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Abstract

This research paper presents a study investigating if sensor data from an automatic milking
rotary could be used to model cow somatic cell count (composite milk SCC: CMSCC).
CMSCC is valuable for udder health monitoring and individual cow udder health surveillance
could be improved by predicting CMSCC between routine samplings. Data regularly recorded
in the automatic milking rotary, in one German dairy herd, were collected for analysis. The
cows (Holstein-Friesian, n = 372) were milked twice daily and sampled once weekly in after-
noon milkings for 8 weeks for CMSCC. From the potential independent variables, including
quarter conductivity, milk flow, blood in milk, kick-offs, not milked quarters and incomplete
milkings, new variables that combined quarter data were created. Past period records, i.e. lags,
of up to seven days before the actual CMSCC sampling event were added in the dataset to
investigate if they were of use in modeling the cell count. Univariable generalized additive
models (GAM) were used to screen the data to select potential independent variables.
Furthermore, several multivariable GAM were fitted in order to compare the importance of
the potential independent variables and to explore how the model performance would be
affected by using data from various number of days before the CMSCC sampling event.
The result of the model selection showed that the best explanation of CMSCC was provided
by the model incorporating all significant variables from the variable screening for the seven
preceding days, including the day of the CMSCC sampling event. However, using data from
only three days before the CMSCC sampling event is suggested to be sufficient to model
CMSCC. Variables combining conductivity quarter data, together with quarter conductivity,
are suggested to be important in describing CMSCC. We conclude that CMSCC can be mod-
eled with a high degree of explanation using the information routinely recorded by the milk-
ing robot.

Somatic cell count (SCC) has long been a common and valuable method for monitoring udder
health in dairy herds (Sharma et al., 2011) and could also be a tool for identifying intramam-
mary infections in individual cows (International Dairy Federation, 2013). To monitor SCC
levels, farmers usually sample their cows at composite level according to the testing procedures
of their local milk testing organization, normally recommended to be conducted once a
month, or to use on-site farm tests. The California mastitis test is probably the most com-
monly applied cow-side test used to indicate the SCC at the quarter level. It is cheap and
rapid but not very precise or accurate (Schukken et al., 2003; International Dairy
Federation, 2013). A more precise method is fluoro-opto-electronic instruments in which
cells are fluoresced and counted using flow cytometry (Kitchen, 1981; International Dairy
Federation, 2013). This is also the only standardized method for determining SCC
(International Dairy Federation, 2013). The method could either be used in a standalone
device or integrated in the milking system, providing the farmer with SCC values of individual
cows’ milk after every milking. Frequent sampling for SCC could improve the monitoring of
individual cows by detecting deviations from the individuals’ normal patterns or rapidly ele-
vated SCC levels as well as indicating recovery from elevated SCC. Furthermore, daily varia-
tions in SCC can affect the monthly sampling results, and additional input of SCC values
in connection with the sampling day could reduce the risk of udder health misclassification
(Quist et al., 2008). However, more frequent sampling of individual cows will increase costs
or workload for the farmer in systems where integrated sampling devices are not possible,
so it would be advantageous if the SCC could be predicted based on information that is con-
tinuously and automatically recorded. To our knowledge, only two previous studies have
attempted to model SCC patterns using sensor data such as conductivity or milking duration
(Sitowska et al., 2017; Ebrahimie et al., 2018), and only one using routinely recorded sensor
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data (Sitowska et al., 2017). However, combining quarter infor-
mation from routinely recorded milking data to describe cow
level somatic cell count (composite milk SCC: CMSCC) has not
earlier been explored.

The objective of this study was to investigate if existing sensor
data from an automatic milking rotary (AMR) could be used to
model CMSCC. Additionally, the ambition was to screen which
variables were the best possible independent variables in model-
ing CMSCC, and over what time period by using past-period vari-
ables. The outcome of this study could potentially be used for
imputing missing SCC values or as supplementary information
for the farmer between routine SCC measurements.

