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Throughout this paper 'S is a finite group and J5" is a complete local
principal ideal domain of characteristic/), wherep divides \@\. The notations
of [5] are adopted; moreover we shall denote the isomorphism-class of an
^•^-representation module <J( by M, the class of JK^ by M.x and the class
of J(® by M® for suitable groups Jf and 0t.

Conlon [2] has shown that A{^) = A'^'S), where the direct sum is
taken over the non-conjugate ^-subgroups 3i of 'S, and Green [4] has shown
that A'^) % A'^Jf), where JT is the ^-normalizer of jf.

In this paper we shall assume that 3F is a normal ^-subgroup of ^ ,
and that & is a group satisfying

Various preliminaries appear in Section 1. Section 2 is devoted to defining
new algebras Am and B j p f ) , and deriving a direct decomposition of Ax

(Theorem 21). This result is used in Section 3 to get new direct decomposi-
tions of AX(^S) and A'^(^§). Finally two special cases are discussed in detail.

I would like to express my gratitude to the referee, who corrected a
fault in my original proof of (21) and made many helpful suggestions con-
cerning the organization of the paper.

1. Some maps

Suppose t] : tfl ->- "V is a homomorphism of groups. Then we define
maps rj* and rj^. as on p. 77 of [1]: if <J? is an ^^-representation module
then <,Mr\* is an ^"^-representation module, and if J£ is an J^-representa-
tion module then ^ft]^ is an ^^-representation module. In particular if
t ^ f " w e shall write d(^, ir) for the natural embedding map; as noted
in [1],

We shall write %pa for the natural map from 01 to
We also write rf, rj^ for the linear maps
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396 W. D. Wallis [2]

V* •

obtained by defining Mr\* and Lrj* to be the isomorphism-classes of
and 3?r\% respectively, and extending by linearity. Then rj* is an algebra
homomorphism, and

= [(Mr,*)L]r,*.

In particular if 0 = d (<W, 'V) and y>m are as above, then 6* and 6* are the
r and t of Green [4], and ip* : A (3?jJf) -> A (&) is injective.

The following results are easy to prove:

LEMMA 1. If J? is an 3F'{^jJ>P)-representation module, then

LEMMA 2.

If J is the subgroup with one element of a group Jf~, we shall write
P{jf) for the projective ideal A^(Jf). Then we define

is therefore just P{St); we shall write P 9 (^ ) for P*(^). As a
corollary to the definitions, we have

(3) ?

the equality comes from Lemma 1 and the isomorphism holds because xp*
is injective.

THEOREM 4. P*(^) is an ideal of

PROOF. P9^) is spanned by the P9, where 3P ranges through the
indecomposable projective ^^-representation modules.

It is sufficient to show that, with such a 0* and with 3. an
representation module

P*Q e

By the Mackey formula (p. 324 of [3]),

Also P eP(M) and Qa e A {&): since P(@) is an ideal of A {&) we know that

PQ^eP^)
whence

(PQa)"eP'{3t).
giving the result.
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LEMMA 5.

An ^^-representation module J will be called ^-trivial if Hq = q
for all H e Jf7 and q e J?; clearly J is //-trivial if and only if there is an

) -module & satisfying

(6) J

and if (5) holds then &P is indecomposable if and only if St is.
Suppose 3P and St are indecomposable modules satisfying (6); write

for the vertex of St. Then Jf contains <5f, and jT/^f is a vertex of
So we have

LEMMA 7. P #,(8$) has a basis (as a ^-space) consisting of the classes Q
of the indecomposable M'-trivial ^^-representation modules SL which are
Jtf'-projective. Hence P^(3$) is spanned (as a <€-space) by the classes Qd(£%, *&)%
of the JFS?'-representation modules induced from these St; these induced modules
are clearly also ^-trivial and ^if-projective.

If X is any element of &, write

for the group isomorphism Rx -»• R(R e £%). For any ^^-representation
module St, Sty\m is the conjugate module Stx, and the induced map

is a "^-algebra isomorphism. The following properties are easy to check.

(8) Yx <g JS the identity map on

(10) yi.

(11) / / J is aw indecomposable ^FtM-module with vertex Jf then
is an indecomposable ZF3%X-module with vertex X~x.

LEMMA 12. IfXe<9, then F%{0t) = P%(@x).

PROOF. Using (11) with 3t replaced by ^ / J f we get

so, by definition

by (9)
by (10)
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LEMMA 13. If 3$ and Sf are subgroups of 'S, both containing #?, then

PROOF. Suppose J is an ^"^-module and 3~ an ^"^-module. Then,
from Mackey's 'tensor product' theorem ([3], p. 325),

where X runs through a complete set of (^, SP) -double coset representatives
in <&. In particular, if J and &~ are both ^-projective and J*f-trivial, then
each tensor product appearing on the right in (14) will also be an Jf-
projective, 3P-trivial IF (8&x n ^)-module.

Lemma 13 now comes directly from Lemma 7.

