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Abstract. For a nontrivial additive character A and a multiplicative character x
of the finite field with ¢ elements (¢ a power of an odd prime), and for each positive
integer r, the exponential sums Y A((trw)") over we SOQ2n+1,q9) and
> x(det w)r((tr w)") over O(2n + 1, q) are considered. We show that both of them
can be expressed as polynomials in ¢ involving certain exponential sums. Also, from
these expressions we derive the formulas for the number of eclements w in
SO2n+1, g) and OQ2n + 1, g) with (trw)" = B, for each B in the finite field with ¢
elements.

1991 Mathematics Subject Classification. Primary 11T23, 11T24. Secondary
11105, 20G40.

1. Introduction. Let A be a nontrivial additive character of the finite field [, x a
multiplicative character of [F,, and let r be a positive integer. Throughout this paper,
we assume that ¢ is a power of an odd prime. Then we consider the exponential sum

> M(rw)), (1.1)

weS0(2n+1,q)

where SO(2n + 1, g) is a special orthogonal group over F, (cf. (2.3)) and trw is the
trace of w. Also, we consider

D x(detwr((trw)), (1.2)

weO0(2n+1,q)

where O(2n + 1, g) is an orthogonal group over F, (cf. (2.2)) and det w is the deter-
minant of w.

The main purpose of this paper is to find explicit expressions for the sums (1.1)
and (1.2). We will show that (1.1) is a polynomial in ¢ times

Z () (1.3)

vek,

plus another polynomial in ¢ involving certain exponential sums (cf. (2.14) (2.15)),
of which O-estimates were given in [14]. On the other hand, the expression for (1.2)
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is that for (1.1) plus x(—1) times a similar one corresponding to the subsum of (1.2)
over O2n+1,q)— SO2n+1, q) = pSOR2n+ 1, g) (cf. (2.12)).

In [10], the sums in (1.1) and (1.2) were studied for r = 1 and the connection of
the sum in (1.2) for yx trivial with Hodges’ signed generalized Kloosterman sum over
nonsingular symmetric matrices was also investigated ([5], [6]). Since the sum in (1.3)
vanishes for r = 1, the polynomials involving (1.3) do not appear in that case. For
r =1, similar sums for other classical groups over a finite field had been considered
([71-H12], [16], [17]).

The sums in (1.1) and (1.2) may be viewed as generalizations to SO(2n + 1, q)
and O(2n + 1, q), respectively, of the sum in (1.3) which was studied by several
authors ([1]-3)).

Another purpose of this paper is to find formulas for the number of elements w
in O(2n+1, q) and SO(2n + 1, q) with (trw)" = B, for each g € F,. We derive them
from (5.2) based on well-known principles, though they could be also obtained from
the expressions for (1.1) and (1.2) by specializing them to r = ¢ — 1 and r = 1 cases.

Finally, we state the main results of this paper. The reader is referred to the next
section for some notations here.

THEOREM A. For any nontrivial additive character A of b, and any positive integer
r, the exponential sum over SO(2n + 1, q)

> Mrw))

weS0(2n+1,q)

is given by
1 l—[ 2 [2/2:] b(b+1) ﬁ
[ - "),
b=0 =1
[(n72b+2)/2] -1
X Z / l(q l)n 2h42— ZIZH(q/V v 1)] Z}\’(y)
I=1 yel,
21 A b+ 7 2j-1
no— j—
+q ; q [2 b]qu[(q
—| j=1
[(1-26+2)/2] -1
X Y A MK a0 LD Y T]@ -1,
=1 v=1
where both of the unspecified sums run respectively over the set of integers ji, ..., Ji—1

satisfying 21— 1 <j1<---<j<n—=2b+1 and they are 1 for =1, and
MK, (A"; a, b; ¢) is the exponential sum defined in (2.14) and (2.15).