Materials and methods

Data collection

The data were collected from a German dairy farm with 372
Holstein-Friesian cows during an 8-week period in the summer
of 2016. The cows were milked twice daily with a 13 h:11 h milk-
ing interval in an AMR (24 unit platform with 5 robotic arms,
DeLaval International AB, Tumba, Sweden) and kept in a loose
housing system. The cows were managed according to normal
farm procedures and fed a total mixed ration. The daily average
milk yield was 34 kg during the experimental period. Animal
information such as days in milk (DIM) and lactation number
(LN) was extracted from the herd management system, together
with information from each milking during the 8 weeks (in
total 39 587 records), henceforth referred to as milking data.
Details regarding the milking data can be found in online
Supplementary Table S1. Milking data at the quarter level com-
prised conductivity, blood in milk, milk yield, expected milk
yield, mean and peak milk flow, cups kicked off during milking
and incompletely or not-milked quarters. Milking data at the
cow composite level comprised milking duration, milking unit
number, mastitis detection index (MDi; an index representing
the probability that the cow has mastitis calculated by incorporat-
ing different phases of conductivity during milking together with
blood), and udder counters (UC; a counter increasing or decreas-
ing after each milking depending on whether or not the MDi was
above or below a pre-set threshold value).

Sampling for CMSCC analysis was done once weekly during
the afternoon milking throughout the eight weeks. A milk sam-
pler (DeLaval milk meter MM6) was attached to each milking
unit to collect a representative sample from each cow. The sam-
ples were analyzed for CMSCC in a laboratory in Jena,
Germany, using a Fossomatic 7, DC 600 system (ISO/IEC, 2005).

Data preparation

Cows were categorized into LN groups 1, 2, and ≥3. Cows not
included in the weekly CMSCC sampling were removed from
the milking data as were all milking events for cows during the
first week of lactation. Mean and peak milk flow values classified
as outliers according to boxplots (i.e. outside 1.5 × interquartile
range above the upper and below the lower quartile) were
removed. Quarter conductivity values considered not biologically
plausible (i.e., below 3mS/cm and above 10 mS/cm) were also
removed. The CMSCC values were transformed to a log10 scale,
henceforth referred to as log10CMSCC. Finally, log10CMSCC
observations without a complete setup of independent variables

were removed. In total, <1% of the milking data were removed
due to cleaning (details in online Supplementary Table S1).

To analyze the dependent variable log10CMSCC at the com-
posite level together with the independent variables at the quarter
level, several new variables were created from the quarter variables
of the milking data. The created variables were for instance vari-
ance between quarters, difference between quarters, lowest and
highest value of a quarter or dichotomization of factor variables.
The names of the created variables were given a suffix to indicate
the transformation given. Details of all created variables can be
found in online Supplementary Table S1. Past-period variables
(lags) were created to evaluate how predictive some of the vari-
ables could be up to seven days (14 milking sessions) before the
actual CMSCC sample. The lag of a variable was indicated by a
suffix number corresponding to how many milking sessions
before the CMSCC sampling event the variable was first recorded
in the milking system, e.g. milking session_0 is corresponding to
the day of CMSCC sample event. The milking data containing the
created variables were merged with the CMSCC sample data.
From this complete milking data, 2384 observations of 372 milk-
ings cows with 934 potential independent variables (840 variables
with day lags and 94 variables for milking session 0) were avail-
able. CMSCC observations that did not include a complete setup
of independent variables for 14 milking sessions before the
CMSCC sampling event were removed, leaving 319 cows with
1758 cow observations for variable screening.

