Stone 2022). Viscous fingering can occur at early times if the input fluid is of lower
viscosity. At later times, it is generally assumed that the fluids segregate vertically due
to buoyancy, and a stable interface between the input and ambient fluids develops, which
seems to be corroborated by laboratory experiments (Nordbotten & Celia 2006; Pegler,
Huppert & Neufeld 2014; Guo et al. 2016). It has also been shown that the combination
of buoyancy and mixing between the fluids can suppress the Saffman–Taylor instability
at long times (Tchelepi 1994; Riaz & Meiburg 2003; Nijjer, Hewitt & Neufeld 2022).
However, for sharp-interface gravity currents in confined porous media, stability of the
gravity current solution has not yet been confirmed and the flow physics that suppresses
viscous fingering is not fully understood.

In the present paper, we consider injection of a relatively buoyant fluid into an aquifer
confined above and below by two impermeable layers. The injection source is on the upper
boundary, and the aquifer is initially filled with a second fluid of greater viscosity (see
figure 1). We show that if the fluids have segregated owing to buoyancy, then the gravity
current solution is stable to both axisymmetric and angular-dependent perturbations for
any values of the viscosity ratio and the input flux relative to the buoyancy velocity.

The classical Saffman–Taylor instability is associated with the discontinuity in the
pressure gradient across the fluid–fluid interface (Paterson 1981). Consider the example
of flow in a horizontal porous medium that is independent of gravity. The base radial
displacement has a circular interface. The total radial flux in each fluid in a circular
cross-section is given by

qr = −2πrk
μ

∂p
∂r

, (1.1)

where k is the permeability, μ is the viscosity, r is the radial coordinate, and p is the
pressure. This flux is continuous across the interface so the pressure gradient either side
of the interface is proportional to the viscosity of the fluid there. If the pressure gradient
is larger in the ambient fluid, then perturbations to the interface into the ambient fluid
experience a larger pressure gradient and tend to grow. Hence viscous fingers can arise if
the ambient fluid is of greater viscosity.
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Figure 1. (a) Schematic of the set-up. (b) Cross-section of the set-up.

In a three-dimensional porous layer with fluids of different densities that have been
segregated vertically by buoyancy, the input fluid will form an intrusion with large
radial extent at later times (e.g. figure 1). The radial flux at the interface no longer
needs to be continuous because the input intrusion advances into the ambient fluid
with radially-varying thickness. Indeed, we will show that the vertical structure of the
flow ensures that there is no destabilising pressure gradient across the interface. This
stabilisation occurs for any non-zero density difference between the two fluids that
eventually leads to buoyancy segregation.

The combination of buoyancy segregation and an intrusion of large radial extent is a
fundamentally different stability mechanism to the related problem of two-layer viscous
gravity currents where two viscous fluids co-flow driven by gravity alone. In this case,
buoyancy segregation does not guarantee stability. Instead, stability is controlled by
competing contributions to the pressure gradient from buoyancy and the viscosity contrast
(Kowal & Worster 2019). The Saffman–Taylor instability is suppressed provided that the
density difference is sufficiently large. A similar phenomenon occurs in unconfined flows
with a longitudinal viscosity contrast (Kowal 2021).

The stability of single-layer unconfined gravity currents (in which the aquifer is bounded
on only one side by a single impermeable layer) has been investigated extensively
(Pattle 1959; Grundy & McLaughlin 1982; Newman 1984; Bernoff & Witelski 2002;
Chertock 2002; Mathunjwa & Hogg 2006). In this case, the motion of the ambient
fluid is unimportant and the gravity current is not resisted by its displacement; the
solutions are always stable. The stability of confined gravity currents is different because
the displacement of the more viscous ambient fluid influences the physics. For these
confined flows, stability has been established for perturbations that do not depend on the
transverse or azimuthal coordinate (Nordbotten & Celia 2006). The stability analysis of
both unconfined gravity currents and axisymmetric variations to confined gravity currents
is simplified significantly because the driving pressure gradient in the input fluid can be
eliminated from the problem. The present study of three-dimensional perturbations to
confined flows requires the solution to a coupled system for both the pressure gradient
and the interface shape.
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The paper is structured as follows. The model for the buoyancy-segregated displacement
flow is formulated in § 2. The coupled system that governs the background pressure and
the interface shape is integrated numerically in § 3, with the results demonstrating that the
axisymmetric solutions are stable to angular-dependent perturbations for all values of the
viscosity ratio and any non-zero density difference. In § 4, the physical mechanism that
suppresses the Saffman–Taylor instability is analysed. A linear stability analysis is carried
out in § 5 for the case of buoyancy-segregated fluids with a very small density difference.
In § 6, we show that the stabilising effect of buoyancy segregation generalises to layers
with vertically varying permeability for which the interface may contain relatively steep
shock-like regions. Concluding remarks are made in § 7.

2. Model

The set-up is shown in figure 1. A similar geometry was studied by Nordbotten & Celia
(2006) and Guo et al. (2016). Fluid of density ρ and viscosity μi is injected into a porous
medium of thickness H0, horizontal permeability kx, and porosity φ. The medium is
initially filled with a second fluid of greater density ρ + �ρ and different viscosity μa. The
top and bottom boundaries of the layer are impermeable. The input fluid is injected with
volume flux Q from a point source at the upper boundary, which we take to be the origin of
our coordinate system. The Z coordinate is measured downwards from the upper boundary
at which Z = 0. We use cylindrical polar coordinates, with R denoting the distance from
the Z axis, and θ denoting the angular coordinate. Time is denoted by T . We neglect any
intermingling of the fluids and assume that there is a sharp interface at Z = H(R, θ, T)

between the fluids. We also assume that the two fluids are segregated by buoyancy so that
H is a single-valued function.

When the input fluid has spread far from the source, the flow is predominantly in the
radial direction. We may then apply the shallow flow approximation and the pressure is
approximately hydrostatic,

P = P̄ + ρgZ for 0 < Z < H, (2.1)

P = P̄ − �ρ gH + (ρ + �ρ)gZ for H < Z < H0, (2.2)

in the input and ambient fluids, respectively, where P̄(R, θ, T) is the pressure at the upper
boundary, Z = 0, which is to be determined. The Darcy velocities are given by

U i = − kx

μi
∇P̄, (2.3)

Ua = − kx

μa

(∇P̄ − �ρ g ∇H
)
, (2.4)

in the input and ambient fluids, respectively. The governing equations of the flow are

φ
∂H
∂T

+ ∇ · (HU i) = 0 (2.5)

and

∇ · [HU i + (H0 − H)Ua] = 0, (2.6)

which represent mass conservation integrated over the thickness of the input fluid, and
mass conservation integrated over the thickness of the layer, respectively.
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At T = 0, the porous layer is filled entirely with the ambient fluid, and constant-flux
injection of the input fluid begins. Global mass conservation of the input fluid takes the
form ∫ 2π

0

∫ Rf (θ,T)

0
φRH dR dθ = QT, (2.7)

where Rf (θ, T) denotes the frontal contact line where H = 0 (see figure 1b).
Eventually, the fluid–fluid interface will touch the lower boundary (Nordbotten & Celia

