DECOMPOSITION OF REPRESENTATION ALGEBRAS

W. D. WALLIS
(Received 5 December 1967; revised 31 July 1968)

Throughout this paper ¥ is a finite group and & is a complete local
principal ideal domain of characteristic p, where p divides |#4|. The notations
of [5] are adopted; moreover we shall denote the isomorphism-class of an
& %-representation module .# by M, the class of .4, by M, and the class
of .#* by M? for suitable groups & and 4Z.

Conlon [2] has shown that A(¥9) = A, (%), where the direct sum is
taken over the non-conjugate p-subgroups & of ¢, and Green [4] has shown
that 4,(%9) ~ A, ("), where 4" is the -normalizer of .

In this paper we shall assume that J# is a normal p-subgroup of &,
and that # is a group satisfying

H=R<YG.

Various preliminaries appear in Section 1. Section 2 is devoted to defining
new algebras 4, and B%(#), and deriving a direct decomposition of 4,
(Theorem 21). This result is used in Section 3 to get new direct decomposi-
tions of 4 (%) and 4/, (%). Finally two special cases are discussed in detail.

I would like to express my gratitude to the referee, who corrected a
fault in my original proof of (21) and made many helpful suggestions con-
cerning the organization of the paper.

1. Some maps

Suppose 7 : % — ¥ is a homomorphism of groups. Then we define
maps n* and 7, as on p. 77 of [1]: if A is an F¥ -representation module
then .#n* is an F%-representation module, and if % is an F%-representa-
tion module then %7, is an ¥ -representation module. In particular if
U < ¥ we shall write (%, ¥") for the natural embedding map; as noted
in [1],

MOU, V) = M,,
LOU, YV )y = F7.

We shall write g, for the natural map from % to Z/#.
We also write #*, 7, for the linear maps
395
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A > A%)

Ny AU) —~ A(V)
obtained by defining M#n* and Lz, to be the isomorphism-classes of .#n*
and #n, respectively, and extending by linearity. Then #* is an algebra

homomorphism, and
M (Lny) = [(My*)L]ny.

In particular if 6 = 6(%, ¥") and y, are as above, then 6* and 6, are the
7 and ¢ of Green [4], and y}, : A(%|#) — A(Z) is injective.
The following results are easy to prove:
LeEMMA 1. If 2 is an F (R | )-representation module, then
LOR|AH, G]|H) eyl = Lyi0(R, D)y
LEMMA 2. A g (%] )py C Ay(9).
If # is the subgroup with one element of a group X, we shall write
P(") for the projective ideal 4 ,(#"). Then we define
Py (#) = P(R|H )y
Po(R) = P(R)0(R, )
P (#) is therefore just P(Z); we shall write P*(#) for P%(Z%). As a
corollary to the definitions, we have
(3) PL(R) = P (R| )y = PY*(R|H);
the equality comes from Lemma 1 and the isomorphism holds because pZ
is injective.
THEOREM 4. P¥(Z) is an ideal of A(9).
Proor. P?(Z) is spanned by the P?, where & ranges through the
indecomposable projective & Z-representation modules,

It is sufficient to show that, with such a & and with 2 an #%-
representation module

P?Q e P¥(Z%).
By the Mackey formula (p. 324 of [3]),
PYQ = (PQg)".
Also P e P(#) and Q, € A(Z): since P(Z) is an ideal of 4 (#) we know that
PQ,e P(%)
whence
(PQq)? € PY(R),

giving the result.
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LEMMA 5. F(R|H V)l = FpoO(H, R) 4.

An FHA-representation module 2 will be called s#-trivial if Hg =g
for all H € 5# and g € 2; clearly 2 is H-trivial if and only if there is an
F (#|#)-module Z satisfying

(8) 2 = Pyg;
and if (5) holds then # is indecomposable if and only if 2 is.
Suppose & and £ are indecomposable modules satisfying (6); write %~

for the vertex of 2. Then S contains 5#, and X[ is a vertex of Z.
So we have

LemmA 7. P (Z) has a basis (as a €-space) consisting of the classes Q
of the indecomposable H-trivial F R-representation wmodules 2 which are
H-projective. Hence P%,(R) is spanned (as a €-space) by the classes QO(X, G ) 4
of the F G-representation modules induced from these 2; these induced modules
are clearly also S-trivial and S-projective.