Statistical analysis

Firstly, a variable scanning on all available data was performed to
identify the independent variables suitable to incorporate for
modeling CMSCC. Secondly, several models were fitted to inves-
tigate different variable setups as well as different variations of day
lags, i.e., do models perform better using more or less data. The
dependent variable for all statistical analyses was log10CMSCC.
Initial regression analysis of variance for each quarter variable,
showed that the interaction between quarter location (i.e., right
front, left front, right rear, and left rear) and milk flow, conduct-
ivity, or milk yield, or the quarter location alone, was not signifi-
cant. We therefore concluded that quarter location did not affect
the relationship between the independent and dependent variable
(log10CMSCC), so the potential quarter independent variables
were used independently of quarter location.

To reduce the number of independent variables (n = 934) gen-
eralized additive models (GAM, Hastie and Tibshirani, 1990)
were used to analyze the association of each potential independ-
ent variable from the milking data with log10CMSCC. Hence,
log10CMSCC was set as dependent variable y and the potentially
confounding variables LN (factor), DIM (linear variable), and
Cow (random factor) were added to all models. The independent
variables of interest, X, were then analyzed individually, either as
factors or as smooths, i.e., non-parametric spline functions not
forcing linearity between the independent variable and the
dependent and allowing flexible estimation of the underlying pat-
terns. In this way, 934 screening models were built according to:

yi = b0 + LNbLN + DIMbDIM + aCow + f (X)i + 1i (1)

aCow � N(0, s2
Cow), 1i � N(0, s2

1)

Journal of Dairy Research 283

https://doi.org/10.1017/S0022029920000692 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029920000692


where y is the independent variable, LN (factor), DIM (linear
variable) and Cow (random factor) are potential confounding
variables, f(X) are the non-parametric spline functions of the
independent variables.

Of the 934 models, 905 converged, resulting in 268 independent
variables for which P < 0.001, and thus kept for further analysis. A
Bonferroni correction at the P < 0.010 level was performed, leaving
158 independent variables for further analysis. Multicollinearity
within independent variables between lagged milking sessions
was tested with a variance inflation test (VIF) and generalized
VIF (GVIF) according to Fox and Monette (1992). Independent
variables with VIF > 8 and independent variables specified as fac-
tors with a square root of GVIF(1/(2*df)) > 8 were removed from fur-
ther analysis, as were factor variables with observations at one level
only. Quarter-level variables were selected for analysis if at least
three of the quarters within the same milking session had P <
0.010. All milk yield–associated variables (except milk yield.diff.-
milkings) were removed from further analysis, because milk yield
was considered an intervening variable on the causal path between
the other independent variables and the dependent variable. Thus,
1758 observations of 102 independent variables, in addition to LN,
DIM, and Cow, from different time periods before the CMSCC
sampling event were available for the model development
(Table 1).

The final multivariable GAM were fitted with LN, DIM, and
Cow as potentially confounding variables and log10CMSCC as
the dependent variable, but with multiple potential independent
variables in each model:

yi = b0 + LNbLN + DIMbDIM + aCow +
∑p

j=1

fj(X)ij + 1i (2)

aCow � N(0, s2
Cow), 1i � N(0, s2

1)

where y is the independent variable, LN (factor), DIM (linear
variable) and Cow (random factor) are potential confounding
variables, fj(X) are the non-parametric spline functions of the
independent variables.

The fitted models were model 1, which included all potential
independent variables from the variable screening (n = 102), and
model 2 (n = 81), which excluded all MDi and UC variables.
Model 2 was developed to investigate the impact of using
observed values of conductivity rather than values that had
been derived by the MDi algorithm. To evaluate how well
model 1 and model 2 would perform on milking data from
restricted time periods before the CMSCC sampling event, 6
additional variations of model 1 and model 2 were fitted with
potential independent variables from various time periods.
This was done by removing milking data from days close to
the CMSCC sampling event in some models and removing
milking data from days further away in other models (e.g.
both model variations restricted for 0–6 d, 0–3 d, 1–7 d, 1–5 d,
2–7 d and 2–5 before the CMSCC sample event). Most of the
potential independent variables were fitted as numerical
smooths in the models, while UC, Not.milked.score, and
Incomplete.score were fitted as factor variables (Table 1). The
smoothing parameter estimation method used in all model fits
was restricted maximum likelihood (REML). The corrected
Akaike information criterion (AIC), described by Wood et al.
(2016), was used for model comparison. Models were also eval-
uated using the adjusted coefficient of determination (R2

adj). All
data cleaning and statistical analyses were performed in the pro-
gram R using the ‘mgvc’ package for spline and GAM models (R
Development Core Team, 2018).

