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ABSTRACT. Presence of stars with disparate masses causes great differ­
ences in the dynamical evolution of star clusters from the evolution of 
single component clusters. One remarkable effect is acceleration of the 
evolution. Another effect is destabilization or stabilization. In two-
component clusters equipartition at the cluster centre is nearly achieved 
if Spitzer's (1969) condition is satisfied. In multi-component clusters 
equipartition at the cluster centre is achieved if either the range of 
stellar mass is very narrow or the mass spectrum is very steep. Global 
equipartition is never achieved. Post-collapse evolution of multi-compo­
nent clusters is discussed briefly and some remained problems are pre­
sented. 

1. INTRODUCTION 

Several pioneering works on multi-component clusters have been done. 
Michie (1963) calculated the escape rate from multi-component clusters. 
Spitzer (1969) obtained the condition for equipartition in two-component 
clusters. Henon (1969) estimated the escape rate due to close encoun­
ters. Spitzer and Hart (1971) and Henon (1971) made Monte Carlo simula­
tions of multi-component clusters and revealed some basic properties of 
the dynamical evolution of multi-component clusters. Saslaw and De Young 
(1971) considered the condition for equipartition in clusters with con­
tinuous mass spectra. Aarseth (1974) made N-body simulations of isolated 
clusters and emphasized the importance of binaries. Angeletti and 
Giannone (1977b) found the importance of mass loss from stars. Recently 
Larson (1984) constructed a model of two-component clusters in post-
collapse stage. 

In this paper I do not mention every aspect of multi-component 
clusters discussed by the above authors but I would like to clarify the 
physical processes of gravitational encounters by focusing attention to 
the late evolution of cores of globular clusters. Therefore I do not 
mention on the effects of stellar mass loss or escape of stars from 
clusters, which are important in the early stages of dynamical evolution. 

This paper comprises following subjects. Section 2 discusses 
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dynamical evolution of two-component clusters, which are the simplest 
multi-component clusters. Section 3 discusses the evolution of clusters 
with components more than two. Section 4 discusses briefly the post-
collapse evolution of multi-component clusters. Finally several remained 
problems are presented in section 5. 

2. TWO-COMPONENT CLUSTERS 

2.1. Basic Properties of Two-Component Clusters 

In single component clusters there is only one motive force of evolution, 
that is the gravothermal instability (see e.g. Spitzer 1985). In the 
gravothermal instability of single component clusters, the energy is 
transported from the cluster core to the halo. On the other hand, in 
multi-component clusters, in addition to the gravothermal instability, 
energy exchange between components plays an important role. 

One remarkable effect of presence of disparate masses is the accel­
eration of evolution. It takes about fifteen half mass relaxation times 
to reach the infinite central density in an isolated single component 
cluster (Cohn 1980, Marchant and Shapiro 1980). Here the half-mass 
relaxation time, t , , is defined by rh 

_ 0.06M1/2Rh
3/2 

rh 372; U j 

<m> G logA 
(Spitzer and Hart 1971), where R, is the half mass radius, G is the 
gravitational constant and log A is the Coulomb logarithm. 

The time needed for complete collapse becomes significantly shorter 
in multi-component clusters (e.g. Spitzer and Hart 1971). In a two-
component cluster with m /m = 2 and M /M = 0.11, the collapse time is 
about one half of the single component cluster (see table la), where m. 
is the mass of a star in the i-th component and M. is the total mass of 
the i-th component. In two-component clusters with m /m = 5, the col­
lapse time is much shorter: In a cluster with m /m = 5 and Mp/M = 
0.072, the collapse time is about one tenth of the single component 
cluster. For detail see tables la and lb. 

TABLE la. The time (in the unit of t ) required for the 
complete collapse in two-component clusters with m /m = 2. 

M /M ... 0.0 0.001 0.01 0.05 0.11 1.0 9.0 

t ... 15.4 15.3 13.6 10.2 8.5 9.6 13.6 cc 
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TABLE l b . The same a s t a b l e l a b u t f o r rr^/mi = 5 . 

