INEQUALITIES FOR CERTAIN CLASSES OF
CONVEX FUNCTIONS

by L. MIRSKY
(Received 27th June 1959)

Maxing use of properties of doubly-stochastic matrices, I recently gave a
simple proof (4) of a theorem of Ky Fan (Theorem 2b below) on symmetric
gauge functions. I now propose to show that the same idea can be employed
to derive a whole series of results on convex functions ; in particular, certain
well-known inequalities of Hardy-Littlewood-Pélya and of Pélya will emerge
as special cases.

Our notation is as follows. All numbers are understood to be real; =
denotes a positive integer and x=(z,, ..., %,) and y=(y,, ..., ¥,) denote two
given vectors. If %, ..., ¥, are the numbers z,, ..., z, arranged in non-ascending
order of magnitude and if 7, ..., 7, are defined similarly, then x<y means that

F: (I<SESn). i (1)

K2

It

E

Z; <
=1 i
Further, we write x<y if (1) holds and if, in addition, there is equality for
k=mn.

We put a*=max (a, 0) and x*=(z;, ..., 7). A typical permutation of
1, ..., n is denoted by =, and x, is the vector obtained when = is applied to the
components of x. The set of symmetric functions, i.e. of functions ¥ such that
F(u,)=F(u) for all vectors u and all permutations =, is denoted by &. The
set of increasing functions, i.e. of functions ¥ such that F(u) < F(v) whenever
ugv, is denoted by #. Again, & denotes the set of functions F such that
F(uA)< F(u) for every vector u and every diagonal matrix A whose diagonal
elements are equal to 0 or 1. Thus, for n=1, f € 2 means that min,, f(u)=7(0).

The function F is called convex if, for any vectors u, v and any numbers
A, psuch that A0, p 20, A+p=1, we have

F(au+ pv) <AF(u)+ pF(v).

The set of convex functions is denoted by %.

Following von Neumann (6), we call F a symmelric gauge function if it
satisfies the following conditions. (i) F(u)>0 (us£0); (ii) F(pu)=|p|F(u);
(iii) Pa+v)<Fu)+F(v); (iv) F(u,A)=F(u). Here p is any real number ;
u, v are any vectors; = any permutation ; and A any diagonal matrix with
diagonal elements +1. The set of symmetric gauge functions will be denoted
by 4.

1 Inequalities between vectors are interpreted component-wise.
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Theorem 1. The inequality

FRYSF(@) oot 2)
kolds for all F € €N if and only if T
TR Y v e aaaas 3)
Let (3) be given. Then, by (8), x lies in the convex hull of the »! vectors
¥V, 1.€.
X= Ztﬂyﬂ’

where the ’s are non-negative numbers with sum 1. Hence, for F e ¢n<,
F(x)< 2t F(y,) = 2t,.F(y)=F(y).

Suppose, on the other hand, that (2) holds for all F € ¥n%. The functions
(u—yr)* (1<k<n) of the single variable « are all convex. Hence

Fiu)= 51 (Ui—y)+ e Gn (L<k<n),

and so F(x) < F.(y) (1<k<n). By the reasoning of Hardy, Littlewood, and
Pélya (2, pp. 89-90), we now infer (3).

Theorem 1a. (Hardy-Littlewood-Pélya (2, Theorem 108); Karamata (3)).
The inequality

i=2"1 f@< z_é FUHD) oo )

holds for all } f € € if and only if (3) is satisfied.
Let (3) be given. If fe @, then

Fla)= _gnl F@) €GOS 5o (5)

and (4) follows by Theorem 1. If, on the other hand, (4) holds for all fe €,
then we infer (3) exactly as in (2), viz. by considering the functions u, —u,
(u—y)* (1<k<n).

' Theorem 2. The inequality (2) holds for all F € ¢nS S if and only if

LY oot (6)

Let (6) be given. Then, by (5), there exists a doubly-stochastic matrix §
D such that x<yD. Hence, for F e #, F(x)<F(yD). But, by (8), yD lies
in the convex hull of the vectors y, and so, for F e ¥n¥, F(yD)< F(y).
Hence (2) holds for all F e €nSFNF.

t To avoid trivial complicétions, we consider throughout those functions which
possess -the specified properties everywhere. Naturally, our theorems could be made a
little sharper if we restricted ourselves to appropriate regions or intervals.

t In (2) the continuity of f was postulated explicitly, but our definition of convexity
implies that f is continuous.