Results

Descriptive statistics can be found in online Supplementary
Table S2.

Table 1. Possible independent variables used in model development, presented with definition of each variable and the corresponding past time-period records
(milking session lag)

Variable Definition Milking session lag

MDia Mastitis detection index, based on different phases of conductivity and blood in milk {0 1 2 3 4 5 6 7 8 9 10 11 12
13 14}

Peak flow.mina Lowest milk peak flow value within cow and milking session {0 1 2 11 12 13}

Conductivity.meana Arithmetic conductivity mean all quarters within cow and milking session {0 4 9 11 14}

Conductivity.maxa Highest conductivity value within cow and milking session {0 1 3 4 6 7 8 9 10 11 13 14}

Conductivitya Quarter conductivity {1 4}

Conductivity.diffa Highest quarter conductivity value minus lowest value within cow and milking session {0 1 2 3 4 5 6 7 8 9 10 11 12
13 14}

Conductivity.vara Variance of conductivity between quarters within cow and milking session {0 1 2 3 4 5 6 7 8 9 10 11 12
13 14}

Diff.milkingsa Quarter milk yield deviation from previous corresponding milking session at the quarter level {0}

UCb Udder Counter: If MDi > 1.4 counting up, if MDi < 1.4 counting down for last 10 milkings {1 3 7 8 10 12}

Not milked.scoreb Number of quarters with milk yield <0.2 kg (0–4) {8}

Incomplete.scoreb Number of quarters where milk yield <50% of expected yield if expected yield >1 kg and milk yield
>3 kg (kg) was true (0–4)

{0 1 2 3 4 5 6 7 8 10 11 12 13
14}

Incomplete.score.7a A 7- day rolling average of the number of incomplete.score {0}

Milk session lag 0 is the day of sampling and 1 is one milking before the composite milk somatic cell count sampling event etc.
aTreated as smooth variable in all models.
bTreated as factor variable in all models.

284 Dorota Anglart et al.

https://doi.org/10.1017/S0022029920000692 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029920000692


GAM models: effects of variables

The results of the GAM fit of model 1 indicated that 24 of the
independent variables were associated (P < 0.050) with CMSCC.
The independent variable having the strongest statistical associ-
ation with CMSCC was MDi at the milking session of the
CMSCC sampling event (MDi_0, P < 0.001), followed by quarter
conductivity one milking session before the CMSCC sampling
event (conductivity.quarter_1) for three out of four quarters, i.e.
right front, left rear (P < 0.001) and left front (P = 0.011). The
results of the GAM fit of model 2 indicated that 17 of the inde-
pendent variables were associated (P < 0.050) with CMSCC. The
variables having the strongest statistical association with
CMSCC were variance of conductivity between quarters (conduc-
tivity.var_1, P < 0.001), quarter conductivity (conductivity.quar-
ter_1) for right front (P < 0.001) and the difference in
conductivity between quarters (conductivity.diff_1, P = 0.003),
all at one milking before the CMSCC sampling event.
Furthermore, the maximum conductivity of the quarters during
the same milking as the CMSCC sampling event (conductivity.-
max_0, P < 0.001) was among the variables having the strongest
statistical association with CMSCC. See Table 2 for details regard-
ing all variables with P < 0.050 in both models.

The overall results indicated that the independent variables
closer to the CMSCC sampling event were least likely to be asso-
ciated with the dependent variable due to chance alone. Most, 21
out of 31 of the significant variables, occurred within the 6 milk-
ing sessions closest to the CMSCC sampling event. Nonlinear
relationships were found for several of the independent variables,
such as MDi, variance in conductivity, difference in conductivity
or maximum conductivity of a quarter, which is indicated by the
effective degrees of freedom being > 1 (Table 2).