M0/Mn... 0.001 0.005 0.014 0.072 0.30 

t ... 14.8 10.8 4.2 1.7 1.9 cc 

The acceleration of evolution in two-component clusters can be 
understood as follows. In order that a single component cluster evolves, 
the energy must be transferred from its core to its halo. Since the 
relaxation time at the halo is very long, it takes considerable time for 
the single-component cluster to evolve. On the other hand, a two-compo­
nent cluster can evolve if the energy is transferred from the massive 
component to the less massive component. The relaxation time at the core 
is relatively short so that the two-component cluster can evolve much 
faster than the single-component cluster. 

Another remarkable effect of presence of disparate masses is desta-
bilization. An isothermal single component cluster is gravothermally 
unstable if the density contrast, p /p. , is larger than 709 (Antonov c b 1962, Lynden-Bell and Wood 1968), where p is the central density and 
P is the density at the boundary. On the other hand, an isothermal two-
component cluster with m /m = 10 and M /M = 0.3 is gravothermally un­
stable with very small density contrast, i.e., p /p > 19 (Yoshizawa et 
at. 1978), where M is the total mass of the cluster. 

The destabilization can be understood as follows. In order that a 
single component cluster causes the gravothermal instability, the energy 
must be transported from the core to the halo (Lynden-Bell and Wood 1968, 
Hachisu and Sugimoto 1978). In other words, the halo works as a heat 
reservoir. Therefore an extended halo is necessary for the single compo­
nent cluster to cause the gravothermal instability. In a two-component 
cluster, the energy can be deposited in the less massive component so 
that no halo is necessary to cause the gravothermal instability. 

The presence of disparate masses also causes stabilization (Katz 
and Taff 1983). The isothermal cluster with m /m = 10 and M /M = 0.003 
is stable if p /p, < 5012 (Yoshizawa et al. 1978). This stabilization c b can be understood as follows. Figure Al of Yoshizawa et al. shows that 
P (0)/p (0) is constant (= about eight) along the marginally stable 
states near this model. This means that the development of the halo does 
not affect the stability or that the stability is determined by the state 
of the core. In other words, the instability is caused by the exchange 
of energy between components in the core. However, if the halo becomes 
too extended (for example, density contrast of the less massive component 
exceeds 709), the less massive component becomes unstable as a single 
component cluster. The density contrast at this stage is about p (0)/ 
p (0) times 709 so that it is quite larger than 709. In this sense, the 
stabilization in two-component clusters is deceptive. 
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2.2. Dynamical Evolution of Two-Component Clusters 

It has been well known that mass stratification occurs in two-component 
star clusters (e.g. Spitzer and Hart 1971, Saito and Yoshizawa 1976, 
Angeletti and Giannone 1977a). These authors employed either a Monte 
Carlo technique or a fluid dynamical approach. Recently Cohn (1979, 
1980, 1985) devised a new technique to integrate the orbit-averaged 
Fokker-Planck equation (e.g. Lightman and Shapiro 1978) numerically. 
Cohn's method solves the orbit-averaged Fokker-Planck equation very ac­
curately and numerical noises produced are very small. Therefore Cohn's 
method is the most suitable for the detailed study of slow evolution of 
large-N (say 10 stars) clusters due to two-body encounters. Inagaki 
and Wiyanto (1984, hereafter referred to as IW) made several simulations, 
using Cohn's method with the assumption of isotropy in velocity space. 
Assumption of isotropy will be enough for the study of evolution of the 
core because anisotropy will be small there. Moreover Cohn (1985) con­
firmed that in a single component cluster there is no differences in the 
density profile and in the collapse rate even if anisotropy of the ve­
locity distribution is taken into account. 

