21

Basics on the Continuum Limit

In the continuum limit, one analyzes the EL equations of the causal action principle
for systems of Dirac seas in the presence of classical bosonic fields. As worked
out in detail in [45, Chapters 3-5], this limiting case yields the interactions of
the standard model and gravity on the level of second-quantized fermionic fields
interacting with classical bosonic fields. In this chapter, we explain schematically
how the analysis of the continuum limit works and give an overview of the obtained
results.

21.1 Causal Fermion Systems in the Presence of External Potentials

In Chapters 15-19, it was explained how to construct and analyze the unregular-
ized kernel of the fermionic projector P(z,%) in Minkowski space in the presence
of an external potential B. The general question is whether the causal fermion
system corresponding to this kernel satisfies the EL equations corresponding to
the causal action principle. Thus, we would like to evaluate the EL equations as
stated abstractly in Theorem 7.1.1 for P(x,y). The basic procedure is to form
the closed chain (see (5.47)) and to compute its eigenvalues A{,...\3Y € C.
This, in turn, makes it possible to compute the causal action and the constraints
(see (5.35)—(5.39)). Considering the first variations of P(z,y), one then obtains
the EL equations.

The main obstacle before one can carry out this program is that, in order to
obtain mathematically well-defined quantities, one needs to introduce an ultravi-
olet regularization. As explained in detail in Chapter 5, this regularization is not
merely a technical procedure, but it corresponds to implementing a specific micro-
scopic structure of spacetime. In the vacuum, the regularization was introduced
with the help of a regularization operator R, (see (5.26)). Different choices of
regularization operators correspond to different microscopic structures of space-
time. Since the structure of our physical spacetime on the Planck scale is largely
unknown, the strategy is to allow for a general class of regularization operators,
making it possible to analyze later on how the results depend on the regulariza-
tion (for more details on this so-called method of variable regularization, see [45,
§1.2.1]).

In more detail, we proceed as follows. In the vacuum, we can follow the proce-
dure explained in Chapter 5, choosing H as the subspace of all negative-frequency
solutions of the Dirac equation. In preparation for extending this construction
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21.2 The Formalism of the Continuum Limit 367

to the interacting situation, it is useful to note that the causal action princi-
ple can be formulated in terms of the kernel of the fermionic projector given
abstractly by (5.45). Therefore, our task is to compute this kernel. It can be
obtained alternatively by starting from the unregularized kernel of the fermionic
projector constructed in Section 15.4 and introducing a regularization. In the sim-
plest case, working with a regularization that preserves the Dirac equation, that
is,

Re @ Hp — H 0O, SM) (21.1)

the regularization can be introduced similar to (15.61) by
P =Ry Rk, + CF (M, SM) — FHypy . (21.2)

For more general regularization operators that do not preserve the Dirac equation,
one can introduce the regularization by modifying the right-hand side of (5.64) to

P(a,y) = —(R0) (2) (R ) (9)" (21.3)

where ¥ : H,,, — L2 _(AM,SAM) is the unregularized wave evaluation operator,
and regularization operator R. : H,, — C°(M,SAM) now maps more generally
to continuous wave functions (not necessarily Dirac solutions).

The latter construction has the advantage that it also applies in the presence of
an external potential. In a perturbative treatment, it gives rise to the causal pertur-
bation expansion developed in Section 18.2. In this way, we obtain the regularized
kernel P¢(z,y) in the presence of an external potential. Following the procedure
explained in Chapter 5, we obtain a corresponding causal fermion system. After
suitable identifications (as worked out in [45, Section 1.2]), this regularized kernel
coincides with the kernel of the fermionic projector as defined abstractly in (5.45).