GAM models: independent variables plot interpretation

The independent variables having the strongest statistical associ-
ation with CMSCC, are visualized by smooth plots, estimated
by the screening models (Figs. 1, 2). The smooth plots are show-
ing the partial effects between log10CMSCC and the independent
variable. Since smooths are expressed as overall mean and cen-
tered, i.e. moving around zero, the plots are expressing the non-
linear pattern between the independent variable and the
dependent variable, but does not give any information regarding
the height of the smooth in actual CMSCC units.

The partial effects of quarter conductivity for all four quarters
and CMSCC one milking session before the CMSCC sampling
event can be found in Figure 1. The trend lines of the relationship
between quarter conductivity and CMSCC differed between the
four quarters. The three quarters that had a statistical association
with CMSCC, i.e., right front, right rear and left front, had more
similar trend lines, while the trend line for left rear (P = 0.296)
looked unlike the others, flat and straight. The relationship
between MDi and the dependent variable was positive and the
trend line steeper between MDi = 1 and MDi = 2, after which
the line flattens out (Fig. 2a). The relationship between conducti-
vity.var_1 and CMSCC was nonlinear and mainly positive,
although there was a small negative trend when the variance
between quarters exceeded 0.4 (Fig. 2b). Similar relationship
was found for difference in conductivity between quarters and
CMSCC (Fig. 2c). The maximum conductivity, during the milk-
ing session at the CMSCC sampling event, showed a nonlinear
and clear-cut positive relationship with CMSCC (Fig. 2d).

GAM models: model selection

The results of the model selection for all models are presented in
Table 3. The lowest AIC value (246) was found for model 1, indi-
cating that the best model was the model including all variables
for seven days. Comparing model 1 with model 2, where MDi
and UC were excluded, the difference in AIC was not large
(246 vs. 270). The difference in R2

adj between model 1 and
model 2 was very small (0.80 vs. 0.79), indicating that both mod-
els explained the variance in the data well.

The model performance results including milking data from
various time points before the CMSCC sampling event, showed
a large range in AIC among the 12 models (AIC = 246–517).
The range in R2

adj between the 12 models was not very wide
(R2

adj = 0.80–0.76). Models including milking data from the
same milking as the CMSCC sampling event (i.e., milking session
0) had the consistently lower AIC values, but did not distinguish
themselves in how much variance in the data they explained (R2

adj

being very similar). According to AIC, using milking data from
six days before the CMSCC sampling event gave the best model
performance among the time-restricted models (model 1_0:6,
AIC = 264). By excluding MDi and UC (model 2_0:6) AIC
increased to 287. The difference in R2

adj between the two models
with data from six days was small (0.80 vs. 0.79). Models with
milking data restricted to only three days before the CMSCC sam-
pling event (model 1_0:3 and model 2_0:3) were very similar. The
difference in AIC was minimal (281 vs. 285) as was the difference
in R2

adj (0.79 vs. 0.79). The models with the highest overall AIC
values were all models that excluded milking data from the two
days closest to the CMSCC sampling event (e.g. model 1_2:5),
and again amplifying that using data closer to the CMSCC sam-
pling event resulted in better model performance.

Discussion

The objective of this study was to use routinely recorded sensor
data to model CMSCC. The results indicate that GAM are suitable
for modeling of CMSCC relatively well (R2

adj ranging from 0.76 to
0.80) by combining quarter and composite sensor information.