IW adopted Plummer's model as initial models. The density distri­
bution of Plummer's model is given by 

3M. 1 
p.(r) = i- ^ (2) 
1 4Ttro [1 + (r/r0)2] '* 

and its velocity dispersion is given by 

GM 1 
<v 2> = ^ , (3) 

2r0 [1 + (r/r0)*] 

where r is a scale length and G is the gravitational constant. Equations 
(2) and (3) show that the density profiles of both components are similar 
and the velocity dispersions are the same. In other words, the kinetic 
temperature of a component is proportional to the mass of a constituent 
star of the component. Figure 1 shows the evolution of the central den­
sity and temperature for the model with m /m = 2 and M /M = 0.01. The 
central potential is adopted as the time axis. In this model pp(0) = 
0.01P (0) initially so that the initial overall evolution is governed by 
the less massive component. In other words, the less massive component 
collapses like a single component system. The massive component is con­
sidered to be floating in the potential well made by the less massive 
component. In such a case temperature of the massive component drops 
swiftly and the temperatures of the both components become nearly equal 
at about 8 t , . It should be noted that the temperature difference remains 
large at the halo (see figure 3 of IW) since the relaxation time is large 
there. After this epoch until the density of the massive component 
dominates the density of the less massive component, the difference in 
central temperatures between components remains negligible while the less 
massive component is collapsing. During this stage the density of the 
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Figure 1. Time evolution of the central density and temperature for 
each component as a function of the central potential for the model with 
m /m = 2 and M /M = 0.01. 

massive component increases more rapidly than that of the less massive 
component. The evolution at this stage is explained well by Lightman 
and Fall's (1978) model (see Iw). 

After the density of the massive component dominates that of the 
less massive component, the massive component causes the gravothermal 
instability and collapses independently from the less massive component. 
At this stage the temperature difference between components becomes large 
again. It should be noticed that even though the fraction of the massive 
stars is very small, mass stratification occurs finally and the temper­
ature difference becomes large. In this sense equipartition holds only 
temporally. 

If the fraction of the massive stars is large, for example, M /M 
= 1.0, there is no initial stage such that the density of the less mas­
sive component dominates that of the massive component. Figure 2 shows 
the evolution of the central density and temperature of the model with 
m /m = 2 and M /M = 1.0. The temperature difference decreases initially 
and reaches the minimum value at about t = 5.6tr^. At this epoch 
(T2c ~ Tlc)/Tlc = °«17» where T i c is the central temperature of the i-th 
component. The temperature difference grows monotonically after this 
epoch. 

Figure 3a shows how the minimum of the relative temperature differ­
ence along the evolutional sequence, [(T2c - Tlc)/Tic]min» depends on 
M2/M2 for the models of n̂ /m-L = 2 . It is seen that the temperature dif­
ference is larger as Î /M-̂  is larger. This value is larger for the 
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Figure 2. The same as f igure 1 but for N^/M^ = 1.0. 

models of m2/m1 = 5: [ ( T 2 c - T lc^ / / T lc^min i s a b o u t 5 0 % f o r t h e m o d e l o f 

M2/M1 0.1 (figure 3b). Figures 3a and 3b show that the relative tem­
perature difference is constant for both large Mp/NL and small NL/M-. 
The dependence of the relative temperature difference on Mp/M-, is the 
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Figure 3a. The dependence of the minimum of the temperature difference 
on the fraction of the total mass of the massive component for the models 
of n^/m^ = 2. 
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Figure 3b. The same as figure 3a but for n^/m^ = 5. 

—3/2 largest near the model with NLp/M^ = O.ieCmp/m-,) ' , the value obtained 
by Spitzer (1969) as the critical value for existence of equipartition. 

The evolution of the massive component after the central density of 
the massive component dominates the central density of the less massive 
component is nearly the same as that of the single component clusters. 
The collapse rate defined by £ p = t din p /dt is the same as that 
of the single component clusters and ^Vpc^> " P 9 » which is also the 
same relation as the single component clusters, where t ~ > P? anc* 
< v2c > a r e the central relaxation.time, density, and velocity dispersion, 
respectively, of the massive component. These relations holds even in 
the models of n^/m^ = 5 where the temperature difference is quite large. 