THEOREM B. With ) and r as above, let x be a multiplicative character of F,. Then
the exponential sum over O(2n + 1, q)

Y x(detw)r((trw)) (0.6)

we0(2n+1,q)

is given by
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o [n/2) ;
(1 + x(~1)q" —1{ G qu(b+1)[2b]q
= =

b [(n—2b+2)/2]

3 1 (G VI DR VR e Z’ZHW R OIS
j=1 =1 VEI]:q
4" 21 th(bJrl)[ ] ﬁ(qzj 1

/=1
[(n—2b+2)/2]
x Y (MK apn a3 1,15 1) 4 X (—1DME, appn (W3 1,15 =1))
=1

=1
x 2 [T -,
v=1

where both of the unspecified sums are as in Theorem A, and one is referred to (2.14)
and (2.15) for MK,,(A"; a, b; ¢).

THEOREM C. For each B € F, and each positive integer r, the number of elements
Nso@ni1,g(B; 1) of all w € SO2n + 1, q) with (trw)" = B is given by

[n/2] b
NG’ = B) nfll_[(qZJ_l)_{_q 1Zq b+1)[2b] l—[ 2%j-1

[(—2b+2)/2]

X Z ql—l Z ﬁ(q_/,,—ZV . 1)
=1 v=1
x {‘1 D 8(n—2b+2-2Lg:y—1)— N =B)g - 1)”‘2”“‘2’},
Y=g

where N(y" = B) denotes the number of y in F, with y" = B, 8(m, q; y) is as in (4.27)
and (4.28), and the sum in the curly bracket is over all y € F, with y" = B.

The above Theorems A, B, and C are respectively stated below as Theorems 4.1,
4.2, and 5.2.

2. Preliminaries. In this section, we will fix some notations and gather some
facts that will be needed in the sequel. For some elementary facts of the following,
one is referred to [4] and [16].

Let [, denote the finite field with g elements, ¢ = p? (p an odd prime, d a posi-
tive integer).

In the following, tr 4 and det 4 denote respectively the trace of 4 and the
determinant of 4 for a square matrix A, and ‘B denotes the transpose of B for any
matrix B.

Let GL(n, q) denote the group of all n x n invertible matrices with entries in [F,.
The order of GL(n, q) equals
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n—1 ) . n )
g =[] —a) =4O ] - . 2.1)
j=0 J=1

O(2n + 1, g) denotes the orthogonal group defined by

O2n+1,q9)={weGL2n+1,q) | 'wiw=J}, (2.2)
where
0 I, O
J=11, 0 0].
0 0 1
Also,
SO(2n+1,q)={we0(2n+1,q)|detw=1} (2.3)

is a subgroup of index 2 in O(2n + 1, ¢). It is well-known that

10@n+ 1, )l =2¢" ¥ = . (2.4)
J=1
1S0Qn+1.9) = ¢" [ [ — 1. (2.5)
j=1
Put
P=P2n+1,q)
(40 O B ] L) — L1
e n7 7l= 9
=1lo 4t oflo 1, o B+,B+q,hl P BCY)
=
0 0 i|lo &
0=0Q2n+1,q
4 0 0][1, B —'h]
o A e GL(n, q),
={lo wut oflo 1, o S : 2.7)
0 o0 1 0 & B+'B+'hh=0

Here QQ2n+1,9)=P2n+1,9)NSO2n+1,q) is a subgroup of index 2 in
PQ2n+1, g).
It was noted in [10] that, starting from the Bruhat decomposition

n
0@n+1,q) =] [ PoyP,
b=0

one can get the following decompositions.
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SOQ2n+1,q) = ( ]_[ QUb(Bb\Q)>

0<h=n

b even (2.8)

L1 ( [1(000s(B:\0)).

0<b<n
b odd

oen+1,9) = (1] 0on(B:\0))

0<b<n
b even

L1 ( [[00en5)\0))

0<b=n

b odd (2.9)

L1 ( LI eon(8)\0))

0<b=n
b odd

LI LIw2wnB:\0)).