Using milking data from three or six days before the CMSCC
sampling event did not affect the performance of the models
much, as long as milking data from the same milking session as
the CMSCC sampling event were included. Excluding milking
data from the same milking session as the CMSCC sampling
event had a considerable effect on the overall fit of both model
1 and model 2. This suggests that there is some important infor-
mation in variables from the same milking that improves the
explanation of CMSCC. Using all variables from all seven days
before the CMSCC sampling event gave the best model fit
(model 1). Also Hammer et al. (2012) found changes in several
milking trait variables even seven days before an event, although
they studied clinical mastitis where lagged variables potentially
should have been less informative since clinical mastitis may be
more of a sudden event than the CMSCC that we are modeling.
However, since the model fit was not strongly affected by exclud-
ing the three days farthest from the CMSCC sampling event, we
suggest that using all variables for seven days before the
CMSCC sampling event is actually not necessary to describe
CMSCC.

The independent variables with the strongest statistical associ-
ation with the dependent variable, according to the model includ-
ing all variables over the seven days before the CMSCC sampling
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Table 2. Independent variables (P < 0.050) for model 1 and model 2

model 1 model 2

Confounder P-value P-value

lactation 1 (intercept) <0.001 <0.001

lactation 2 0.016 0.011

lactation 3 0.162 0.333

Cow <0.001 <0.001

Days in milk 0.007 0.003

Independent variable edf P-value edf P-value

MDi_0 4.94 <0.001 – –

conductivitya_1 1 <0.001 1 0.003

conductivityb_1 1 <0.001 1 <0.001

conductivity.diff_1 1 0.001 1 0.003

MDi_10 3.56 0.004 – –

conductivity.max_0 3.74 0.005 4.43 <0.001

conductivity.max_1 2.40 0.005 1.99 0.003

milk yield.diff.milkingsb 1 0.005 1.65 0.053

IncompleteScore_3:2c NA 0.008 – –

MDi_9 3.86 0.010 – –

conductivity.var_1 4.56 0.011 5.64 <0.001

conductivityd_1 1 0.011 1 0.007

conductivity.mean_0 2.64 0.023 3.08 0.008

MDi_1 3.67 0.027 – –

IncompleteScore_4:4c NA 0.028 NA 0.173

IncompleteScore_4:2c NA 0.031 NA 0.041

conductivity.diff _5 1 0.031 1 0.074

MDi_7 1 0.033 – –

MDi_13 1 0.035 – –

IncompleteScore_5:1c NA 0.037 NA 0.099

UdderCounter_8:4 NA 0.038 – –

MDi_12 1 0.039 – –

UdderCounter_12 NA 0.045 – –

IncompleteScore_13:1c NA 0.049 NA 0.091

conductivity.var_3 1 0.080 1 0.014

conductivity.diff_9 3.44 0.584 1 0.017

conductivity.diff _3 1 0.053 1 0.004

conductivity.diff _0 1.15 0.454 4.41 0.030

conductivityb_4 2.27 0.119 4.59 0.044

conductivity.max_9 3.17 0.179 3.94 0.006

conductivity.diff_13 1 0.162 1 0.043

–, not used in model; NA, not applicable.
Effective degrees of freedom (edf) indicates the relationship (1 = linear, >1 nonlinear) with the dependent variable, i.e., composite milk somatic cell count. Suffix number of independent
variable indicates number of milking sessions before the composite milk somatic cell count sampling event
aLeft rear.
bRight front.
cScore level.
dLeft front.
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event, was MDi at the same milking session as the CMSCC sam-
pling event. The relationship between CMSCC and MDi was posi-
tive, indicating that higher MDi values (i.e. conductivity in
different phases of the milking) were associated with higher
CMSCC. However, there were few data points for which MDi >

2, which is probably why the line flattens for MDi > 2.5
(Fig. 2a). Contrary to our results, a previous study by Khatun
et al. (2018) showed that MDi performed no better than did con-
ductivity at the quarter level in a mastitis detection model, and
MDi was excluded from their final model. The differences in

Fig. 1. The effect of quarter conductivity on composite milk somatic cell count one milking session before the composite milk somatic cell count sampling event,
estimated by the screening model. The pointwise 95% confidence interval is shown by the dashed lines. The vertical lines on the x-axis show the individual quarter
conductivity datapoints. The y-axis shows the composite milk somatic cell count transformed to a log10 scale (log10CMSCC). The smooths are expressed as devia-
tions from the overall mean.