IW started their simulations from Plummer's model, where equiparti­
tion does not hold initially. The evolution from models where the equi­
partition holds initially can be conjectured. Let us consider how 
clusters evolve if we start simulations from two-component Wilson's 
model, for example. The isotropized-orbit-averaged Fokker-Planck equa­
tion can be written in the form 

3q dfi _ 3q 
"3E" T F ~3F 

9fi = 16w*G*lnAErfj-i={f [/E f.f'q-(i±2*i. 
J a E ?(o,t) J a E 

m± 8In fj 0 3 In f, 
9E — ) d E ' + q/ f\f» (- 3E 

m± din f • 
m. dE~* 

)dE']} (4) 

(Inagaki 1980), where 
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1 3Pl(E) 3/2 
q = — f0 (2E - 25P) r*dr. (5) 

In Wilson's model In f. (E) is convex upwards because of the cut-off of 
the distribution function. In this case, equation (4) predicts that the 
energy flows outwards in the core region. This means that the core con­
tracts (Inagaki 1980). As the core contracts, keeping equipartition in 
the core, the density of the massive component grows more rapidly than 
does the density of the less massive component (see IW). It should be 
reminded that the distribution function keeps convex upwards because the 
evolution of the distribution function is characterized by the extention 
of isothermal part into low energy region (see figure 1 of Cohn 1980). 
If the density of the massive component becomes high enough to cause the 
gravothermal instability, the gravothermal instability of the massive 
component takes place and the temperature difference between components 
becomes larger. Thus even if we start from models with equipartition 
initially, the final state is the gravothermal instability of the massive 
component and the temperature difference emerges. 

Global equipartition in the sense that the average temperatures 
throughout a cluster do not depend on components is not achieved in any 
case. If the initial state is far from equipartition, the temperature 
at the halo does not change so much because the relaxation time is very 
long there. Therefore equipartition is not achieved in this case (see 
figure 8 of IW). Even if global equipartition holds initially, the tem­
perature difference becomes large finally because of the final collapse 
of the massive component. 

3. MULTI-COMPONENT CLUSTERS 

Spitzer and Hart (1971) simulated the evolution of three-component 
clusters and found that the most massive stars condense strongly in the 
central region and the least massive stars concentrate in the halo. 
Spitzer and Shull (1975) made more detailed study of the evolution of 
three-component clusters and found that the final collapse of the most 
massive component is in the same way as do the cores of single component 
clusters. Henon (1971) simulated evolution of a five component cluster 
with a flat mass spectrum and showed that evolution proceeds in the 
direction away from equipartition. Recently Stodoikiewicz (1985) made 
Monte Carlo simulations of globular clusters, using a realistic mass 
function. 

In spite of the effort of these authors, some of the basic proper­
ties of the evolution of multi-component clusters had been unclear until 
Inagaki and Saslaw (1985, hereafter referred to as IS) made systematic 
simulations of multi-component clusters. IS integrated the isotropized-
orbit-averaged Fokker-Planck equation, using Conn's (1980) scheme. They 
assumed simple power law mass spectra of the form, 

—ex dM <* m dm for m . < m < m (6) m m — — max 
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They made several simulations with different m /m . and a (Table n) 
max min ~uxc ±±) . 

TABLE II. The time (in the unit of t , ) required for complete 
core collapse in multi-component clusters. In the table n is 
the number of components. 

m max 
m . m m 

= 10 
m max 
m . min 

= 10 
m max 
m . min 

= 4 
m max 
m . m m 

m 
. o 8 m a x 

m . m m 
= 2 

(n = 15) (n = 5 ) (n = 5) (n = 5 ) (n = 5) 