0<b<n
b even

where
By =By(q) ={we 0Qn+1,q9) | opwo,' € PQn+1,¢q)}, (2.10)
0 o 1, 0 0
0 1,., O 0 0
op=11, 0 0 0o 0/, (2.11)
0 0 0 1, O
0 0 0 0 1
1, 0 O
p=10 1, 0 [. (2.12)
0 0 -1

From (3.20) and the line just below (5.10) of [10] (cf. (2.18)), we have

1By@\QCn+ 1.9 = ¢(I[]] . 2.13)

q

Let A be a nontrivial additive character of [y, a, b, ¢ € I, and let r be a positive
integer. Then we define the exponential sum MK, (A"; a, b; ¢) as

MK, (' a i)=Y Aayi + by + -+ aym + by, +0)) (2.14)

ViseosYm€Fy

form=>1, and

MKy(A"; a, b; ¢) = A(c"). (2.15)

Note that, for r =1,
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MK,,(; a, b; ¢) = Mc)K(A; a, b)", (2.16)
where K(X; a, b) is the usual Kloosterman sum

K(:a,b)= " May+by™). (2.17)

%
rel;

For integers n, b with 0 < b < n, the g-binomial coefficients are defined by

b—1
)= [l = v =, 2.18)

Then the g-binomial theorem says

> [5), 10 = g, (2.19)

b=0

where
(X; q)n = (1 — X)(l — xq) - (1 _ anfl)’

for x an indeterminate and n a nonnegative integer.
Finally, [y] denotes the greatest integer < y, for a real number y.

3. A proposition. In this section, we will prove a proposition which is a gen-
eralization of Proposition 4.2 in [10] and is of use in the next section.

PROPOSITION 3.1. Let A be a nontrivial additive character of F,, c € F,, r, b posi-
tive integers, and let Q, be the set of all b x b nonsingular symmetric matrices over [,.
Then

ay(riric):= Y Y A(hB'h+c)) (3.1)

BeQy, he[F;X"

= qbilsb Z )\(y’) + qilab Z )\'(Cﬂ) Z )\,('}/r B IB)/) (32)

yel, ﬂe[F: yel,

= ("5 — g 7'an) 3 M) + aph(e), (33)

yel,

where sy, is the number of all b x b nonsingular symmetric matrices over [, and

ap = ap(r; 1;0) = Z Z AMhB'h)

BeQy pef) <

4 (3.4)
g4 Hfﬁ(q%l — 1) for b even,

0 for b odd,

(cf. [10, (4.10)]).
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REMARK. The independence of a, from A is clear from its definition or the
expression of it in (3.4) above.

Proof. Put, for each y € [,

N, = |[(B,h)e Q) x [F;Xb|/1B'h+c:y}|.

Then ay(A; r; ¢) = ZVE[F{/ N, A(Y"), with

Ny =a" ssd + 3 M=yB Y MBh+ ).

BeFy B,h
Hence
ayhirie)=q""sy Y AP +q7 Y MeB) Y MBB W) Y Ay — By)
yel, ﬁe[F; B.h yel,
=¢" "> M) +q an Y MY MY — By,
vel, ISE[F; velk,

since, as was noted in the above Remark, the sum over B,/ is independent of
Be [qu. This shows (3.2). Now, (3.3) follows from (3.2) by interchanging the order of
summation in the second term of (3.2). OJ

4. Main theorems. Let A be a nontrivial additive character of F,, and let r be
any positive integer. Then we will consider first the sum in (1.1)

Yo M@rwy),

weS0(2n+1,q)

and find an explicit expression for this by using the decomposition in (2.8).
The sum in (1.1) can be written, using (2.8), as

D IBAQI Y A(trwop)) + D IBAOI D A(tr pwoy)), 4.1)

0<b<n we 0<b=n we
b even Q b odd Q

where By = By(q), Q = Q(2n+ 1, q), op, p are respectively as in (2.10), (2.7), (2.11),
(2.12).
Here one has to observe that, for each ¢ € Q,