2006). It is well-known that the predicted interface shape of an unconfined axisymmetric
gravity current has an unphysical singularity at the origin, whilst in confined layers, the
flow will always eventually encompass the entire layer near the source, regardless of the
thickness of the layer (Lyle et al. 2005; Guo et al. 2016). Recently, Benham, Neufeld &
Woods (2022) carried out a detailed analysis of the flow near the source, incorporating the
pressure-driven vertical flow there. Their results corroborate the conclusion that a confined
layer becomes filled with input fluid at sufficiently late times (see also Huppert & Pegler
2022). After the fluid–fluid interface has touched the lower boundary, there is a second
contact line at R = Rb(θ, T) where H = H0. The flow then has three regions: there is the
‘fully flooded’ zone in which the input fluid fills the layer (H = H0, 0 � R < Rb(θ, T));
next is the partially filled zone in which the fluid–fluid interface lies between the top and
bottom boundaries (0 < H < H0, Rb(θ, T) < R < Rf (θ, T)); finally, beyond this there is
an uninvaded zone in which the ambient fluid fills the layer (H = 0, R > Rf (θ, T)); see
figure 1(b).

When the input fluid has filled the layer near the source, the boundary conditions are as
follows. At the source,

H → H0,
∂P̄
∂R

→ −μiQ
2πkxH0R

as R → 0, (2.8a,b)

where the latter arises from volume conservation. In the far field, the boundary condition
is

H → 0,
∂P̄
∂R

→ −μaQ
2πkxH0R

as R → ∞. (2.9a,b)

The dependent variables, P̄(R, θ, T) and H(R, θ, T), are defined on θ ∈ [0, 2π), with
periodic boundary conditions P̄(R, 0, T) = P̄(R, 2π, T) and H(R, 0, T) = H(R, 2π, T).
We also require that 0 � H � H0. Equations (2.5) and (2.6) combined with global mass
conservation (2.7) and the boundary conditions (2.8a,b), (2.9a,b) define a complete
coupled system for determining the two dependent variables P̄(R, θ, T) and H(R, θ, T).

Although the system derived above is sufficient to solve the problem numerically (see
§ 3), the stability investigation requires detailed treatment of the behaviour in the vicinity
of the two contact lines where the interface touches the layer boundaries. Across these
lines, the gradient of the interface and the gradient of the pressure at the top of the layer
can be discontinuous. Indeed, it is well-known that the stability of the fluid–fluid interface
for equally dense fluids is controlled by the jump in the pressure gradient at the interface
(see § 1). Therefore, we derive boundary conditions for the interface shape and the pressure
gradient across each contact line.
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At the trailing contact line R = Rb(θ, T), continuity of the interface, continuity of the
pressure and continuity of the flux of the input fluid take the forms

H(R = R+
b ) = H(R = R−

b ) = H0,
[
P̄
]+
− = 0,

[
∂P̄
∂R

− ∂Rb

∂θ

1
R

∂P̄
∂θ

]+

−
= 0, (2.10a–c)

respectively, where [·]+− denotes the discontinuity in the quantity in square brackets at
the contact line R = Rb(θ, T). In addition, we have a kinematic boundary condition; at
the trailing contact line, the normal velocity of the ambient fluid is equal to the normal
velocity of the interface, which takes the form

− kx

μa

(
∂P̄
∂R

− �ρ g
∂H
∂R

)∣∣∣∣
R=R+

b

= ∂Rb

∂T
− kx

μa

∂Rb

∂θ

(
1
R

∂P̄
∂θ

− �ρ g
R

∂H
∂θ

)∣∣∣∣
R=R+

b

. (2.11)

At the leading contact line R = Rf (θ, T), the corresponding boundary conditions are

H(R = R+
f ) = H(R = R−

f ) = 0,
[
P̄
]+
− = 0, (2.12a,b)[

∂(P̄ − �ρ gH)

∂R
− ∂Rf

∂θ

1
R

∂(P̄ − �ρ gH)

∂θ

]+

−
= 0, (2.13)

− kx

μi

∂P̄
∂R

∣∣∣∣
R=R−

f

= ∂Rf

∂T
− kx

μiR
∂Rf

∂θ

∂P̄
∂θ

∣∣∣∣
R=R−

f

, (2.14)

where [·]+− denotes the discontinuity in the quantity in square brackets at the contact line
R = Rf (θ, T). Equation (2.14) relates the normal velocity of the interface to the normal
velocity of the input fluid just behind the leading contact line (at R = R−

f ).

2.1. Transformed coordinate system
Mass conservation of the input fluid suggests that the radial extent of the interface
grows with R2 ∼ QT/(φH0). This motivates introducing the transformed dimensionless
coordinates

η =
(

2πφH0

QT

)1/2

R, τ = log
(
T/Tref

)
, (2.15a,b)

where T = Tref > 0 is a reference time, which corresponds to τ = 0. We also scale the
dependent variables to obtain the dimensionless quantities

H(η, θ, τ ) = H(R, θ, T)

H0
, P(η, θ, τ ) = 2πkxH0

μiQ
P̄(R, θ, T). (2.16a,b)

The two mass conservation equations (2.5) and (2.6) become

∂H
∂τ

− η

2
∂H
∂η

− ∇̃ ·
(
H ∇̃P

)
= 0, (2.17)

∇̃ ·
[
(M + (1 − M)H) ∇̃P − GM(1 − H) ∇̃H

]
= 0, (2.18)

where

∇̃ =
(

∂

∂(η cos θ)
,

∂

∂(η sin θ)

)
(2.19)
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is the gradient operator with respect to the transformed coordinates, and we have
introduced the two dimensionless groups

M = μi

μa
, G = 2πkx �ρ gH2

0
μiQ

, (2.20a,b)

which are the viscosity ratio and gravity number, respectively. The latter represents the
magnitude of pressure gradients associated with buoyancy relative to pressure gradients
associated with injection of fluid. In the case of equally dense fluids, the gravity number
is G = 0. The boundary conditions at the source and in the far field are

H → 1,
∂P
∂η

→ −1
η

as η → 0, (2.21a,b)

and

H → 0,
∂P
∂η

→ −M−1

η
as η → ∞. (2.22a,b)

The trailing contact line in the transformed coordinates is denoted by η = ηb(θ, τ ), and
the boundary conditions there ((2.10a–c) and (2.11)) are recast as

H(η = η+
b ) = H(η = η−

b ) = 1, [P]+− = 0,

[
∂P
∂η

− ∂ηb

∂θ

1
η

∂P
∂θ

]+

−
= 0, (2.23a–c)

−M
(

∂P
∂η

− G
∂H
∂η

)∣∣∣∣
η=η+

b

= ∂ηb

∂τ
+ 1

2
ηb − M

∂ηb

∂θ

(
1
η

∂P
∂θ

− G
η

∂H
∂θ

)∣∣∣∣
η=η+

b

, (2.24)

whilst at the leading contact line, η = ηf (θ, τ ),

H(η = η+
f ) = H(η = η−

f ) = 0, [P]+− = 0, (2.25a,b)[
∂(P − GH)