Fig. 2. The partial effects of the (a) mastitis detection index (MDi), (b) variance in conductivity between quarters (conductivity.var), (c) difference in conductivity
between quarters (conductivity.diff), (d) maximum quarter conductivity (conductivity.max), one milking session before the composite milk somatic cell count sam-
pling event, estimated by the screening model. The pointwise 95% confidence interval is shown by the dashed lines. The vertical lines on the x-axis show the
individual MDi datapoints. The y-axis shows the composite milk somatic cell count.
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the results might be due to the nature of the different outcomes
studied (SCC vs. clinical mastitis defined as veterinary treatment),
model choice (nonlinear vs. linear model), difference in milking
interval, or available data (one vs. two herds). Furthermore,
Lusis et al. (2017) found the correlation between SCC and MDi
to be poor; however, due to the small sample size and few obser-
vations in their study, the authors suggested that individual cows
might have affected the results.

When MDi and UC were excluded (model 2), variance in con-
ductivity between quarters had the strongest statistical association
with CMSCC. This could indicate that independent variables
combining quarter information are somewhat better at describing
CMSCC than are independent variables from separate quarters.
For example, variance in conductivity between quarters or MDi,
had the strongest statistical relationship with CMSCC in both
models. Most variables (15 of 17 variables with P < 0.05) in
model 2 were conductivity related, i.e., variance, difference,
mean or maximum conductivity. Previous studies have shown
that including several different types of conductivity variables,
such as variance or maximum conductivity values, in a mastitis
prediction model, increased the specificity (Norberg et al.,
2004). The degree of explanation, of all models, could probably
partly be explained by the inclusion of the different conductivity
variables, describing different traits. The variables will probably
contribute in different ways to the model and implies that adding
several different types of quarter combined conductivity variables
as nonlinear independent variables increases the level of explan-
ation for CMSCC.

Conductivity at the quarter level was a statistically strongly
associated independent variable in both models and stronger in
model 2 than in model 1. Estimates from both models showed
that not all four quarters were significantly related to CMSCC
within the same milking session, e.g. right rear conductivity_1

in model 1 was P = 0.497 while remaining quarters conductivity_1
all had P-values < 0.050. However, the univariable screening
model displayed a significant nonlinear relationship between
CMSCC and conductivity for each quarter. Previous studies
have shown that the relationship between SCC and conductivity
seems to be positive (Hamann and Zecconi, 1998). This is in
agreement with our findings, but the pattern is neither similar
nor very clear for all quarters (Fig. 1). The varying results regard-
ing the relationship between quarter conductivity and SCC may be
because the independent variable and the dependent variable are
measured at different levels (i.e., quarter vs. composite); also, as
the CMSCC in this study was low (median 53 000 cells/ml), the
trend would not be as clear as it might have been had the
CMSCC been higher. Furthermore, the size of the dataset available
might influence these results i.e., more data on each quarter could
possibly equalize the differences between the quarters. The relation-
ship between quarter conductivity and CMSCC has not previously
been investigated using nonlinear modeling, which makes it impos-
sible to compare the present and previous findings.

Quarter conductivity alone has been stated to be a poor pre-
dictor of clinical mastitis (Kamphuis et al., 2008; Khatun et al.,
2018), and within-cow comparison of quarters is often recom-
mended (Hamann and Zecconi, 1998). Our results suggest that
conductivity variables at quarter level, such as quarter conductivity
or maximum quarter conductivity, contributes in explaining the
CMSCC to the same extent as conductivity variables from com-
bined quarters, i.e. MDi or variance in conductivity between quar-
ters. This, since quarter level conductivity variables had a strong
statistical association with CMSCC in both univariable and multi-
variable models. Quarter conductivity observations close in time to
the CMSCC sampling event (i.e., conductivity_1) showed a stron-
ger statistical association with CMSCC than observations made sev-
eral days before sampling. This is in line with the findings of Nielen
et al. (1995) that the difference in conductivity between quarters
was the largest at the milking when the clinical mastitis was
observed compared with the two milkings before the observation.

