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MAKING use of properties of doubly-stochastic matrices, I recently gave a
simple proof (4) of a theorem of Ky Fan (Theorem 2b below) on symmetric
gauge functions. I now propose to show that the same idea can be employed
to derive a whole series of results on convex functions ; in particular, certain
well-known inequalities of Hardy-Littlewood-Polya and of Polya will emerge
as special cases.

Our notation is as follows. All numbers are understood to be real; n
denotes a positive integer and x=(x1, ..., xn) and j=(yv ..., yn) denote two
given vectors. If xlt ...,£„ are the numbers xv ...,xn arranged in non-ascending
order of magnitude and if yv ...,yn are defined similarly, then x < y means that

E x{^ E yt (Ufcsjw) (1)

Further, we write x«<y if (1) holds and if, in addition, there is equality for
k = n.

We put a+ = max (a, 0) and x+ = (x£, ..., x£). A typical permutation of
1, ..., n is denoted by 77, and xn is the vector obtained when n is applied to the
components of x. The set of symmetric functions, i.e. of functions F such that
F(\xn) = F(vL) for all vectors u and all permutations n, is denoted hyS?. The
set of increasing functions, i.e. of functions F such that F(VL)^F(V) whenever f
u ^ v, is denoted by J. Again, 2£ denotes the set of functions F such that
F(u\) ^ F(VL) for every vector u and every diagonal matrix A whose diagonal
elements are equal to 0 or 1. Thus, for n=l,fe 2£ means that minu/(«) =/(0).

The function F is called convex if, for any vectors u, v and any numbers
A, /x such that A^O, JLI^O, A+^I = 1, we have

F(\VL + IMV)^ \F(VL) + fiF{v).

The set of convex functions is denoted by <6.
Following von Neumann (6), we call F a symmetric gauge function if it

satisfies the following conditions, (i) F(u)>0 (u#0); (ii) F(p\i) = \ p \ F(n) ;
(iii) F(n + v)^.F(n)+F(v) ; (iv) F(VL^) = F(VL). Here p is any real number ;
u, v are any vectors ; -n any permutation ; and A any diagonal matrix with
diagonal elements +1. The set of symmetric gauge functions will be denoted
by#.

f Inequalities between vectors are interpreted component-wise.
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Theorem 1. The inequality

(2)

holds for all F e <&nSf if and only if |
(3)

Let (3) be given. Then, by (8), x lies in the convex hull of the n! vectors

where the «'s are non-negative numbers with sum 1. Hence, for F e

F(X) < E ( / (y . ) = 2 tnF(y) =F(y).

Suppose, on the other hand, that (2) holds for all F e (fir^Sf. The functions
(u — yk)+ (1 < k^n) of the single variable u are all convex. Hence

and so Fk(x)^Fk(y) (1 </fc^n). By the reasoning of Hardy, Littlewood, and
Polya (2, pp. 89-90), we now infer (3).

Theorem la . (Hardy-Littlewood-P61ya (2, Theorem 108); Karamata(3)).
The inequality

2f(yt) (4)
i l

holds for all %f e<& if and only if (3) is satisfied.
Let (3) be given. If/ e <g, then

F(VL)= 2 /(«,) e ^ n ^ ; (5)
i = l

and (4) follows by Theorem 1. If, on the other hand, (4) holds for all/6^",
then we infer (3) exactly as in (2), viz. by considering the functions u, —u,
(u-yk)+

Theorem 2. The inequality (2) holds for all F e (6c\S/'c\J if and only if

x « y (6)

Let (6) be given. Then, by (5), there exists a doubly-stochastic matrix §
D such that xsJyD. Hence, for FeJ, F(x)^F{yD). But, by (8), yD lies
in the convex hull of the vectors y^ and so, for Fe^nS?,
Hence (2) holds for all F e

f To avoid trivial complications, we consider throughout those functions which
possess the specified properties everywhere. Naturally, our theorems could be made a
little sharper if we restricted ourselves to appropriate regions or intervals.

t In (2) the continuity of/ was postulated explicitly, but our definition of convexity
implies t h a t / is continuous.