∂η
− ∂ηf

∂θ

1
η

∂(P − GH)

∂θ

]+

−
= 0, (2.26)

−∂P
∂η

∣∣∣∣
η=η−

f

= ∂ηf

∂τ
+ 1

2
ηf − 1

η

∂ηb

∂θ

∂P
∂θ

∣∣∣∣
η=η−

f

. (2.27)

Mass conservation (2.7) takes the form

1
2π

∫ 2π

0

∫ ηf

0
ηH dη dθ = 1. (2.28)

2.2. Self-similar axisymmetric solution
The flow has a self-similar axisymmetric solution with (Nordbotten & Celia 2006; Guo
et al. 2016)

H(η, θ, τ ) = H0(η), P(η, θ, τ ) = P0(η), (2.29a,b)

and
ηb(θ, τ ) = ηb0, ηf (θ, τ ) = ηf0, (2.30a,b)

so that the contact lines are circles, fixed in similarity space. We are interested in analysing
the stability of and convergence to these solutions in §§ 3, 4 and 5. In the present section,
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we derive a single ordinary differential equation that governs the axisymmetric self-similar
interface shape, and we recall an important analytical solution of this equation from
Nordbotten & Celia (2006) and Guo et al. (2016). For axisymmetric flow, the pressure
at the top boundary, P0(η), can be eliminated from the problem as follows. We integrate
(2.18) with respect to η, and apply the source flux boundary condition (2.21a,b) to obtain

dP0

dη
= −1

η (M + (1 − M)H0)
+ GM(1 − H0)

(M + (1 − M)H0)

dH0

dη
. (2.31)

Upon substituting (2.31) into (2.17), we obtain the following ordinary differential equation
for H0(η):

− η

2
dH0

dη
+ 1

η

d
dη

( H0

M + (1 − M)H0

)
= 1

η

d
dη

(
η

GMH0(1 − H0)

M + (1 − M)H0

dH0

dη

)
. (2.32)

This axisymmetric system can be solved numerically for H0(η) as described in Guo et al.
(2016) for a wide range of M and G. For G � 1 (buoyancy-dominated flow), the input
fluid forms a thin current near the top of the layer (except in a small neighbourhood of
the source, where the layer is fully flooded). In this case, the displacement of the ambient
fluid is unimportant over most of the radial extent of the flow. The flow is effectively
‘unconfined’ and single-phase. Hence we do not expect the large G solution to be unstable
to viscous fingering.

Instead, we focus on the case of relatively larger input flux (G � O(1)) and a less viscous
input fluid (M < 1) for which stability is not well understood. For G � 1 and M < 1,
(2.32) has an approximate analytic solution. We neglect the right-hand side of (2.32).
Although this removes the highest derivative of H0, the boundary conditions (2.24) and
(2.27) become independent of H0 for G � 1 and simply give the locations of the contact
points, so the problem remains complete. Integrating the left-hand side of (2.32) furnishes
the interface shape (Guo et al. 2016)

H0 = 1, 0 < η < ηb0, (2.33)

H0 = (2M)1/2

(1 − M)η
− M

1 − M
, ηb0 < η < ηf0, (2.34)

H0 = 0, ηf0 < η, (2.35)

where the contact lines are given by

ηb0 =
√

2M and ηf0 =
√

2/M. (2.36a,b)

Note that these provide inner bounds on the locations of the contact lines for general G > 0
provided that M < 1:

ηb0 �
√

2M, ηf0 �
√

2/M, (2.37a,b)

with equality as G → 0+. These inequalities arise because buoyancy acts to extend the
interface (its effect is proportional to G).
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Figure 2. Self-similar axisymmetric flow. (a) Interface shape for viscosity ratio M = 0.2 and G = 0.1 (blue
line) and the small-G approximate solution ((2.34), black dashed line). Stability is controlled by the pressure
gradients at points (i)–(iv); see § 4. (b) Small-G approximate interface shapes (2.34) for four values of M.

The corresponding pressure at the top of the layer takes the form

P0 = −1 − log
(

η

(2M)1/2

)
, 0 < η < ηb0, (2.38)

P0 = − η

(2M)1/2 , ηb0 < η < ηf0, (2.39)

P0 = −M−1 − M−1 log
(

η

(2/M)1/2

)
, ηf0 < η, (2.40)

where P0(η) is defined up to addition of an arbitrary constant.
The numerical solution of (2.32) for H0 is plotted as a blue line in figure 2(a) for G =

0.1 and M = 0.2. The small-G analytical solution (2.34) is shown as a black dashed line,
and there is good agreement with the numerical result. Figure 2(b) shows the analytical
solutions for various values of M < 1. When the input fluid is of relatively lower viscosity
(smaller M), it forms a finger that intrudes further into the ambient fluid at the top of the
layer.

It is worth considering the behaviour in the limit G → 0, corresponding to equally
dense fluids and no buoyancy force. As G → 0, the axisymmetric analytic solution (2.34)
becomes a more accurate approximation of the numerical solution, with the input fluid
preferentially flowing near the upper boundary (figure 2). However, G = 0 corresponds
to no buoyancy segregation (�ρ = 0), so the input fluid should have no preference for
the top of the layer. Indeed, in the case of equally dense fluids (G = 0) and M < 1, one
would observe classical Saffman–Taylor fingering (Paterson 1981). The derivation of the
axisymmetric analytical solution (2.34) assumes implicitly that the input and ambient fluid
have been segregated by buoyancy, which requires G > 0 and takes a time proportional
to G−1. Hence the case G = 0 has qualitatively different late-time behaviour to the case
of small but non-zero G, and the limit G → 0 is singular. In this paper, we analyse the
stability when G is small but positive; we exclude the case G = 0, for which buoyancy has
no effect.

For G small but non-zero, the interfaces in figure 2(b) occur provided that (i) buoyancy
segregation has occurred and (ii) the radial extent of the flow is much greater than the layer
thickness so that the shallow approximation applies. For M < 1, in dimensional terms, the
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former requires

T � μaH0

�ρ gkz
, (2.41)

where kz is the vertical permeability in the layer. Equation (2.41) corresponds to the time
for vertical flow across the layer. The shallow approximation requires

T � 2πφH3
0

Q
. (2.42)

Prior to buoyancy segregation, Saffman–Taylor fingering can occur. The present paper
is concerned with the post-segregation stability of the axisymmetric solutions of (2.32)
to angular-dependent perturbations with �ρ > 0. For G � 1, the first condition (2.41)
implies the second (2.42). Notice that for small density differences �ρ, the time for
buoyancy segregation is very large. It is also important to note that the segregation
timescale (2.41) depends only on the vertical permeability kz, whereas the gravity number
(and hence the self-similar solutions) depends only on horizontal permeability kx (cf.
Benham et al. 2022). In an anisotropic layer, the horizontal permeability kx is different to
the vertical permeability kz. For an isotropic medium, kx = kz. The results that we derive in
this paper concerning flow stability extend to porous layers that have different vertical and
horizontal permeabilities (as is common in many aquifers). The case of more complicated
anisotropy, such as different horizontal permeabilities in different directions, is beyond the
scope of the present work. (Vertically varying permeability is analysed in § 6.)