High flow rates were not significantly associated with CMSCC
in the univariable screening in contradiction to Sitowska et al.
(2017) who found milk flow to be the second most important
variable describing SCC i.e. higher milk flows being more asso-
ciated with SCC > 80 000 cells/ml. The difference in the results
might depend on what data were used as input to the decision
tree, since even a small change in data can cause a large change
in the final result of decision tree models (Gareth et al., 2013).
However, low peak flow rates (peakflow.min) were significant in
the univariable screening model although not in the final models.
This is somewhat in agreement with the findings of Hammer et al.
(2012), who showed that low peak flows could be associated with
clinical mastitis, but were not significant when used as an input
variable in a multivariable model. Additionally, Ebrahimie et al.
(2018) did not find peak flow to have any weight in either of
their decision tree models predicting SCC.

Several of the most important variables describing CMSCC in
the present study, such as DIM, LN, and conductivity were con-
firmed by the decision tree models for prediction of SCC by
Sitowska et al. (2017) and Ebrahimie et al. (2018). The advantage
of decision trees is that they are easily interpreted and explained
although they often lack the accuracy of regression models.
While the interpretation of GAM might be harder, GAM are flex-
ible and can provide information regarding both linear and non-
linear relationships between the independent variables and the
dependent variable (Hastie and Tibshirani, 1990). So far, GAM

Table 3. Performance of models using data from various time points before the
composite milk somatic cell count (CMSCC) sampling event ranked according to
lowest corrected Akaike information criterion (AIC)

Rank Model AIC R2
adj n variables

1 model 1 246 0.80 102

2 model 1_0:6 264 0.80 91

3 model 2 270 0.79 81

4 model 1_0:3 281 0.79 53

5 model 2_0:3 285 0.79 44

6 model 2_0:6 287 0.79 72

7 model 1_1:5 321 0.79 66

8 model 2_1:5 336 0.78 51

9 model 1_1:7 339 0.79 91

10 model 2_1:7 364 0.78 71

11 model 2_2:5 490 0.76 39

12 model 1_2:5 504 0.76 49

13 model 2_2:7 513 0.76 57

14 model 1_2:7 517 0.76 74

Adjusted R-squared (R2
adj) and number (n) of variables in each model presented. Number

after model name corresponds to closest day lag to CMSCC sampling event included in the
model, while second number corresponds to farthest day lag from CMSCC sampling event
included in the model (i.e., 0:6 is same day as CMSCC sampling event up to six days prior)
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have not been widely used in mastitis research. Ankinakatte et al.
(2013) performed one of the few studies comparing a GAM and a
neural network for detecting mastitis. Their results imply that the
performance of the GAM model was slightly better than that of
the neural network depending on what input variables were used.

In conclusion, the present results indicate that GAM could be
used for prediction models of CMSCC, since the CMSCC model-
ing results showed a relatively high degree of explanation using
the information routinely recorded by the milking robot. Using
milking data from the three days (i.e., six milking sessions) before
the CMSCC sampling event also gave a high degree of explanation
compared with that of the best model, which used milking data
from seven days (i.e., 14 milking sessions). Variables combining
quarter conductivity (e.g., MDi) and variance between quarters,
but also quarter conductivity as such, are suggested to have the
strongest associations with CMSCC and should preferably be
combined when predicting CMSCC. Further research is needed
to verify our results under other conditions i.e. other farms, vol-
untary milking or more cows, to evaluate whether GAM models
can also accurately predict CMSCC using sensor data routinely
collected by the milking robot.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029920000692
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