If X is any element of &, write

yX’Q:e%X».@

for the group isomorphism R¥ — R(R € #). For any & %-representation
module 2, 2y% , is the conjugate module 2%, and the induced map

vx,a A(R) > A(2%)
is a %-algebra isomorphism. The following properties are easy to check.
(8)  v% o is the identity map on A(%);

(9) 7§#,Q/JVV); = W;7§,a;
(10) 9%, 20(2%, 9)y = O0(Z, F)avig = O(R, 9)s;

(11) If 2 is an indecomposable F R-module with vertex A then 2y% ,
is an indecomposable F RX-module with vertex HX.

Lemma 12. If X € G, then P% (%) = P%(%%X).
Proor. Using (11) with & replaced by %/s# we get

P(RX|H) = P(RIH)yxp, 310
so, by definition

P (R%) = P(R|H )V, a1 Vax (A%, Gy

= P(ZR|H)yav%,20(2%, 9)« by (9)
= P(R|#)y30(Z, 94 by (10)
— PL().
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LemMA 13. If # and & are subgroups of ¥, both containing S, then
P%(®)P%(#) C 3 PY(#X 0 F).
Xegy

PRroOF. Suppose 2 is an F#-module and J an % .%-module. Then,
from Mackey’s ‘tensor product’ theorem ([3], p. 325),

> @ () axns ® (7)axns) 05 0 9.9),
where X runs through a complete set of (%, #)-double coset representatives
in 9. In particular, if 2 and 4 are both s -projective and s#-trivial, then
each tensor product appearing on the right in (14) will also be an -
projective, s#-trivial  (#% A &)-module.
Lemma 13 now comes directly from Lemma 7.

LEmMMA 15. If R’ <4 R, then PS,(R') C P%(Z).

Proor. From Lemma 12 we can assume #' < Z%. If 2 is an indecom-
posable projective & (#’[#)-representation module, 2%/* is projective, so

Q** € P(Z|H)
whence
QX O(R|H, G| H )y € PO (R|H).

The left hand side is Q¥/*, which is Q6(Z'|#, G|# )«; Q could have been
any basis element for P(#'[s), so

PoI* (| #) C PO (|#),
and from (3)
P9(R') C PS(Z%).

2. The algebras 4, and BY(¢).

If 2 is an indecomposable projective % (/- )-representation module
then 26(%|#, 9|#), is projective, and belongs to P(¥/:#). So
P9*(R|#) is a subalgebra of P(%/s#); by Theorem 4 it must be an ideal.
Since P(% /) is a finite direct sum,

PEl#) ~ oC,
we must have
PI*(RIH) ~ @€

for some finite number of summands. P¥*(%/s#) is non-empty, so it has
an identity element; by (3), P%(#) must also have an identity element,
which we will write as I .
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Now define
Ag = Ax’(g)Ia'
From Lemma 12 we have, for any X € &,
(16) I.q = IQX’
(17) Ag = Agx.

LEMMA 18. If R’ <, R then Azld,.
Proor. From Lemma 15 we see I, € P% (%), and I, is idempotent.

So there is an orthogonal decomposition

I, =14+ (Ia—1,)
which yields
Ag=A44 @ Ap(G)Ig—1g).
From Lemma 13 we also get

LEMMA 19. If # and & are subgroups of ¥, both containing K, then
AQA.V g z AQXny
Xey

For convenience, write n(#) to denote some complete set of groups
& which are distinct to within #-conjugacy and satisfy

H L <A,

and n'(Z) to denote n(Z)\{Z%}.

We define A, to be Y A,, where > means algebra sum over
R' €n'(#). From Lemma 18, Ay is a finite sum of direct summands of
Ag, so

Agldq;
consequently there is an algebra B%(5#°) defined by
Ay = A5 ® Ba(#)

which satisfies

BL(#) ~ Ayld,.

In particular
(20) B () =A,.

THEOREM 21. A, = @ BY (), where @ is algebra direct sum over
& en(X).