a = 1.0 

a = 2.5 

a = 4.0 

a = 6.0 

2.6 

1.9 

4.3 

9.0 

4.0 

2.0 

4.9 

10.4 

4.3 

5.7 

9.6 

7.5 

6.6 

7.3 

9.7 

10.4 

10.0 

11.1 

The time for the complete core collapse in multi-component clusters 
is shown in Table II. One important conclusion drawn from tables land E 
is that the collapse time is mainly determined by inmax/mmin and a not by 
the number of components. In multi-component clusters, the fastest col­
lapse time in the unit of the half mass relaxation time is attained when 
a is about 2.5. The shortest collapse time is about 10 tr^ for five-
component clusters with m m a x/m mi n = 2. This collapse time is comparable 
with that of the two-component cluster with n̂ /m-̂  = 2 and IV̂ /M̂  = 0.05. 
The collapse time of the fifteen-component cluster with mmax/mm;j_n = 10 
and a = 2.5 is 1.9 tr^, which is nearly the same as the collapse time of 
the two-component cluster with rr̂ /mi = 5 and I^/M^ = 0.072. Thus the 
shortest collapse time for given m m a x/m mi n can be obtained even with a 
two-component cluster with a certain value of M2/M1. The collapse time 
does not become shorter indefinitely even if very large rno /rn • is 

max min adopted. The shortest collapse time is about the same for m
m a x / m

m i n
 > 5. 

Another important question is what is the condition for equiparti-
tion in multi-component clusters. Saslaw and De Young (1971) claimed 
that 'stable equipartition' could not be achieved for any reasonable 
mass spectrum. 'Stable equipartition' is the state such that equiparti­
tion is unaffected by small changes in the mass spectrum. Vishniac 
(1978), however, suggested that equipartition is possible if the mass 
spectrum of a cluster is sufficiently steep. Unfortunately, his analysis 
was based on the assumption that the density profiles of different 

https://doi.org/10.1017/S0074180900147382 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147382


198 S. INAGAKI 

components are homologous. This assumption is generally not satisfied 
because the density profiles of non-dominant components are affected by 
the gravitational attraction of dominant components. 

Figure 4. Time evolution of the central density and temperature for 
each component as a function of the central potential for the model with 

10 and a = 2.5. m /m . max min 

Thus it was necessary to examine the condition for equipartition in 
evolving models of globular clusters. IS adopted Plummer's models char­
acterized by equations (2) and (3) as initial conditions. Figure 4 shows 
time evolution of the central density and temperature of a five component 
cluster with n%ax/mmin = 10 and a = 2.5. It is seen that initially the 
temperatures of the massive components decrease rapidly and the forth 
and the fifth components become in equipartition. This equipartition, 
however, does not last long. When the density of the most massive compo­
nent dominates significantly at later stages, the central temperature of 
the most massive component becomes higher than the central temperatures 
of the other components. Vishniac (1978) found that a > 2.5 is the neces­
sary condition for equipartition. Figure 4, however, shows that [(T 
- Tn )/T. ] . is as large as 47%. 5 c 

lc_, lc^min . , & 

The steeper is the mass spectrum, the smaller is the temperature 
difference. For example, [(T5c - T l c)/T l c] m i n is about 9% for the model 
o f mmax/mmin = 1 0 a n d <* = 4. In this model the central temperatures of 
the second to the fifth components become nearly equal at intermediate 
stage of the evolution. Figure 5 shows time evolution of the central 
density and temperature of the model with m /m • = 10 and a = 6.0. 
T, . , . , ,, , , ,y . max m m 
It is noticed that at this very steep mass spectrum equipartition at the 
cluster centre is nearly achieved. Thus it is seen that the mass spectrum 
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199 

Figure 5. The same as f igure 4 but for a = 6 .0 . 
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Figure 6. The same as figure 4 but for m /m . = 2 and 
& to max m m 

a = 1.0. 
must be as steep as a > 6 in order that a cluster with m

m a x / m
m i n = 1 0 

achieves equipartition at the centre. These tendencies are unchanged 
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even though the number of components are as large as fifteen (see table 
3 and IS for detail). 

When the ratio of the maximum mass to the minimum mass of a star is 
2, the results are quite different. Even for a very flat spectrum with 
a = 1, [(T5c - T l c)/T l c] m i n is only 7% (figure 6). Table HI shows the 
minimum of the relative central temperature difference between the most 
massive component and the least massive component, [(Tn - T^ )/T^ ] • , 
where n is the number of components. From table HI we see that either 
a > 6 or mmax/mmin < 2 #^ i s necessary for the achievement of equiparti-
tion at the cluster centre. 