For simplicity, we have modelled the case where the source of input fluid is located at a
point on the upper boundary. However, the analysis and results of this paper apply for any
location of the injection source (for example, at the lower boundary, or over a vertical line
within the layer). This is because the input fluid will always eventually fill the thickness
of the layer near the source. Subsequently, the flow becomes predominantly radial. There
will, of course, be different early-time transient behaviour for different source locations,
but once (2.41) and (2.42) apply, the exact source location becomes unimportant.

3. Numerical results

In order to investigate the response of the flow to perturbations with angular dependence,
we develop a numerical method to solve the coupled system for the evolution of the
fluid–fluid interface H(η, θ, τ ), and the pressure at the upper boundary P(η, θ, τ ). This
consists of (2.17) and (2.18) with boundary conditions (2.21a,b) and (2.22a,b), and an
appropriate initial condition. We solve this system numerically using a finite-difference
scheme, details of which are given in Appendix A.

The numerical method is applied to a wide range of axisymmetric and
non-axisymmetric initial conditions over many values of the parameters G and M. In all
cases, the solution converges to the axisymmetric similarity solution. This demonstrates
both the veracity of the numerical method and that the similarity solution provides the
intermediate asymptotics for many initial conditions. Examples are shown in figures 3 and
4 illustrating how mode six and mode three fingers are suppressed even though the input
fluid is of lesser viscosity than the ambient. We find that any perturbation is suppressed,
including radial perturbations, provided that the fluids remain buoyancy segregated. If
the interface becomes non-monotonic as a function of vertical coordinate, then the model
breaks down. Stability in this case is not well understood and is beyond the scope of the
present work.
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Figure 3. Suppression of mode six fingers for G = 0.1 and M = 0.2. (a) Initial condition at the reference time
(τ = 0) for the flow thickness H in transformed coordinates. (b,c) The flow thicknesses at τ = 1.25 and τ = 4.
(d) The evolution of the contact line, where H = 0.

The numerical results also demonstrate that there is a jump in the radial pressure
gradient at the upper boundary across the leading contact line (see figure 5). This pressure
gradient jump is associated with the density difference between the two fluids, and the
discontinuity vanishes as G → 0+. The discontinuity has a stabilising effect because the
magnitude of the pressure gradient is smaller in the ambient fluid (see § 4). However,
this discontinuity in the hydrostatic pressure is not required for the interface to be stable.
Indeed, in § 5 we show that the interface is stable even in the limit G → 0+.

4. Stability mechanism

In this section, we describe the mechanism by which buoyancy segregation suppresses
viscous fingering. In the classical case of radial flow with no cross-layer gravity (discussed
in § 1), the pressure gradient either side of the fluid–fluid interface is proportional to
the fluid viscosity owing to continuity of the radial flux, which drives the well-known
instability.

We now analyse the more complicated three-dimensional case in which the fluids have
different densities and are segregated by buoyancy. Between the contact lines, the pressure
gradient in the input fluid is dP0/dη, and the pressure gradient in the ambient fluid
is d(P0 − GH0)/dη, where the −GH0 contribution arises from the density difference
between the fluids. Since both dP0/dη and dH0/dη are negative, the magnitude of the
pressure gradient is larger in the input fluid (in contrast to the classical case, which is
independent of gravity), which suggests that between the contact lines, the interface is
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Figure 4. Suppression of mode three fingers for G = 0.5 and M = 0.5. (a) Initial condition (τ = 0) for
the interface shape. (b) Initial condition (τ = 0) for the pressure gradient (log of its magnitude is shown).
(c,d) Corresponding plots at τ = 1. Radial cross-sections of these results are shown in figure 5.

stable for G > 0. The stability at the contact lines must be treated separately because there
is a discontinuity in dP0/dη and dH0/dη between the input and ambient fluids, as shown
in figure 5. We consider the driving pressure gradients in the input and ambient fluids
either side of the contact lines; these locations are labelled (i)–(iv) in figure 2a.

At location (i), just ahead of the leading contact line at η = ηf0
+, the interface gradient

and pressure gradient at the top boundary are

dH0

dη
= 0,

dP0

dη
= − 1

Mηf0
. (4.1a,b)

The latter is calculated from (2.31). The pressure gradient driving the ambient fluid at (i)
is

d(P0 − GH0)

dη
= − 1

Mηf0
. (4.2)

At location (ii), just behind the leading contact line at η = ηf0
−, the interface and pressure

gradients are
dH0

dη
= 1

ηf0MG
− ηf0

2G
,

dP0

dη
= −ηf0

2
. (4.3a,b)

The former is calculated by taking H → 0 in (2.32). The pressure gradient driving the
input fluid at (ii) is given by (4.3b), and its magnitude is greater than (or equal to) the
magnitude of the pressure gradient in the ambient fluid (4.2) because ηf0 � √

2/M (see
(2.37a,b)). Hence small perturbations to the contact line decay because they experience
unfavourable pressure gradients, which suggests interfacial stability provided that G > 0.
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Figure 5. Suppression of mode three fingers for G = 0.5 and M = 0.5 (same parameters and initial condition
as figure 4). Radial cross-sections at θ = 0 (black lines) and θ = π/3 (blue lines) of the flow thickness H,
and radial pressure gradient at the upper boundary ∂P/∂η, at three times: (a,d) τ = 0.25, (b,e) τ = 1, (c, f )
τ = 4. The red dashed lines denote the locations of the frontal contact line ηf at θ = 0 and θ = π/3. The
discontinuity in the pressure gradient at the frontal contact line is slightly smoothed at earlier times owing to
non-axisymmetry.

The driving pressure gradients either side of the contact line are equal in the limit G → 0+;
this case is discussed in more detail in § 5.

Inspection of equations (4.1b) and (4.3b) demonstrates that there is a discontinuity in
the pressure gradient at the top boundary, dP0/dη, across η = ηf0 , which can be observed
in the numerical results in figure 5. This discontinuity vanishes as G → 0 even for fluids
with different viscosities. In other words, the destabilising jump in the pressure gradient
associated with the viscosity contrast is eliminated by the radial extension of the interface.
Indeed, the jump in the pressure gradient is stabilising for G > 0.

Similar analysis applies at the trailing contact line. At location (iii), just downstream of
the trailing contact line η = ηb0

+, the interface gradient, the pressure gradient at the upper
boundary and the pressure gradient driving the ambient fluid are given by

dH0

dη
= ηb0

2MG
− 1

Gηb0

,
dP0

dη
= − 1

ηb0

,
d(P0 − GH0)

dη
= −ηb0

2M
, (4.4a–c)

respectively. At location (iv), just behind the trailing contact line η = ηb0
−, the interface

gradient and the pressure gradient at the upper boundary (which drives the input fluid) are
given by

dH0

dη
= 0,

dP0

dη
= − 1

ηb0

. (4.5a,b)

The magnitude of the pressure gradient driving the input fluid, 1/ηb0 , is greater than (or
equal to) the magnitude of the pressure gradient driving the ambient fluid, ηb0/(2M), since
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ηb0 �
√

2M, with equality when G → 0+. This suggests that the trailing contact line is
stable to small perturbations for G > 0.