§ A (square) matrix is said to be doubly-stochastic if its elements are non-negative
and if the sum of the elements in each row and in each column is equal to 1.

https://doi.org/10.1017/S0013091500021969 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021969


INEQUALITIES OF CONVEX FUNCTIONS 233

Again, the functions (u — yk)
+ (l^k^n) of u all belong to <#r>J. Hence

the functions J7
fc(u)(l ^.k^n), defined in the proof of Theorem 1, belong to

WnSfn^. If follows, by precisely the same argument as above, that, if (2)
holds for all F e WnSfnS, then (6) is satisfied.

Theorem 2a. (Polya (7)).
The inequality (4) holds for all f e Wn^ if and only if (6) is satisfied.
Let (6) be given. If fetfnS, then the function F(v), defined by (5),

belongs to <€r\S/'r\J. Hence (4) follows by Theorem 2. If, on the other
hand, (4) holds for aMfe^nJ, we consider, as before, the functions (u — yk)+
(l^k^ri) and obtain (6).

Theorem 2b. (Fan (1)).
Suppose that x^O, y ̂  0. Then the inequality (2) holds for all F e & if and

only if (6) is satisfied.
Denote by #+, £P+, J+ the sets of functions which are respectively convex,

symmetric, and increasing in the positive orthant. Let F e & ; then clearly
F e <$+n£f+. Moreover, it is well known (9, Lemma 5.16) that F e J+. Thus
F e (&+n£f+r\<?+ and (2) follows by an obvious modification of Theorem 2.

Again, suppose that (2) holds for all F e 'S. As was pointed out by Fan
(1), relation (6) follows at once if we consider the functions

Fk(u)= max (\u{ \ + ... + \u{ |)
i i 1 k

which obviously belong to <S.

Theorem 3. The inequality (2) holds for all F e ^CxSfOiSS if and only if
x«y+ - x « ( - y ) + (7)

Let (7) be satisfied. Then, by (5), x lies in the convex hull of the vectors
y,A, where it ranges over all permutations of 1, ..., n and A over all diagonal
matrices whose diagonal elements are 0 or 1. Thus

x= S «ffjAywA,

where the t's are non-negative and have sum 1. Using successively the relations
Fe<g,Fe&,F e£f, we obtain

Next, let (2) be satisfied for all F e<gr\SPn&. Assume, as may be done
without loss of generality, that

nh>. ..>xn, y!>...>yn (8)
The functions (u - y£)+ (1 «S k < n) of u all belong to <gn S. Hence

Fk{a)= S (ui-y£)+

i = l

and so
.(9)
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Now we have

Fk(x) = E (xt-y + )+> E (xt-yi),
i=l i=l

i.e. Fk(x)2z E Xt-kyf (10)
i=i

Also, as is easily shown,

Fk{y)= E ?-ky+ (11)
i = l

Hence, by (9), (10) and (11),

E xt£ 2 vt (K*^»);
i = l t = l

and, in view of (8), this is equivalent to x-^y+. Furthermore,

Gk(ix) = E {-Ui-(-yk)+}+ e<gnSfn
i = l

and so Gk(x) < Gk(y). But it is easy to verify that

&*(*)&- E xt-(n-
^ ( y ) ( y i ) (

i=k
and therefore

- E x{^ E (-yt)+
i=k i=k

i.e. — JC-<( — y)+. This completes the proof.

Theorem 3a. The inequality (4) holds for all f e ^r^2£ if and only if (7)
is satisfied.

T$fe<gn&, then the function F(u), denned by (5), belongs to Vnyng.
Hence, if (7) is given, then (4) is satisfied by virtue of Theorem 3. On the
other hand, suppose that (4) holds for all / e ^ n ^ . Then, by considering the
functions

and arguing exactly as in the proof of Theorem 3, we infer (7).
It may be noted that, if (8) holds, then the set of inequalities

* k \
S xt<: E max (i/,-, 0)]

n n
E x^ E min(yit 0)

is equivalent to (7).

In conclusion, I wish to thank Professor R. Rado for a number of helpful
comments,
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