The subtle question is whether a chosen regularization of the vacuum also deter-
mines the regularization of the kernel Pg(x,y) in the presence of an external
potential. The general answer to this question is no, simply because the inter-
action introduces additional freedoms for regularizing. Moreover, it is not clear
a priori whether the regularized objects should still satisfy the Dirac equation.
But at least, in [45, Appendix F] and [41, Appendix D], a canonical procedure is
given for regularizing the light-cone expansion (see [64] for related constructions
in curved spacetime). It consists in taking the formulas of the (unregularized)
light-cone expansion (like, e.g., (19.28)—(19.33) in Example 19.2.2) and replacing
the singular factors T (like, e.g., (19.34)) by corresponding functions where the
singularities on the light cone have been regularized on the scale €. The precise
procedure will be explained in the next section.

21.2 The Formalism of the Continuum Limit

We now give a brief summary of the formalism of the continuum limit. More details
can be found in [45, Section 2.4]. The reader interested in the derivation of this
formalism is referred to [41, Chapter 4].
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368 21 Basics on the Continuum Limit

Having introduced the regularized kernel of the fermionic projector denoted
by P¢(x,y), we can form the closed chain

ALy =P (a,y) PE(y, @), (21.4)

compute its eigenvalues and proceed by analyzing the EL equations. In the
continuum limit, one focuses on the limiting case € N\, 0 when the ultraviolet reg-
ularization is removed. This limiting case is comparatively easy to analyze. This
can be understood from the fact that, in the limit € ™, 0, the closed chain AZ,
becomes singular on the light cone. Therefore, asymptotically for small e, it suffices
to take into account the contributions to A7, on the light cone. These contribu-
tions, on the other hand, are captured precisely by the light-cone expansion of the
unregularized kernel P(z,y) (see Section 19.2 or the explicit formulas in Exam-
ple 19.2.2). This is the basic reason why, in the continuum limit, the EL equations
can be rewritten as field equations involving fermionic wave functions as well as
derivatives of the bosonic potentials.

More specifically, the asymptotics € \, 0 is captured by the formalism of the
continuum limit, which we now outline (for more details, see [45, Section 2.4] or the
derivation of the formalism in [41, Chapter 4]). In the first step, one regularizes the
light-cone expansion symbolically by leaving all smooth contributions unchanged,
whereas to the singular factors 7(™ we employ the replacement rule

m? T — mp T (21.5)
Thus, for the formulas of Example 19.2.2, the factors T get an additional
index [0]. If the light-cone expansion involves powers of the rest mass, these powers
are taken into account in the lower index. The resulting factors T;") are smooth
functions, making all the subsequent computations well defined. The detailed form
of these functions does not need to be specified because all we need are the follow-
ing computation rules. In computations, one may treat the factors 7™ as complex
functions. However, one must be careful when tensor indices of factors ¢ are con-
tracted with each other. Naively, this gives a factor £2, which vanishes on the light
cone and thus changes the singular behavior on the light cone. In order to describe
this effect correctly, we first write every summand of the light-cone expansion such
that it involves at most one factor ¢ (this can always be arranged using the anti-
commutation relations of the Dirac matrices). We now associate every factor ¢
to the corresponding factor T[S]l). In short calculations, this can be indicated by
putting brackets around the two factors, whereas in the general situation, we add
corresponding indices to the factor ¢, giving rise to the replacement rule

m? g7 — mr g T (21.6)

For example, we write the regularized fermionic projector of the vacuum as

e i > m2" (=14n) (—1+n) > m (n)
P :520 n! g[Q"] Tian) JrZO nl Tiangq) - (21.7)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.209, on 22 Nov 2025 at 08:13:17, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.027


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.027
https://www.cambridge.org/core

21.2 The Formalism of the Continuum Limit 369

The kernel P(y, ) is obtamed by taking the conjugate (see (5.53)). The conjugates
of the factors T[( and f are the complex conjugates,

T = (1) and €W = ()", (21.8)

[p] [p] (] (]

One must carefully distinguish between the factors with and without complex
conjugation. In particular, the factors XE;]) need not be symmetric, that is, in
general,

() #40) (21.9)
When forming composite expressions, the tensor indices of the factors £ are con-
tracted to other tensor indices. The factors £ that are contracted to other factors &
are called inner factors. The contractions of the inner factors are handled with
the so-called contraction rules,

n y n/ 1 n
(5[(17]))] (5( ' ))j - 3 (zp] + 2 , ) , (21.10)
n n’ 1 n n’
(€ (€0 = 5 (25 +=0n)) (21.11)
L) ) _ <n+1> (n+2)
2 Ty = 4( nTy + T, ) (21.12)

which are to be complemented by the complex conjugates of these equations.