At the leading contact line (where H0 = 0), with G � 1, the pressure gradient in the
ambient fluid (4.1b) is proportional to the relative viscosity of the ambient fluid divided
by the radial distance. Similarly at H0 = 1, the pressure gradient in the input fluid (4.5b)
is proportional to the relative viscosity of the input fluid divided by the radial distance.
This dependence on the relative viscosity and radial location is as in the classical case
(see (1.1)). However, the key difference is that in contrast to the classical instability, the
contact lines are separated so that the radial coordinate is different at H0 = 0 and H0 = 1.
The change in the pressure gradient between location (iv) and location (i) (figure 2a) is
controlled by the viscosity contrast and how far apart the contact lines are, which reduces
the magnitude of the pressure gradient downstream. These two effects act in opposition. If
the intrusion of input fluid has a relatively short radial extent, then the flow is unstable and
the intrusion grows radially until the distance between the contact lines acts to stabilise
the interface. Hence the self-similar axisymmetric solutions have larger radial extent at
smaller viscosity ratios. Stability is ensured because the radially extensive intrusion along
the upper boundary associated with buoyancy segregation counteracts the destabilising
discontinuity in the pressure gradient associated with the viscosity contrast. The vertically
segregated radial intrusion could be thought of as a single axisymmetric viscous finger,
which is stable to angular-dependent fingers.

It is not gravity that acts against the pressure gradient to stabilise the contact lines. The
role of gravity is simply to segregate the fluids, and stability occurs after the segregation
has occurred. Indeed, the radial extent of the interface is insensitive to G at small values
of G. In § 5, we show that provided that buoyancy has segregated the fluids, the small-G
axisymmetric self-similar solutions are linearly stable. This formally confirms the results
in the present section.

5. Linear stability for small density difference (G � 1)

In this section, we demonstrate the linear stability of the G � 1 axisymmetric self-similar
solutions (given by (2.34)). Note that G > 0 as some buoyancy is required to segregate the
fluids. Confirming the stability of the G � 1 solution will demonstrate stability for G > 0
as discussed in § 4. The linear stability analysis also gives the rate of decay of each mode
and its dependence on the viscosity ratio.

We consider θ -dependent perturbations to the axisymmetric self-similar solutions of the
form

H = H0(η) + ε H1(η) exp(στ + inθ), (5.1)

ηf = ηf0 + εηf1 exp(στ + inθ), (5.2)

ηb = ηb0 + εηb1 exp(στ + inθ), (5.3)

P = P0(η) + ε P1(η) exp(στ + inθ), (5.4)

where ε � 1 and n is an integer. We seek to determine the stability of these perturbations.
Note that the perturbation corresponds to eστ ∼ Tσ in terms of real time T (see (2.15a,b)).

Often, linear stability analyses of viscous gravity currents require rescaling the spatial
domain owing to the singular behaviour of the interface at the contact lines (e.g.
Mathunjwa & Hogg 2006; Kowal & Worster 2019). For the present porous gravity current,
the interface is linear at the contact lines so such a transformation is not required. Instead,
we linearise the boundary conditions about the leading-order locations of the contact lines,
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ηf = ηf0 and ηb = ηb0 . We consider perturbations with θ -dependence (n � 1) first as the
stability in this case has not yet been investigated. For n � 1, global mass conservation of
the input fluid (2.28) is identically satisfied by the form of the perturbations. The case of
axisymmetric perturbations (n = 0) is included at the end of this section for completeness.

In the single-phase regions (upstream of the trailing contact line and downstream of
the leading contact line), the pressure P satisfies Laplace’s equation, hence the pressure
perturbation P1 is given by the solution of

1
η

d
dη

(
η

dP1

dη

)
− n2

η2 P1 = 0. (5.5)

Since the pressure perturbation remains finite as η → ∞ and as η → 0, the solution in the
single-phase regions is

P1 = cnη
n for η < ηb0, (5.6)

P1 = dnη
−n for η > ηf0, (5.7)

where cn and dn are constants.
In the interface region (ηb0 < η < ηf0), the linearised governing equations (2.17) and

(2.18) become

(M − 1)
d

dη
(ηH1) + 2M

(
d2P1

dη2 − n2

η2 P1

)
= 0, (5.8)

(1 − M)(σ + 1/2)H1 = −M
η

dP1

dη
. (5.9)

We can then eliminate H1 and obtain a single equation for P1 in the interface region:(
σ + 1

σ + 1/2

)
d2P1

dη2 − n2

η2 P1 = 0. (5.10)

To determine P1, we solve (5.10) with three boundary conditions at each contact line.
These arise from the linearised version of continuity of the pressure, continuity of the
flux, and the kinematic boundary condition (see (2.23a–c)–(2.27)). At η = ηb0

+, these
boundary conditions take the form

P1|ηb0
+ = cnηb0

n, (5.11)

dP1

dη

∣∣∣∣
ηb0

+
= ηb1

ηb0
2 + ncnηb0

n−1, (5.12)

(σ + 1/2)ηb1 = −M
dP1

dη

∣∣∣∣
ηb0

+
= −M

(
ηb1

ηb0
2 + ncnηb0

n−1
)

, (5.13)

where we have used the upstream behaviour (5.6). At η = ηf0
−, the analogous boundary

conditions take the form

P1|ηf0
− = dnηf0

−n, (5.14)

dP1

dη

∣∣∣∣
ηf0

−
= ηf1

2
− ndnηf0

−n−1, (5.15)

(σ + 1/2)ηf1 = −dP1

dη

∣∣∣∣
ηf0

−
= −

(ηf1

2
− ndnηf0

−n−1
)

, (5.16)
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where we have used the downstream behaviour (5.7). The system for P1 between the
contact lines is linear and has six boundary conditions with six unknown constants: cn, dn,
ηb1 , ηf1 and two constants arising from solving the ordinary differential equation (5.10).
The system is an eigenvalue problem for the growth rate σ . The general solution of (5.10)
is characterised by the value of σ relative to the critical value

σc = −2n2 − 1
4n2 + 1

. (5.17)

This critical value of σ corresponds to a repeated root in the auxiliary equation for the
ordinary differential equation (5.10). There are no non-trivial solutions that satisfy all the
boundary conditions for σ � σc. For −1 < σ < σc, the solution takes the form

P1 = η1/2 [a1 cos(α log η) + a2 sin(α log η)
]
, (5.18)

where

α =
√

−1
4

−
(

σ + 1/2
σ + 1

)
n2, (5.19)

and a1 and a2 are constants. We apply the six boundary conditions to obtain the following
dispersion relation for σ :

F(σ, n, M) = 0, (5.20)

where

F(σ, n, M)

=
[(

σ + 1
2

)
nsb − (σ + 1)

(
1
2 sb + αcb

)] [(
σ + 1

2

)
ncf + (σ + 1)

(
1
2 cf − αsf

)]
−
[(

σ + 1
2

)
nsf + (σ + 1)

(
1
2 sf + αcf

)] [(
σ + 1

2

)
ncb − (σ + 1)

(
1
2 cb − αsb

)]
(5.21)

and

sb = sin(α log ηb0), sf = sin(α log ηf0), (5.22a,b)

cb = cos(α log ηb0), cf = cos(α log ηf0). (5.23a,b)

The locations of the contact lines ηb0 and ηf0 are functions of the viscosity ratio M, so the
dispersion equation (5.20) also depends on M.