LEMMA 15. If 9f ^3t, then P* (#') Q P%{&)-

PROOF. From Lemma 12 we can assume 0t' ^@t. If J is an indecom-
posable projective &{£%'^/Jf)-representation module, o2a'JP is projective, so

whence

The left hand side is Q9lje, which is Qd{mrjjif, ^ / J f )*; Q could have been
any basis element for P^'jJi?), so

and from (3)

2. The algebras Aa and B%

If J is an indecomposable projective ^(^/Jf)-representation module
then J9 ( J / j f , <S\3^)* is projective, and belongs to P{^jJf). So
P*i*{@l3e) is a subalgebra of P(^ / J f ) ; by Theorem 4 it must be an ideal.
Since P(^/«?f) is a finite direct sum,

~ © C,
we must have

for some finite number of summands. P*/ j r(^/Jf) is non-empty, so it has
an identity element; by (3), P%.(@) must also have an identity element,
which we will write as Ix.
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Now define

From Lemma 12 we have, for any X e f ,

(16) Im = Iax,

(17) Aa = Aax.

LEMMA 18. / / 0t' <Z9 0t then Aa\Aa.

PROOF. From Lemma 15 we see 1^, e P%(&), and Im, is idempotent.
So there is an orthogonal decomposition

which yields

From Lemma 13 we also get

LEMMA 19. If & and £f are subgroups of 'S, both containing ^f, then

For convenience, write 7i(&) to denote some complete set of groups
which are distinct to within ^-conjugacy and satisfy

JT ^ se ^ 9t,

and n'{&) to denote
We define A'x to be 2 - ^ * ' ' w n e r e 2 mea-115 algebra sum over

&' E7t'(0t). From Lemma 18, A'^ is a finite sum of direct summands of
Aa> so

Agt\Aa',

consequently there is an algebra B^Jti?) defined by

A , = K e B%(
which satisfies

Bl(JT) s
In particular

(20) B

THEOREM 21. Aa = © B%,(Jf), where © is algebra direct sum over

PROOF. We proceed by induction on ^ . From (20) the theorem holds
when ^ is replaced by Jf. Suppose that whenever ^f <J Jf < ^ ,
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This yields

= I B*(JT);
Sfen'(m)

using the definition of B%(jf),

(22) Aa = 2 B*.(Jf).
Sreir{St)

To prove that the sum in (22) is direct, we must show that for any
3Cen(@), B%(J?) has zero intersection with J,B%(Jt), the sum being
over 3f e n{0l)\\%}. Now as each B%(Jf?) is an ideal direct summand of
Ay, it is (by (18)) an ideal direct summand of Am, and has an identity
element; from this it is easy to see that all we must prove is that

(23) B = B*{Jf) n B%{3t) ^ 0

is impossible for 3£, & e n{9t) unless 9£ = <&.
Suppose SC and %/ are members of n(3$) which satisfy (23). Then the

identity element E of B is non-zero; and

E = EXE9,

where Ex and E9 are the identity elements of Bx(Jif) and J5|(Jf) respec-
tively. Hence

Ee A^AyQ 2

(using Lemma 19). If <& %%$£, then each 3CX n <& is a proper subgroup of W,
so E e A'9; but this means

which is impossible. So 2E 5?^ <&, and similarly <& 2 ^ SC; therefore 3C and
<& are ^-congugate and (by the definition of n(3&)) HE = *&.

This shows that the sum in (22) is direct, so we have the theorem.

3. The decomposition of Ax({3)

From theorem 3.17 of [2], I9 is the identity element of Ax(^); so

(24) Av = AX{<S);

applying this to Theorem 21 we have

THEOREM 25. A *,{'&)= ® B

To compare our decomposition (25) with Conlon's decomposition
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(26) A,{9) ® A^{<S)

(where a.(Jf) is a complete set of non-^-conjugate subgroups of Jt) in [2],
it is convenient to observe that any such decomposition determines, and is
determined by, an orthogonal idempotent decomposition of / 9 ; (25) comes
from

whereas (26) could be written

Then we obtain a refinement

!<$ = 2, kyk^

which could also be written as

(27) A,{9) = 0 {Km n B
sr,x

Suppose 2 is any group. Then (see [2] and [4]) there are "^-algebra
isomorphisms

A [2) s Ax{®) s A,{9),

where 2? is the Sylow ^-subgroup of 3i and 9 is the ^-normalizer of 3^.
Therefore (27) gives a decomposition of A (2) in the general case, to within
isomorphism.

4. Special cases of B

We shall consider the structure of B^(Jf) in two special cases.
First consider y = Jf. P(JfjJf) consists of the 'g'-multiples of F,

where F is the isomorphism-class of the module 3P, so P^(Jf) consists of the
"^-multiples of F^d^, &)*; and since F2 = F and/^ is to be idempotent,

T _
1 JC

A calculation yields

(28) Ajf, is spanned by the module-classes of the form N9, where N is a
basis element of A (Jf).

Moreover 1^ is the idempotent / of proposition 3 of [1], and by that
result Ajf, is isomorphic to A (Jf) if every indecomposable J^Jf-represen-
tation module is ^-stable.
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The second special case occurs when 01 is a subnormal ^-extension of
another group Sf, where $? 5S SS. If & is a projective indecomposable
J5" (5^/Jf)-representation module then ^ a / j r is indecomposable. So any
element of P{0t\^) can be written

for some L e P ^ j J f ) , and the typical element oi P%{0t) is

This means P%{f%) Q P%(yf)', but the reverse inclusion also holds, so
P%{&!) == PJ . (^) , whence Ia = Iy and ^ a = ^y, . Since ^ £ ^ ' w e

have ^4a = A'^, so

(29) BJ(Jf) = 0.

In particular suppose & is a ^>-group. Then

THEOREM 30. If 3% is a p-group properly containing tff, B%(Jf) = 0.
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