§ A (square) matrix is said to be doubly-stochastic if its elements are non-negative
and if the sum of the elerhents’in each row and in each column is'equal to 1.
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Again, the functions (u—1vy;)* (1<k<n) of u all belong to n#. Hence
the functions F,(u)(1 <k<n), defined in the proof of Theorem 1, belong to
EnFnS. If follows, by precisely the same argument as above, that, if (2)
holds for all F € ¥n .S, then (6) is satisfied.

Theorem 2a. (Pélya (7)).

The inequality (4) holds for all f € €S if and only +f (6) is satisfied.

Let (6) be given. If fe %NS, then the function F(u), defined by (5),
belongs to ¥n¥n#. Hence (4) follows by Theorem 2. If, on the other
hand, (4) holds for all f e ¥n.#, we consider, as before, the functions (u—y,)*
(1 <k<n) and obtain (6).

Theorem 2b. (Fan (1)).

Suppose that x>0, y>=0. Then the inequality (2) holds for all F € & if and
only if (6) is satisfied.

Denote by ¢+, &+, £+ the sets of functions which are respectively convex,
symmetric, and increasing in the positive orthant. Let F € ¥ ; then clearly
F e ¢+n&#*. Moreover, it is well known (9, Lemma 5.16) that F € #+. Thus
F e ¢+nF+nS+ and (2) follows by an obvious modification of Theorem 2.

Again, suppose that (2) holds for all F € 4. As was pointed out by Fan
(1), relation (6) follows at once if we consider the functions

Filu)= max ( u,~1]+...+|u,-’c (l<k<n)

1<i,<...<{sn
which obviously belong to .
Theorem 3. The inequality (2) holds for all F € €nS % if and only if

xLyt, —x<L(=y)r. (7)

Let (7) be satisfied. Then, by (8), x lies in the convex hull of the vectors
¥-A, where 7 ranges over all permutations of 1, ..., » and A over all diagonal
matrices whose diagonal elements are 0 or 1. Thus

x= 2 l, A YA,
mA

where the £’s are non-negative and have sum 1. Using successively the relations
Fe¥, Fe %, Fe, we obtain

F(x) S 2 tﬂ,A F(YnA) < Z tﬂA, F(yn)
A A
= 2 t, A F(y)=F(y).
mA
Next, let (2) be satisfied for all F e ¥nSNnZ. Assume, as may be done
without loss of generality, that

TyZ o 2%y P1Z o ZYne e (8)
The functions (u—y;)* (1 <k<n) of u all belong to ¥nZ. Hence

Fuu)= 2 (w—y}) ebnsnZ (1<k<n),
i=1

.and so
F(R)SFy) A<k€n) ovivvennnnnn, ereeenes ..(9)
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Now we have

i=1 i=

ie. Fux)> le’ i—kyt. (10)
Also, as is easily shown, o

Foly)= él F b e (1)

Hence, by (9), (10) and (11),
k k
2z 2yt (1<k<n);
i=1 i=1
and, in view of (8), this is equivalent to x<y*+. Furthermore,
Gu)= 2 {~u— (~g)}* cGnFnZ  (1<hk<n),
i=1
and so Gi(x) < G,(y). But it is easy to verify that
n
Gr(x)2 — 2 z;— (n—k+1)(—yp)",

i=k

6= 2 (—y = -+ 1)(=y0)",

and therefore

- 2 %< 2 (-y)t (I<k<n),

b
o

1 1]

ie. —x<(—y)*. This completes the proof.

Theorem 3a. The inequality (4) holds for all fe €N if and only if (7)
is satisfied.

If fe 4nZ, then the function F(u), defined by (5), belongs to ¥nF¥nZ.
Hence, if (7) is given, then (4) is satisfied by virtue of Theorem 3. On the
other hand, suppose that (4) holds for all fe ¥nZ. Then, by considering the
functions

(=g ) {—u—(—g** (I<k<n)
and arguing exactly as in the proof of Theorem 3, we infer (7).
It may be noted that, if (8) holds, then the set of inequalities

3 E
z;< X max (y;, 0)
=1 i=1 .

v= (1<k<n)
n 7
%2 2 min (y; 0)
i=k 1=k

is equivalent to (7).

In conclusion, I wish to thank Professor R. Rado for a number of helpful
comments,
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