The dispersion equation (5.20) can be solved to obtain the growth rate σ for any n � 1
and 0 < M < 1. The corresponding eigenfunctions are given by (5.18). Since σ < σc < 0,
the growth rate is always negative, hence the axisymmetric similarity solutions are linearly
stable.

The dispersion equation (5.20) can have multiple solutions. The function F(σ, n, M)

is plotted against σ in figure 6 for M = 0.5 and four values of n. For each n, the largest
zero for σ is σ = σc (these solutions are indicated by stars in figure 6). However, the
case σ = σc corresponds to a trivial solution for P1, which is not admissible. The next
largest solution σ of (5.20) corresponds to the slowest-decaying non-trivial solution, and
these values are indicated by circles in figure 6. We expect this to be the decay rate that is
observed, and we take this solution as the correct value of σ .

The eigenfunctions (5.18) that correspond to this correct solution σ are defined up to a
multiplicative constant. The form of the interfacial perturbation H1 for each eigenfunction
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Figure 6. The dispersion relation function F(σ, n, M) (5.21) plotted versus the growth rate σ for M = 0.5. It
has been normalised by its maximum value Fmax over the range of σ . The zeros of the curves correspond to
admissible decay rates σ (5.20) with the exception of the largest zero (shown as stars). The next largest zero
(shown as circles) will be the decay rate observed (further details in the text).
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Figure 7. Eigenfunctions for the interface perturbation H1, where we have set H1(η = 1) = 1: (a) M = 0.2,
and (b) M = 0.5. The eigenfunctions are calculated from (5.9) and (5.18). The horizontal axis is ηb0 < η < ηf0
for (a) ηb0 = 0.63, ηf0 = 3.16, and (b) ηb0 = 1, ηf0 = 2.

(5.18) can be calculated from (5.9). These interfacial perturbation eigenfunctions are
shown in figure 7 for different values of the viscosity ratio M and the mode n. The shapes
are more oscillatory at higher values of n.

The decay rate σ calculated for different values of M and n using the dispersion relation
(5.20) is plotted using continuous lines in figure 8. The rate of decay is slower for larger
values of n and smaller viscosity ratios M. The crosses in figure 8 denote the decay rate
calculated from the numerical method for M = 0.5 and M = 0.8 for three values of n
with G = 0.01; details of this calculation are given in § A.1. There is excellent agreement
between the numerically derived prediction for σ and the values obtained from the linear
stability analysis.

Finally, we consider the case n = 0. For η < ηb0 , the pressure perturbation is constant,
P1 = c0, whilst for η > ηf0 , P1 = d0. In the interface region, the pressure perturbation
is linear: P1 = a + bη. The kinematic boundary conditions (5.13) and (5.16) furnish σ =
−1. The thickness perturbation takes the form (see (5.9))

H1 = 2Mb
1 − M

η−1. (5.24)
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8

M = 0.9
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10
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–0.6

–0.5

σ

Figure 8. The decay rate σ for M = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0 � n � 10. The crosses
show the decay rate observed from our numerical results (see § A.1).

The numerical results for axisymmetric perturbations to the self-similar solutions
corroborated that σ = −1 (shown as a cross at n = 0 in figure 8). Axisymmetric
perturbations decay faster than θ -dependent perturbations, with the error decaying
proportional to T−1 as has been found previously for unconfined gravity currents (Grundy
& McLaughlin 1982; Mathunjwa & Hogg 2006). For a different stability argument in the
case of axisymmetric perturbations, see the Appendix of Nordbotten & Celia (2006).

6. Vertically varying permeability

The results obtained in previous sections generalise to layers in which the permeability
varies vertically (i.e. as a function of Z). The flow is axisymmetric and self-similar after
buoyancy segregation. Here, we find the analytical solutions that arise in the small-G
regime with a less viscous input fluid (M < 1). One key difference from the uniform
case is that shock-like regions in which the interface is relatively steep can occur even
for M < 1 (see § 6.1). Despite this, we show that at late times, the axisymmetric solutions
for any continuous permeability profile are stable.

We define the dimensionless horizontal permeability as

Kx(Z/H0) = kx(Z)

1
H0

∫ H0

0
kx(Z) dZ

, (6.1)

where the denominator is the mean horizontal permeability. We also define the
dimensionless depth-integrated horizontal permeability (Hinton & Woods 2018)

Φ(H) =
∫ H

0
Kx(s) ds. (6.2)

Note that Φ(0) = 0 and Φ(1) = 1. For a uniform layer, Kx ≡ 1 and Φ(H) = H. The two
mass conservation equations (2.17) and (2.18) generalise to

∂H
∂τ

− η

2
∂H
∂η

− ∇̃ ·
(
Φ(H) ∇̃P

)
= 0, (6.3)

∇̃ ·
[
(M + (1 − M)Φ(H)) ∇̃P − GM(1 − Φ(H)) ∇̃H

]
= 0, (6.4)

where the horizontal permeability in the definition of G (2.20a,b) is now given by the
mean horizontal permeability. This model applies provided that the fluids have become

946 A48-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.644


Buoyancy segregation suppresses viscous fingering

vertically segregated by buoyancy. In a uniform layer, this applies at times given by (2.41).
In a layer with vertically varying permeability and less viscous input fluid (M < 1), the
dimensional time for buoyancy segregation is adjusted to

T � μa

�ρ g

∫ H0

0

1
kz(Z)

dZ, (6.5)

where kz(Z) is the vertical permeability. In an isotropic vertically heterogeneous layer,
kz(Z) = kx(Z). The time (6.5) becomes singular if the vertical permeability is zero at any
height in the layer (and in this case our model does not apply). The time for the shallow
approximation to apply is given by (2.42).