Here, the factors z[(;]) can be regarded simply as a book-keeping device to ensure

the correct application of the rule (21.12). The factors T{(n}) have the same scaling

behavior as the T[gf), but their detailed form is somewhat different; we simply
treat them as a new class of symbols. In cases where the lower index does not
need to be specified, we write TO("). After applying the contraction rules, all inner
factors £ have disappeared. The remaining so-called outer factors £ need no special
attention and are treated like smooth functions.

Next, to any factor T(Sn), we associate the degree deg Tén) by

degT(™ =1—-n. (21.13)

The degree is additive in products, whereas the degree of a quotient is defined
as the difference of the degrees of the numerator and denominator. The degree of
an expression can be thought of as describing the order of its singularity on the
light cone, in the sense that a larger degree corresponds to a stronger singularity
(e.g., the contraction rule (21.12) increments n and thus decrements the degree,
in agreement with the naive observation that the function z = ¢2 vanishes on the
light cone). Using the formal Taylor series, we can expand in the degree. In all our
applications, this will give rise to terms of the form

i) [ plae) plbn) o plbs)
n(z,y) e with n(x,y) smooth . (21.14)
i) oplen) pldn) [ plds)

The quotient of the two monomials in this equation is referred to as a simple
fraction.
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370 21 Basics on the Continuum Limit

A simple fraction can be given a quantitative meaning by considering one-
dimensional integrals along curves that cross the light cone transversely away from
the origin & = 0. This procedure is called weak evaluation on the light cone. For
our purpose, it suffices to integrate over the time coordinate ¢ = £° for fixed 5 #0.
Moreover, using the symmetry under reflections £& — —¢, it suffices to consider
the upper light cone ¢ ~ |ﬂ The resulting integrals diverge if the regularization is
removed. The leading contribution for small € can be written as

—

/|g|+5 . T(Sal)“.T(gaa) T(Sbl)"'To(bB) Cn Creg logr(&‘ |)
\

dee dt n(t,€) e ~-Tc§c”) W ~ n(l¢l,€) (1|a)L L1
(21.15)
where L is the degree of the simple fraction and ceq, the so-called regulariza-
tion parameter, is a real-valued function of the spatial direction 5 / |§7|, which also
depends on the simple fraction and on the regularization details (the error of the
approximation will be specified later). The integer r describes a possible logarith-
mic divergence. Apart from this logarithmic divergence, the scalings in (21.15) in
both £ and e are described by the degree.

When analyzing a sum of expressions of the form (21.14), one must know if the
corresponding regularization parameters are related to each other. In this respect,
the integration-by-parts rules are important, which are described symbolically as
follows. On the factors T an), we introduce a derivation V by

i

v = n=b (21.16)

Extending this derivation with the product and quotient rules to simple fractions,
the integration-by-parts rules state that

7o) . plae) pbn) - plbs)
ien) L oplen) pldn) ()

=0. (21.17)

Carrying out the derivative with the product rule, one gets relations between
simple fractions. Simple fractions that are not related to each other by the
integration-by-parts rules are called basic fractions. As shown in [41, Appendix E],
there are no further relations between the basic fractions. Thus, the corresponding
basic regularization parameters are independent.