D M(trwong)) =y A(tr qwoy)’)
weQ weQ

=Y M(trwoy))
weQ

and p~'gp € Q. Write w € Q (cf. (2.7)) as
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A 0 0 I, B —'h

w=1|0 ‘471 0 0o 1, 0 |,
0 0 1 0 A 1
with

A A E E B —'Byy = 'hyh
A:|: 11 12:|’ ’A1:|: 11 12:|’ B:|: 1 21 1 2]’

Axp Ax Ey Ex By By
h = [h, hy],
By1+'Bii +'lhy =0, By +'By+'hhh =0, 4.2)

where Aiy, A1a, A2y, Ay are respectively of sizes b x b, b x (n—b), (n—b) x b,
(n — b) x (n — b), similarly for ‘4=!, B, and h; is of size 1 x b.

Note here that, if we denote the upper right block of B by Bj,, then
By +'By; + "hihy = 0, and the conditions in (4.2) together with this are equivalent
to B+'B+'hh=0.Forany b (0 <b < n),

> M(trwop)) (4.3)

weQ

= ZK((trA11Bl1 +trAppBy +trdyp +trExn+1)) (4.4)
and

Y Mt pwoy) (.5)

weQ

= Z)\((trAllBll +trA1aBy +trdyp +tr Exp — 1)), (4.6)

where both of the sums in (4.4) and (4.6) are respectively over A4, Byy, By, By, h
subject to the conditions in (4.2).

Consider the sum in (4.4) first for the case 1 <b <n—1 so that A, does
appear. We separate the sum into two subsums, with 4;, # 0 and with 4, = 0; the
latter is further divided into two subsums, with A4;; symmetric or not. Namely, we
write the sum in (4.4) as

S Z cex Z (4.7)

A12#0 A12=0 A12=0
A]] not symmetric Ay symmetric

Let A1 = (o), Bi1 = (Byj), h1 = [h11 ... hip]. Then the first condition in (4.2) is
equivalent to

1
Bi = —Ehi. for 1 <i<b, (4.8)
Bij + Bii = —hiihy; forl <i<j<b.

In particular, for each given 4,

I{ Bii | Bii +'Biy + "'hihy :0}|:q(’2’). (4.9)
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Similarly, for each given /;,
|{ Bx2 | B+ 'Bay + "oy =0} = g, (4.10)

Also, as was noted in [10], one shows, using the relations in (4.8), that

1
tr411 By = —§h1A11Ih1 + Z (i — ayp)
1<ijzh (4.11)

1
x (B + Ehlihlj)

Using (4.10), the first sum in (4.7) is

g N N M AN B+t ApBy +tr A+t En 1)), (412)
A v\;h Allz#() 321
1M

Fix 4 with 415 # 0, Byy, hy. Write 41> = (u47), B2 = (vjj). Then pyy # 0 for some
k(1 <k<b1<l<n-b»b). Forae[F; and b € F,, we have

> Mlay b)) =Y M),

ye [F,, Ye I}:q

and hence the inner sum of (4.12) equals

D0 Mrvi + - )) =" TG, (4.13)
all i Vik yel,
with (j,i)#(Lk)
Combining (4.12) and (4.13), and using (4.9), the first sum in (4.7) equals
n*+n— n(n—>b r
4" (g — gugund™" ) D M. (4.14)

yel,
The subsum of the sum in (4.4) with 4, =0 is

A(tr Ay By +tr Ay +tr A7) + 1))
Az1,B21,B0,hy An1,A2,Bii,l

neb ) (4.15)
= g()+C+D0=b) o D> MtrAnBi +trdy +tr Ay +1)).
A, A», B,
The subsum of the sum in (4.15) with A4;; not symmetric is
> D M(trAnBiy +tr Ay +tr ) + 1)), (4.16)
Ay not symmetric By
Apy.hy