As for a uniform layer, there are self-similar axisymmetric solutions H0 = H0(η), P =
P0(η) to (6.3) and (6.4), with the pressure gradient at the top boundary given by

dP0

dη
= −1

η (M + (1 − M)Φ(H0))
+ GM(1 − Φ(H0))

M + (1 − M)Φ(H0)

dH0

dη
, (6.6)

and H0 satisfies the ordinary differential equation

−η

2
dH0

dη
+ 1

η

d
dη

(
Φ(H0)

M + (1 − M)Φ(H0)

)

= 1
η

d
dη

(
η

GM Φ(H0) (1 − Φ(H0))

M + (1 − M)Φ(H0)

dH0

dη

)
. (6.7)

The small-G analytic solutions are given by neglecting the right-hand side of (6.7), from
which we obtain the implicit solution

H0 = 1, 0 < η < ηb0, (6.8)

η =
√

2M Kx(H0)

M + (1 − M)Φ(H0)
, 0 < H0 < 1, (6.9)

H0 = 0, ηf0 < η, (6.10)

where the contact lines are

ηf0 =
√

2Kx(0)

M
, ηb0 =

√
2M Kx(1). (6.11a,b)

The associated pressure gradient in the interface region is given by

dP0

dη
= − 1√

2M Kx(H0)
. (6.12)

In a uniform layer, the interface (6.9) is monotonic whenever M < 1, but in a layer with a
vertical permeability variation, turning points can arise even when the input fluid is less
viscous than the ambient (Hinton & Woods 2018). The solution (6.9) is valid only when
the interface is monotonic. Otherwise, the interface has a turning point with buoyant input
fluid lying below denser ambient fluid. This would invalidate the model, which assumed
that the fluids have segregated owing to buoyancy. For example, for a linear permeability
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Figure 9. Self-similar axisymmetric interface shapes in a layer with vertically varying permeability.
(a) Small-G analytic solutions (6.9) for different linear permeability variations (6.13). (b) Small-G analytic
solutions in the case that there is a shock-like region.

structure with dimensionless variation �k,

Kx(s) = 1 + �k (s − 1/2), (6.13)

the interface (6.9) is monotonic if and only if (Hinton & Woods 2018)

M <
(2 − �k)2

4 − 2 �k + (�k)2 . (6.14)

Provided that (6.9) is monotonic, the interface forms an axisymmetric self-similar
intrusion, which extends along the upper boundary in a qualitatively identical fashion to
the case of a uniform layer (see figure 9a). In the case that (6.9) has a turning point, a
shock must be introduced; this regime is studied in § 6.1.

We apply our numerical method to layers with vertical variations in permeability for
a wide range of initial conditions, and find that the self-similar axisymmetric solutions
are stable to both θ -dependent and axisymmetric perturbations for any G > 0. Next,
we generalise § 4 to show how the pressure gradients suppress instabilities in a layer
with vertically varying permeability (but no shock-like regions; for that case, see § 6.1).
Between the contact lines, the magnitude of the pressure gradient in the ambient fluid
is less than or equal to that in the input fluid owing to the contribution of the term
−G ∂H0/∂η (as in § 4). The interface gradient at the contact lines is discontinuous, and
the stability there is treated separately.

First, we obtain bounds on the location of the contact lines of the self-similar
axisymmetric solution. In the case that the small-G analytic solution (6.9) is monotonic,
the contact lines for G > 0 satisfy

ηf0 �
√

2Kx(0)

M
, ηb0 �

√
2M Kx(1), (6.15a,b)

with equality as G → 0+. These inequalities reflect the action of buoyancy to extend the
interface.

The interface gradient and pressure gradient in the ambient fluid just ahead of the
leading contact line (at η = η+

f0 ) are given by

dH0

∂η
= 0,

d(P0 − GH0)

dη
= − 1

Mηf0
. (6.16a,b)
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The interface gradient and pressure gradient just behind the leading contact line (at η =
η−

f0 ) are

dH0

∂η
= 1

ηf0MG
− ηf0

2GKx(0)
,

dP0

∂η
= −ηf0

2Kx(0)
, (6.17a,b)

respectively. The former is obtained by taking H0 → 0+ in (6.7). The inequality (6.15a)
ensures that the magnitude of the pressure gradient is larger in the input fluid, which
stabilises the interface, with equality as G → 0+.

Just ahead of the trailing contact line (at η = η+
b0

),

dH0

dη
= ηb0

2MGKx(1)
− 1

ηb0G
,

dP0

dη
= −1

ηb0

. (6.18a,b)

Thus the pressure gradient in the ambient fluid just ahead of the trailing contact line is
given by

d(P0 − GH0)

dη
= − ηb0

2M Kx(1)
, (6.19)

whilst in the input fluid just upstream of the trailing contact line (at η = η−
b0

), the pressure
gradient is

dP0

dη
= − 1

ηb0

, (6.20)

and the inequality (6.15b) ensures that the magnitude of the pressure gradient is larger in
the input fluid, which stabilises the interface.

6.1. Shock-like regions
In the case in which the small-G interface (6.9) has a turning point, a shock must be
introduced to vertically segregate the fluids. This shock may occupy part or all of the
layer (see figure 9b). By way of an example, we consider a linear variation in permeability
with �k = 1.5 and viscosity ratio M = 0.3. The axisymmetric self-similar profile has a
shock-like region near the top of the layer, even though M < 1 (red line in figure 9b). The
shock at the top of the layer is at location η = ηs and is of thickness Hs, which satisfy

ηs =
√

2 F′(Hs), η2
sHs = 2 F(Hs), where F(H) = Φ(H)

M + (1 − M)Φ(H)
. (6.21)

These arise from continuity with the solution (6.9), which is valid for H > Hs, and mass
conservation, respectively. The shock-like region may also extend across the entire layer
(e.g. black line in figure 9b). For more complicated permeability profiles, there can be
multiple shock-like regions separated by rarefaction-like regions (Hinton & Woods 2018).

We apply our numerical method to layers with shock-like regions and find that the
self-similar axisymmetric solutions are stable to both θ -dependent and axisymmetric
perturbations. An example is shown in figure 10 with a linear variation in permeability with
�k = 1.5, viscosity ratio M = 0.3, and G = 0.05, demonstrating that mode five fingers are
suppressed. The small-G analytic solution is shown as a dashed line in figure 10(c); there
is a shock-like region in the top part of the layer. For G > 0, the shock-like regions are
smoothed by buoyancy so that they are not vertical (Hinton & Woods 2018). The smoothed
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Figure 10. Shutdown of mode five fingers in a layer with vertically varying permeability. We use a linear
variation with �k = 1.5, viscosity ratio M = 0.3, and G = 0.05. Flow thickness is shown at three radial
cross-sections at times (a) τ = 0.5, (b) τ = 1.5, and (c) τ = 20 (results calculated numerically; see § 3). In
(c), the black dashed line shows the axisymmetric small-G solution with a shock-like region in the upper
portion of the layer. (d) Location of the trailing contact line η = ηb(θ, τ ) at unit time intervals between τ = 0
and τ = 20 (lighter colours correspond to later times).

shock-like region has radial extent proportional to G in the similarity coordinate η. Hence,
in dimensional terms, the aspect ratio of the shock evolves with

L
H0

∼ G

(
QT

2πφH3
0

)1/2

, (6.22)

and eventually the shock-like region of the flow is long and thin (when the right-hand side
becomes large) and the shallow flow approximation applies at sufficiently late times. This
smoothing of the shock-like region also occurs when the shock encompasses the entire
thickness of the layer (e.g. figure 9b). Thus the fluid–fluid interface is not cylindrical in
this case. Instead, due to buoyancy, the interface becomes gradually shallower over time,
which suppresses the classical instability.