The abovementioned symbolic computation rules give a convenient procedure
to evaluate composite expressions in the fermionic projector, referred to as the
analysis in the continuum limit: After applying the contraction rules and expand-
ing in the degree, the EL equations can be rewritten as equations involving a finite
number of terms of the form (21.14). By applying the integration-by-parts rules,
we can arrange that all simple fractions are basic fractions. We evaluate weakly on
the light cone (21.15) and collect the terms according to their scaling in £. Taking
for every given scaling in £ only the leading pole in ¢, we obtain equations that
involve linear combinations of smooth functions and basic regularization param-
eters. We consider the basic regularization parameters as empirical parameters
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21.83 Overview of Results of the Continuum Limit Analysis 371

describing the unknown microscopic structure of spacetime. We thus end up with
equations involving smooth functions and a finite number of free parameters.

We finally specify the error of the abovementioned expansions. By not regu-
larizing the bosonic potentials and fermionic wave functions, we clearly disregard
the

higher orders in €/¢macro - (21.18)

Furthermore, in (21.15), we must stay away from the origin, meaning that we
neglect the

higher orders in £/|¢] . (21.19)

The higher order corrections in €/ |E| depend on the fine structure of the regulariza-
tion and thus seem unknown for principal reasons. Neglecting the terms in (21.18)
and (21.19) also justifies the formal Taylor expansion in the degree. Clearly, leav-
ing out the terms (21.19) is justified only if \f_] > ¢. Therefore, whenever using
the above formalism, we must always ensure that |¢] is much larger than e.

We finally remark that, when working out the Einstein equations, one must
go beyond error terms of the form (21.18) and (21.19). The reason is that the
gravitational scales like k ~ 62 ~ £2. In order not to lose the relevant terms in the
error terms, one must take certain higher-order contributions into account. This
is done by using the so-called (-formalism. Here, we do not enter the details but
merely refer the interested reader to [45, §4.2.7].

21.3 Overview of Results of the Continuum Limit Analysis

The formalism of the continuum limit makes it possible to evaluate the EL equa-
tions of the causal action for the regularized kernel P¢(z,y) in the presence of an
external potential B. In order to avoid confusion, we point out that, a priori, the
external potential can be chosen arbitrarily; in particular, it does need to satisfy
any field equations. We find that the EL equations of the causal action are satisfied
in the continuum limit if and only if the potential B has a specific structure and
satisfies dynamical equations. Restricting attention to potentials of this form and
complementing the Dirac equation (1.39) by the dynamical equations for B, the
potentials are no longer given as external potentials, but instead one gets a coupled
system of equations describing a mutual interaction of the Dirac wave functions
with classical bosonic fields. The dynamical equations for B are referred to as the
classical field equations. In this way, the classical field equations are derived from
the causal action principle.

We now outline the main results of the continuum limit analysis as obtained
in [45, Chapters 3-5]. The main input is to specify the regularized kernel P¢(z,y))
of the vacuum. This involves:

e The fermion configuration in the vacuum, including the masses of the lep-
tons and quarks. Moreover, it is built in that the neutrinos break the chiral
symmetry.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.209, on 22 Nov 2025 at 08:13:17, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.027


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.027
https://www.cambridge.org/core

372 21 Basics on the Continuum Limit

e The vacuum kernel should satisfy the EL equations. This poses a few
constraints on the regularization operator.

The output of the continuum limit is the following results:

e The structure of the interaction on the level of classical gauge theory.
e The gauge groups and their coupling to the fermions.
e The equations of linearized gravity.

In [45], the continuum limit is worked out in three steps for systems of increas-
ing complexity. In Chapter 3, a system formed of a sum of three Dirac seas is
considered. This configuration, referred to as a sector, can be thought of as a sim-
plified model describing the three generations of charged leptons (e, i, 7). In the
continuum limit, we obtain the following results for the interaction as described
by the causal action principle:

e The fermions interact via an azial gauge field.

e This axial gauge field is massive, with the mass determined by the masses of
the fermions and the regularization.

e We find that the field equations for the axial gauge field arise in the con-
tinuum limit only if the number of generations equals three. For one or two
generations, the resulting equations are overdetermined, whereas for more
than three generations, the equations are under-determined (which means in
particular that there is no well-posed Cauchy problem).

e We obtain nonlocal corrections to the classical field equations described by
integral kernels that decay on the Compton scale. It seems that these nonlocal
corrections capture certain features of the underlying quantum field theory.
But the detailed connection has not been worked out.

e There is no gravitational field and no Higgs field.