Since A1 = (aj) is not symmetric, o — oy 7 0, for some s, f with 1 <s < ¢ < b. By
the same argument as in the case of (4.12) and in view of (4.9) and (4.11), we see that
the inner sum in (4.16) is

g3 ) (4.17)

vel,
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Combining (4.15)—(4.17), we see that the middle sum in (4.7) is given by

I’l2 n— n— I
gD g (g = s5) D MY, (4.18)
vel,

where s, denotes the number of b x b nonsingular symmetric matrices over [, for

each positive integer b.
The subsum of the sum in (4.15) with 4;; symmetric, using (4.11), is

1
D A((—§/11A11’l11 +tr Ay +tr A3 4+ 1))

h B y An
/ 11 symmetric (4. 1 9)
=qQ > A(nAn'h +tr Ay + tr Az} + 1)),
Ap.hy

A symmetric

From (4.15) and (4.19), we see that the last sum in (4.7) is

qn(n+l)/2+h(n—b—1) x Z Z MU Aii'hy + tr As —|—trA2_21 +1)). (4.20)

Axn I
Ay symmetric

For each fixed Ay, from (3.1) and (3.2) the inner sum of (4.20) is given by

> MU An'hy 4 tr Ay + tr Ay + 1))
hy
Ay symmetric

= ap(A; i tr Ay +tr A3y + 1) (4.21)
=" Y M)+ ay Y AP Aoy + tr Az + 1) YA — By),
VEIFt/ ,BEU:; yel]:q

where a, is as in (3.4).
Summing (4.21) over A4,,, we see that the double sum in (4.20) is

0" gupsy Y M) +q @ Y MBKeLw-b. i BB DAY —By).  (422)

yeF, BeFy vel,
where, for a,b € [,

Korghiaby= > Matrw+btrw™). (4.23)
weGL(t,q)

From the explicit expression of (4.23) in [8, (4.19)], (4.22) can be written as

4" g bsp Z MY

yelF,
[(n—b+2)/2] =1
g De=bD 21 Z qzzn(q,.,—zu —1 (4.24)
=1 v=1
x 3 (D0 KGs BB = 1B,
veFy  BeF;
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where the unspecified sum runs over all integers

Jis--ojiorsatisfying 2l -1 <ji <jio<---<ji<n—-b+1 (4.25)

and it is 1 for / = 1 by our convention.
Recall from [13, (5.3)] that, for y € F, and m nonnegative integer, we have

> M=yPKM; B, B = q8(m. q: y) — (g — )", (4.26)

pely

where, for m > 1,

8om g ) = (e o) € B Lo +ai o dan o, =yl @2D)
and
1 ify=0
800, q; v) = ’ 4.28
©.4:%) {0 otherwise. ( )

It is immediately seen from (4.26) that

> (D0 K BB = VB)AG)

vek,  peky

= MK, ("1, 1; 1) = (g = 1" Y M),

yelF,

(4.29)

where MK,,,(\"; a, b; ¢) is as in (2.14) and (2.15).
Substituting the expression in (4.29) into (4.24), the double sum in (4.20) equals

[qb_lgn—bsb _ grh2ebe 2y,

[(n—b+2)/2]

-1
o S ) e Pt
v=1

=1 vely
[(n—b+2)/2] (4'30)
+ gt Ry N MK, (5 1L 15 1)

=1

-1
xy [1@ -,
v=1

where both of the unspecified sums run over the same set of integers as in (4.25) and
they are 1 for / = 1.

For 1 <b<n-—1, (4.14), (4.18), and (4.20) with the expression of the double
sum there in (4.30) add up to give
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> M(trwoy))

weQ
=q""! [ [T -1 -qa,
=1

[(n—b+2/2]

I—1
« Z ql—l(q _ 1))1—h+2—2121_[(q1\,—2v _ 1)} Z %) 4.31)
=1 v=1 vel,
+ q’7271q7(b§l)ah
[(n—b+2)/2]

=1
X qMKip 2G5 LD Y @ -,
=1 v=1

where both of the unspecified sums are as in (4.30).