TABLE III. The minimum of the relative central temperature 
difference, [(T - T\ )/T1 ] . , along the evolutional 
sequence. 

m m m m m max ., _ max . _ max „ max _ _. max = 10 = 10 = 4 = 2.8 = 2 m . m . m . m . m . mm m m mm mm mm 

15) (n =5) (n = 5) (n =5) (n = 5) 

a = 1.0 

a = 2.5 

a = 4.0 

a = 6.0 

1.20 

0.68 

0.20 

0.06 

1.40 

0.47 

0.09 

0.03 

0.21 

0.10 

0.04 

0.14 

0.12 

0.07 

0.03 

0.07 

0.06 

0.03 

As the number of components increases, the fraction of the mass 
contained in a component decreases. Therefore it is rather difficult to 
see whether the final collapse of the core occurs in the same way as do 
the cores of single component clusters. However, if we define the rate 
of core collapse by C = tpcdlnpc/dt, we see that this quantity has the 
same value as the single component clusters. Here the central relaxation 
time is defined by 

t = (2<vg>/3>3/2 , (7) 

2TTG2mp In A c 

where <v£> and m are the average values of the central velocity disper­
sion and the mass, respectively. The average values are taken with the 
weights of the central number densities, i.e., e.g., 

£minic i 
I n. m = -i- (8) 
l 1C 
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where n i c is the central number density of the i-th component. The rela­
tion between the central velocity dispersion of the most massive compo­
nent and its central density is also the same as in single-component 
clusters, i.e. <v n c

2> o cP n c 

4. POST-COLLAPSE EVOLUTION OF MULTI-COMPONENT CLUSTERS 

Recently several basic properties of post-collapse evolution have been 
revealed (see Heggie 1985). However, most studies were made under the 
assumption that the cluster consists of stars with the same mass. The 
only exception is the work by Stodoikiewicz (1982, 1985) who allows dis­
parate masses. 

As is mentioned in sections 2 and 3, the time required for the com­
plete core collapse is shorter in multi-component clusters than in single 
component clusters. Therefore multi-component clusters set in the post-
collapse phase earlier than single component clusters. Moreover, if we 
take into account that post-collapse evolution is powered by hard bina­
ries, the post-collapse phase starts much earlier in multi-component 
clusters than in single component clusters. According to Heggie (1975), 
the formation rate of hard binaries is proportional to 

14/2TT2G2 ( O ) V 5 / 2 

Q U ) -—7— ( ~h^7 T72 e*~ 9 / 2 ■ <*> 
3 (m +mp) (m +m +m ) 

where stars with the masses m and m2 form a binary and the star with 
the mass m^ is recoiled from the binary. For the meaning of other 
symbols, see Heggie (1975). Equation (9) shows that if m1 and m2 are 
larger than m3, the formation rate of hard binaries is larger than in 
the same mass case. Therefore in multi-component clusters massive stars 
form binaries more efficiently than in single component clusters. 

TABLE IV. The time (in the unit of t h) when persistent hard 
binaries are formed in N-body simulations. 

single component cluster 

a = 2.5 

a = 4.0 

a = 6.0 

N = 250 

14.1 

3.7 

8.9 

3.8 

N = 1000 

21.0 

3.1 

3.3 

5.9 
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Table IV shows the time of the onset of the post-collapse stage when 
persistent hard binaries are formed in N-body simulations. These simula­
tions were performed with NB0DY5 code developed by Aarseth (1984, 1985). 
The code can regularize not only strong two-body encounters but also 
violent three-body encounters. Therefore the code is suitable for the 
study of post-collapse evolution of small-N systems. From table IV we 
see that the onset of the post-collapse phase is much earlier in multi-
component clusters than in single component clusters. Dependence on 
mass spectra is not clear from tableIV. More detailed studies will be 
necessary. 