The stability analysis generalises to the case in which there are shock-like regions. At
the top of the layer, the leading contact line for G > 0 satisfies

ηf0 � ηs �
√

2Kx(0)

M
. (6.23)

The first inequality arises from buoyancy smoothing the interface beyond the shock
location (see figure 10c), whilst the second arises because the profile (6.9) has a turning
point in the shock-like region, and the shock conserves mass so it must be ahead of this

946 A48-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.644


Buoyancy segregation suppresses viscous fingering

profile at Z = 0. Hence (6.15a) applies even when there is a shock-like region at the top
of the layer. A similar argument applies when there is a shock-like region at the bottom of
the layer and (6.15b) remains correct.

The gradient of the interface and the pressure at the upper boundary at the contact lines
are given by (6.18a,b) and (6.19a,b), even when there are shock-like regions. Hence the
stability argument of § 6 applies.

In summary, the self-similar axisymmetric solutions in a layer with vertically varying
permeability are stable owing to the same mechanism as in a uniform layer. The less
viscous input fluid intrudes into the ambient fluid sufficiently far that the destabilising
increase in the magnitude of the pressure gradient associated with the viscosity contrast
is smoothed over the extent of the interface. Buoyancy segregation corresponds to a
monotonic interface, and the input fluid may be forced into the low-permeability region
(see also Debbabi et al. 2018). We note that there may be significant intermingling of the
fluids in the transient evolution to the buoyancy-segregated flow (e.g. Huppert, Neufeld
& Strandkvist 2013). There may also be a competition between viscous fingering and
heterogeneity-driven fingering prior to buoyancy segregation (De Wit & Homsy 1997).

7. Discussion and conclusion

We have examined the stability of the horizontal flow of one fluid injected into another
fluid of greater viscosity and density. When there is a sharp interface and the two fluids
have segregated owing to buoyancy, the flow evolves in an axisymmetric self-similar
fashion. Whilst Saffman–Taylor fingers may occur prior to buoyancy segregation, we have
demonstrated that the buoyancy-segregated self-similar flow is stable to both axisymmetric
and angular-dependent perturbations. The input fluid forms an intrusion with large radial
extent neighbouring the upper boundary. This disperses the destabilising pressure gradient
jump associated with the viscosity contrast between the fluids that drives the classical
instability. The stability mechanism generalises to layers with a vertical variation in
permeability and anisotropic layers with different horizontal and vertical permeability.
The time for buoyancy segregation can be long if the porous layers have zones of very low
permeability.

In future work, these ideas could be extended to viscous displacements in horizontal
channels, as is relevant to mantle plumes (Schoonman, White & Pritchard 2017). The base
self-similar flow was found for two-dimensional and axisymmetric geometries by Zheng,
Rongy & Stone (2015b) and Hinton (2020), but the stability has not yet been investigated.
The analysis would be more complicated than the present work owing to the effect of the
no-slip boundaries and the shear flow (Snyder & Tait 1998; John et al. 2013).

In the context of CO2 sequestration, viscous fingering is undesirable as it may reduce
storage efficiency. Our study could be extended usefully to consider strategies to vary the
injection rate to avoid viscous fingering. Given that the interface is stable after buoyancy
segregation (even for relatively high injection rates), one could analyse how to vary the
input flux during the pre-segregation transient to ensure that fingers never occur.
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Appendix A. Numerical method

In this appendix, the numerical method for calculating the evolution of the fluid–fluid
interface and the pressure at the upper boundary is described. The two dependent variables
H(η, θ, τ ) and P(η, θ, τ ) are calculated from (2.17) and (2.18) with boundary conditions
(2.21a,b) and (2.22a,b) using a finite difference method.

The numerical scheme requires initial data for the interface shape at the reference
time (τ = 0). The initial condition was chosen to satisfy the mass conservation condition
(2.28). The pressure at the upper boundary, P , and interface shape, H, must satisfy
(2.18) initially since the fluid is incompressible and the upper and lower boundaries are
impermeable. They must also satisfy the boundary conditions (2.21a,b) and (2.22a,b).
Admissible choices for the initial conditions are constructed by first selecting any H that
satisfies the boundary conditions and then solving (2.18) (described below) to obtain an
initial form for P .

The independent variables are discretised on an annular domain with (η, θ, τ ) ∈
[ηl, ηr] × [0, 2π) × [0, τ1], where τ1 is the time to which the simulation is run, the inner
and outer radii are chosen such that the domain fully incorporates the contact lines, and
ηl is taken to be small but non-zero so that the boundary condition (2.21a,b) may be
applied. Similarly, ηr is chosen to be large and (2.22a,b) is applied. Typically, we used
ηl = 0.01 and ηr = 10, and we confirmed that changes to these values led to imperceptible
differences to the results obtained. The discretised variables are

ηi = ηl + i �η, i = 0, . . . , L, �η = ηr − ηl

L
, (A1)

θj = j �θ, j = 0, . . . , M − 1, �θ = 2π

M
, (A2)

τk = k �τ, k = 0, . . . , N, �τ = τ1

N
, (A3)

and we write Hi,j,k and Pi,j,k to denote the approximations of the dependent variables.
The numerical procedure is as follows. First, the given initial condition for H and P is

discretized. At each subsequent time step, the interface shape is updated via an adapted
midpoint (second-order Runge–Kutta) method. The interface height at the midpoint
between time steps is given (using (2.17)) by

Hi,j,k+1/2 = Hi,j,k + �τ

2

[
η

2
∂H
∂η

+ ∇ · (H∇P)

]
i,j,k

, (A4)

where the term in square brackets is calculated using central differences in the two spatial
coordinates. The pressure at the midpoint Pi,j,k+1/2 is obtained from (2.18) using H =
Hi,j,k+1/2 and applying a five-point difference formula and the relaxation method to solve
the steady problem. The time stepping is completed with

Hi,j,k+1 = Hi,j,k + �τ

[
η

2
∂H
∂η

+ ∇ · (H∇P)

]
i,j,k+1/2

, (A5)

and Pi,j,k+1 is then obtained in an identical fashion to Pi,j,k+1/2. We use �τ = 0.1(�η)2.
Various checks were used to verify the accuracy of the numerical method. First, we

confirmed that mass conservation (2.28) was satisfied to within 0.05 % at all times
over a large range of the parameters, 0 < M < 10 and 0 < G < 10. Second, we used
the axisymmetric similarity solution as the initial condition and found that the solution
was steady. Finally, we confirmed that the results always converged to the axisymmetric
similarity solution.
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A.1. Estimating the decay rate (σ )
In this subsection, we describe how the decay rate σ of linear perturbations to the
axisymmetric self-similar flow can be estimated using the numerical method. We use the
following initial condition for the numerical method:

H(η, θ, τ = 0) = H0

(
η

1 + 0.1 cos(nθ)

)
, (A6)

for mode n perturbations, where H0(η) is the axisymmetric self-similar solution. We
integrate forwards in time as described in Appendix A. The error between the resultant
numerical solution H(η, θ, τ ) and the axisymmetric solution H0(η) is calculated at each
time via

E(τ ) =
∫ ηr

0

∫ 2π

0

√
H2 − H2

0 dθ dη. (A7)

At sufficiently late times, the linear stability analysis of § 5 applies. To predict the decay
rate σ , we best-fit a straight line to log E as a function of τ ∈ [5, 10]. Some of the results
for G = 0.01 are shown as crosses in figure 8.
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