It is an easy matter to check that, even for b = 0 and b = n, the sum in (4.3) is
given by the same expression as in (4.31) with the convention gy = 1. The details are
left to the reader. Also, we observe that ¢y = 1 is natural in view of the formula in
(3.4).

Glancing through the above argument for the sum in (4.3), we see that the sum
in (4.5) is given by the same expression as in (4.31), except that
MK, _pio (A" 1, 1; 1) is now replaced by MK, _p,>_2/(A"; 1, 1; —1). Namely, for any
b with 0 < b < n, the sum in (4.5) equals

> Mt pwoy))

weQ
2 L ; _(b+1
=q ‘H_[(q-’—l)—q (g,
=1

[(n—b+2)/2]

-1
% Z (g - l)n—b+2—ZlZH(qj\,72v _ 1)} Z A(Y) (4.32)
v=1

=1 vek,
+¢" ' (ay
[(n—b+2)/2]

=
XY MKy (011 =D T ]@ =D,
=1 v=1

where both of the unspecified sums are as in (4.30).
Now the next theorem follows from (2.13), (3.4), (4.1), (4.31), (4.32).

THEOREM 4.1. For any nontrivial additive character X of ¥, and any positive inte-
ger r, the exponential sum over SO2n + 1, q)

Z A(trw)")

weS0(2n+1,q)

is given by
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1{ l—[(qzj Z:qb(b+1)[2b] H( 25j-1
[(;172b+2)/2]

% Z ¢ g—1) 2b4+2— 2/21—[((]][ 2”—1)}2A(y)

=1 yel,

(4.33)
[n/2]
7 21 b(b+1) =1 _
20 ), H< D
[(1—2b+2)/2] =1
x> MK, o 051D T -,
=1 v=I
where both of the unspecified sums run respectively over the set of integers ji, ..., ji_|

satisfying 21 — 1 <jj_y <--- <j1 <n—2b+ 1 and they are 1 for [ = 1.

With A, r as before, let x be a multiplicative character of F,. Then we next want
to consider the sum in (1.2)

> x(detwr((trw))

we0(2n+1,q)

and to find an explicit expression for it.
From the decompositions in (2.8) and (2.9), we see that the above sum is

2 weso@ntt,qg M(trw)") plus

x(=D{ Y 1BAQIY. a(trwon))

0<b<n wEQ
b odd ‘ (4.34)
+ Y 1BAQI Y A pwan))).
0<h=n WEQ

b even

The following expression of (4.34) is obtained from (2.13), (3.4), (4.31), (4.32).

R n ) [n/2] b
e [Tl 0= S (3] T -
j=1 b=0 Jj=1

[(n—2b+2)/2]

y Z 7 (q— 1)n72b+272121:[(qfu*2” - 1)] Z Ay

=1 v=1 yel,
4.35
. (4.35)

b
o= l)q lqu(bﬂ)[zb] l—[ 25j-1

[(1—25+2)/2]

-1
X Z ¢ MK, _sps2-(M"5 1,15 =1) Zl_[(qj"_zv =1,
v=1

=1

where both of the unspecified sums are as in (4.33).
Adding up (4.33) and (4.35), we get the following result.
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THEOREM 4.2. Let A, x be respectively a nontrivial additive and a multiplicative
character of [, and let r be a positive integer. Then the exponential sum of

o2n+1,¢q)
> x(detw)r((trw))
weO(2n+1,q)
is given by
- n y [n/2] s 7 b by
1+ x(—=1)g" ™ 1) — + |
(1+ X(=1)g E& =2 L&Mm )

[(n—=2b+2)/2]

-1
y Z g (g — 1y Z H(qju—b — 1)} Z A"
v=1

/=1 yel,

[n/2] b
-1 o+ 21 _ 4.36
+q bZ:(; q [2 b]q}]}(t] ) (4.36)

[(1—2b+2)/2]
XY (MK L1 D) + (= DMKy ap02(0: 1, 1; = 1))
=

=1
D (Chmen I
v=I

where both of the unspecified sums run over the same set of integers ji, ..., Ji_1 satis-
fying2l—1<j1=<...<jy <n—=2b+ 1 and they are I for [ = 1.