Larson (1984) constructed a model of two-component clusters in post-
collapse phase. He assumed that pp a r~ , mp<Vp2>/m1<v-2> = 1.16, 
and M2/M is a few percent. From these assumptions he derived that m-̂  = 
0.8 M© and 1112 = 2.8 M®. He thus considered that the massive stars are 
unseen black holes and the less massive stars are visible stars. He 
found that the calculated profiles of the light and velocity dispersion 
of visible stars are in agreement with observed profiles of the light 
and velocity dispersion, respectively, of globular clusters. It is 
interesting to examine whether his model is reproduced in an evolutional 
model of a two-component cluster. 

We can make some predictions on the post-collapse evolution of two-
component clusters. From the study of pre-collapse evolution by IW, we 
know that the density profile of the massive component is proportional 
to r~~ * at the time of complete core collapse. The density profile of 
the less massive component is much flatter (see figure 4 of IW). If we 
take account of the binary formation, hard binaries of massive stars 
will form when the central density of the massive stars becomes high 
enough. Thereafter expansion of the massive component begins. As the 
density of the massive component becomes smaller, the density of the 
less massive component also becomes smaller. In single component clus­
ters, the post-collapse evolution is characterized by the expansion of 
isothermal region (Inagaki and Lynden-Bell 1983). From this analogy we 
expect that the region where equipartition is achieved expands. The 
radius of this region, r#, is characterized by the equation, t (r^) -
t - "tcc, where teq is the time required for equipartition and tcc is the 
time of the complete core collapse. 

5. FUTURE PROBLEMS 

(1) Construction of models of real globular clusters: In section 3 we 
see that m /m . < 2.8 or a > 6 is necessary for the achievement of 
equipartition cluster centre. In real globular clusters the mass 
of the most massive stars will be larger than 1 M© though they are un-
luminous. On the other hand, the mass of the least massive stars will 
be about 0.1 M®. The exponent in the mass spectrum is 1.3 < a < 3 for 
M3 (Gunn 1980). Therefore deviation from equipartition is expected in 
real globular clusters. However, most models of globular clusters (e.g. 
Da Costa and Freeman 1976, Illingworth and King 1977) were constructed 
under the assumption of equipartition at the cluster centre. Therefore 
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it is necessary to construct models of real globular clusters, taking 
account of deviation from equipartition. 
(2) Post-collapse evolution of multi-component clusters: As is seen in 
section 4 we know only some qualitative features of post collapse evolu­
tion of multi-component clusters. It is, therefore, necessary to study 
post-collapse evolution of multi-component clusters quantitatively, using 
detailed evolutional models. 
(3) Effects of tidal dissipational encounters: In single component 
clusters, two-body binaries formed by tidal dissipational encounters 
govern the evolution in late stages (Inagaki 1984, Ostriker 1985, Hut 
and Inagaki 1985). It is necessary to consider the role of two-body 
binaries in a cluster with realistic mass spectra. 
(4) Construction of realistic evolutional models of globular clusters: 
Some basic properties of gravitational encounters in multi-component 
clusters are discussed in section 3. To understand the evolution of real 
globular clusters, it is necessary to construct more realistic evolu­
tional models, taking account of stellar evolution and of tidal effects 
due to the Galaxy, etc. 

I thank Professor W.C. Saslaw for stimulating discussions and Dr. 
S.J. Aarseth for providing his N-body program and for helpful advice. 
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DISCUSSION 

KING: Can you give us some simple physical feeling for why a 
multi-component model evolves faster than a single-component model? 

INAGAKI: In order that a single-component cluster evolves, heat 
must be transported from the core to the halo. It takes a few half-
mass relaxation times for such a transportation. On the other hand, 
a multi-component cluster can evolve if energy is transported from the 
massive component to the less massive component in the core* About 
one relaxation time is enough for the exchange of energy between 
components. 

APPLEGATE: I have calculated the evolution of young globular 
clusters, such as those found by Ken Freeman in the LMC, and find that 
the energy exchange between the different mass components is very impor­
tant. One must, however, include stellar evolution in these systems 
because the massive stars evolve off the main sequence and loose mass 
on timescales comparable with the relaxation time. 

INAGAKI: I agree with you. 
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