Proor. We proceed by induction on #. From (20) the theorem holds
when Z is replaced by s#. Suppose that whenever 5 < ¢ < Z,

Ad,= @ BL(H);

Fen(x)
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This yields
Adp= 2 @ BY(F)

Hen'(R) Fen(KH)

= 2 BLF);
ren’(R)
using the definition of B% (),
(22) Aa = Z Bf,,()f),
Fen(R)

To prove that the sum in (22) is direct, we must show that for any
Z en(R), BJ(#) has zero intersection with Y B%(s#), the sum being
over & e n(Z)\{Z}. Now as each B%(#) is an ideal direct summand of
A,, it is (by (18)) an ideal direct summand of 4,, and has an identity
element; from this it is easy to see that all we must prove is that

(23) B = BY(H#) A BY(H) £ 0

is impossible for ', % € n(#) unless & = %.
Suppose Z and % are members of z(#) which satisfy (23). Then the
identity element E of B is non-zero; and

E=E,F

XXy

where E, and E, are the identity elements of BY(#°) and B () respec-
tively. Hence
EedyAyC 3 Agxne
Xew

(using Lemma 19). If # £_Z, then each Z%¥ N ¥ is a proper subgroup of %,
so E e Ay ; but this means
E=FEE eAyB(#)=0

which is impossible. So & =, %, and similarly % =, Z; therefore 2" and
% are %-congugate and (by the definition of n(%)) Z = ¥.
This shows that the sum in (22) is direct, so we have the theorem.

3. The decomposition of 4 ,(¥)

From theorem 3.17 of [2], I, is the identity element of A4 (%); so

(24) Ay = A,(9);
applying this to Theorem 21 we have
THEOREM 25. A, (%)= @ BY(KX).
Fen(g)

To compare our decomposition (25) with Conlon’s decomposition
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(26) Ae9) @ Ay9)

Hea(x)
(where «(5#) is a complete set of non-%-conjugate subgroups of #) in [2],
it is convenient to observe that any such decomposition determines, and is
determined by, an orthogonal idempotent decomposition of I,; (25) comes

from
Ig = Z Esﬁ’
yen(9)
whereas (26) could be written
I,= Y F,.
XN ea(H)
Then we obtain a refinement
= 2 Eny
S x

Ae(9) = ® A 9)E,F
4

which could also be written as

(27) 4,(9) = ® {A}(9)  BLH)}.

Suppose & is any group. Then (see [2] and [4]) there are %-algebra
isomorphisms
A(Z) = A,(?) = 4,.(9),
where 5 is the Sylow p-subgroup of 2 and ¢ is the Z-normalizer of J#.
Therefore (27) gives a decomposition of 4(Z) in the general case, to within
isomorphism.

4. Special cases of BY ()

We shall consider the structure of B%(5#) in two special cases.

First consider & = #. P(#|#) consists of the %-multiples of F,
where F is the isomorphism-class of the module #, so P¥,(#) consists of the
%-multiples of F,0(#, 4 )*, and since F2 = F and I, is to be idempotent,

=[G : H]7HF,)°.
A calculation yields

(28) A, is spanned by the module-classes of the form N¥, where N is a
basis element of A ().

Moreover I, is the idempotent I of proposition 3 of [1], and by that
result A, is isomorphic to A () if every indecomposable & # -represen-
tation module is ¥-stable.
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The second special case occurs when Z is a subnormal p-extension of
another group %, where # < &. If & is a projective indecomposable
F (#|# )-representation module then Z#* is indecomposable. So any
element of P(#/) can be written

LO(SL|H, R|H# )4

for some L e P(¥[H), and the typical element of P¥%(Z) is
LOSP |, RIH) 6 (RIH, |7 ) %

= LO(S|H, G|H ) sy

e P%(¥).
This means P%(Z) C P%(¥); but the reverse inclusion also holds, so
P%(#) = P%(¥), whence I, =1, and A, = A,. Since 4,C Ay, we
have A, = A}, so
(29) B3(#) = 0.
In particular suppose & is a p-group. Then

THEOREM 30. If X is a p-group properly containing S, BH(H) = 0.
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