REMARKS (1) It is well-known [18, 5.30] that

e—1
YAy =) G ),
j=1

yel,

where ¥ is a multiplicative character of F, of order e = (r, ¢ — 1) and G(¥/, 1) is the
usual Gauss sum given by

G, 0 =Y W)

x
ye[Fq

(2) From the expression of Zwesp(m o M(tr w)') in [13, (4.22)], we see that our
expression of o1, A(trw)") in (4.33) is the same as that, except that each
MK, _2p12-2/(A"; 1, 1) there is now replaced by MK, 212227 1, 1; 1).

In the special case of r = 1, as was noted in [10, (5.12), (6.2)] or can be seen from
the expressions in (4.33) and (4.36) (cf. [8, Theorem 5.4]), the sums in (1.1) and (1.2)
are just constant multiples of the similar sum over the symplectic group Sp(2n, q).
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Namely, we have the following identities:

Mrw) =a(1) Y A(trw),

weSO0(2n+1,q) weSp(2n,q)

> x(detwrtrw) = () + x(=DA(=1)) Y Atrw).

weO(2n+1,q) weSp(2n,q)

5. Applications to certain countings. Let G(g) be one of finite classical groups
over [,. For each g € [, and each positive integer r, we put

Nag(Bir) = I{we Glg) | (trw)" = B}I. (5.1)

To derive formulas for (5.1) with G(¢) = SO2n+1,¢) and OQ2n+ 1, g), we will
apply the results in Section 4. First, we collect some results from [14] with one
modification.

For a nontrivial additive character A of F,, a nonnegative integer m, and with
B, r as above, we have

Neg(B:r) =g 1G@I+¢7" D M=pa) Y Maltrw)), (5.2)

O‘EIF:; weG(q)
D M=B) > May) = (NG = p) — 1}, (5.3)
aeky yel,

Sapol Y rewi v+t £ 0] G4

aclky ViseeosYm€lF
=q ) dmgyFl)—(¢—1D", (5.5)

y'=p
where

N =B =l{yeb, |1y =8}l (5.6)

8(m, q; r) is as in (4.27) and (4.28), and the sum in (5.5) is over all y € F, with " = 8.
Note that, for r = 1, (5.5) follows from (4.26) and vice versa.

For each « € [F;, Mu) = AMau) is a nontrivial additive character of F,. So the
explicit expression of 3, 5,41, Me(trw)) is given by (4.36) with 1 replaced by A
and with x trivial, ie., with Zye[F,, A(y") replaced by Zye[ﬂ, May") and
MK,,(\"; 1, 1; 1) + MK,,(A\"; 1, 1; —1) for various values of m replaced by the sum of
the sums in the curly bracket of (5.4) for the same corresponding values of m; that of
D weS0@ntl, o Mot w)") is given by (4.33) with the same replacement for Zyeﬂ A
and with MK,,(\"; 1, 1; 1) replaced by the sum corresponding to ‘+ 1’ in the curly
bracket of (5.4).

The following theorems now follow immediately from these observations
together with (2.4), (2.5), (4.33), (4.36), (5.2)—(5.5).

THEOREM 5.1. For each B € [, and each positive integer r, No@au+1,)(B; r) defined
by (5.1), with G(q) = OQ2n + 1, q), is given by
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NG =B ] =D
j=1

N E! na b
g qu(b+1)[2b] H(qZJ—l —1)
b=0 9j=1
[(n—2b+2)/2]

x Z qlfl Z ﬁ(qj\ﬁZv . 1) (57)
v=I

=1

x {q(ZﬂS(n—Zb—i—Z—Zl,q;y-i— 1)
yr=

+ 3 8 —2b+2 -2 qy - 1)) — NG = B)(q — 1)n72b+272/},

y'=p

where N(y" = B), 8(m, q; y) are respectively as in (5.6), (4.27)~(4.28), and the unspeci-
fied sum is over the set of integers ji,...,ji_1 satisfying 2l—1<j_ | <..-<
J1<n=2b+1anditis 1 forl=1.

THEOREM 5.2. For each B € F, and each positive integer r, Nsoon+1,4)(B; 1) defined
by (5.1), with G(q) = SO(2n + 1, q), is given by

NG =B T -1
J=1

[n/2] b
2 n .
+ qn -1 qb(bJrl)[ ] (qzl*I _ 1)
> 2b I [
b=0 =1 (5.8)
[(n—2b+2)/2]

-1
x Z ql—l Z l_[(qjv—Zv _ 1)
v=1

=1

X [q Z Sm—2b+2-2l,q;y—1)— NO" = B)gq — 1)"*2h+2*21}’
y'=B

where N(y" = B), §(m, q; v), and the unspecified sum is as in Theorem 5.1.

REMARKS. (1) For a finite classical group G(q) over [,, we write, for brevity,

Ne@)(B) : = Ngg(B: 1)
= |{w eG(g) | trw= ,3}|.

Formulas for No@u+1,4(B8) and Nso@nt1,4(B) can now be obtained respectively from
(5.7) and (5.8) by setting r = 1, which amounts to replacing N(y" = ) by 1 and
> y—pd8(m, g; y £ 1) for various m by 8(m, g; B £ 1).

The reversed ways are also possible by noting that

Neg(B: 1) =Y N (-
V=B

(2) N(y" = B) appearing in the above theorems can be expressed [18, (5.70)] as
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e—1
NGO =B =) V(B

J=0

where ¢ is any multiplicative character of [, of order e = (r, ¢ — 1).

REFERENCES

1. B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number
Theory 11 (1979), 349-398.
2. B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and
Brewer, Illinois J. Math. 23 (1979), 374-437.
3. B. C. Berndt and R. J. Evans, The determination of Gauss sums, Bull. Amer. Math.
Soc. (N.S.) 5 (1981), 107-129.
4. B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, Canad. Math.
Soc. Series of Monographs and Advanced Texts, Vol. 21 (Wiley-Interscience, 1998).
5. J. H. Hodges, Exponential sums for symmetric matrices in a finite field, Math. Nachr.
14 (1955), 331-339.
6. J. H. Hodges, Weighted partitions for symmetric matrices in a finite field, Math. Z.
66 (1956), 13-24.
7. D. S. Kim, Gauss sums for general and special linear groups over a finite field, 4rch.
Math. (Basel) 69 (1997), 297-304.
8. D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126
(1998), 55-71.
9. D. S. Kim, Gauss sums for O~ (2n, q), Acta Arith. 80 (1997), 343-365.
10. D. S. Kim, Gauss sums for O(2n + 1, q), Finite Fields Appl. 4 (1998), 62-86.
11. D. S. Kim, Gauss sums for U(2n, ¢*), Glasgow Math. J. 40 (1998), 79-95.
12. D. S. Kim, Gauss sums for U(2n + 1, ¢%), J. Korean Math. Soc. 34 (1997), 871-894.
13. D. S. Kim, Exponential sums for symplectic groups and their applications, Acta
Arith. 88 (1999), 151-171.
14. D. S. Kim, Exponential sums for O"(2n, ¢) and their applications, Acta Math. Hun-
garica, to appear.
15. D. S. Kim, Exponential sums for O~ (2n, ¢) and their applications, Acta Arith. 97
(2001), 67-86.
16. D. S. Kim and I.-S. Lee, Gauss sums for O (2n, q), Acta Arith. 78 (1996), 75-89.
17. D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of
characteristic two, Acta Arith. 82 (1997), 331-357.
18. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its
Applications, Vol. 20 (Cambridge University Press, 1987).

https://doi.org/10.1017/5S0017089501020079 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501020079