In [45, Chapter 4], a system formed as a direct sum of two sectors is considered.
This system is referred to as a block. The first sector looks as in Chapter 3. In the
second sector, however, the chiral symmetry is broken. This system can be regarded
as a model for the leptons, including the three generations of neutrinos. In the
continuum limit, we obtain the following results for the interaction as described
by the causal action principle:

e The fermions interact via an SU(2) gauge field, which couples only to one
chirality (say, the left-handed fermions).

e The corresponding gauge field is again massive.

e Moreover, the fermions interact linearly via the linearized Einstein equations,
where the coupling constant is related to the regularization length.

Finally, in [45, Chapter 5], a realistic system involving leptons and quarks
is considered. To this end, one considers a direct sum of eight sectors, one of
which with broken chiral symmetry (the neutrino sector). These eight sectors form
pairs, referred to as blocks. The block containing the neutrino sector describes the
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21.83 Overview of Results of the Continuum Limit Analysis 373

leptons, whereas the other three blocks describe the quarks. Moreover, we obtain
the following results:

e The fermions interact via the gauge group U(1) x SU(2) x SU(3). The cor-
responding gauge fields couple to the fermions as in the standard model. The
SU(2)-field couples only to the left-handed component and is massive. The
other gauge fields are massless.

e Moreover, the fermions interact linearly via the linearized Einstein equations.

e The EL equations corresponding to the causal action principle coincide with
those of the standard model after spontaneous symmetry breaking, plus
linearized gravity.

e There are scalar degrees of freedom that can be identified with the Higgs
potential. However, the corresponding dynamical equations have not yet been
worked out.

e Again, the fermions interact linearly via the linearized Einstein equations,
where the coupling constant is related to the regularization length. Taking into
account that the causal action principle is diffeomorphism invariant, we obtain
the Einstein equations, up to possible higher-order corrections in curvature
(which scale in powers of (62 Riem), where § is the Planck length and Riem
is the curvature tensor). Thus, including error terms, the derived Einstein
equations take the form (see [45, Theorems 4.9.3 and 5.4.4])

1
Rjx = 5 Rgjn + Agjn = G Ty + 0(4* Riem?), (21.20)
where T}, is the energy-momentum tensor and G is the gravitational coupling

constant.

We conclude this section by discussing a few aspects of the derivation of these
results. We begin with the system of one sector as considered in [45, Chapter 3].
In this case, the kernel of the fermionic projector is the sum of g € N Dirac seas
of masses my,...,my, that is,

g
=Y P, (2,y) (21.21)

B=1

where again

4
Pm(l’,y)—/(;iﬂ_]; (F+m) 5(k* —m?) ©(—kC) e~ kl==v) (21.22)

In order to perturb the system by gauge potentials, we first introduce the kernel
of the auxiliary fermionic projector P*"*(z,y), which is obtained from P(z,y) by
replacing the sums with direct sums,

g
P (z,y) = EBP’”Q (x,y), (21.23)
p=1
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374 21 Basics on the Continuum Limit

this means that P?"(x,y) is represented by a (4g x 4¢)-matrix. The auxiliary
kernel satisfies the Dirac equation

mp; 0 0
(i@x -lo . o0 )Pa“"(:c,y) =0. (21.24)
0 0 my
Therefore, it can be perturbed as usual by inserting a potential B into the Dirac
equation
my 0 0
(i, +3@) - o . o |)P" @y =0, (21.25)
0 0 my

where B(z) is a matrix potential acting on C*9. The perturbed kernel P*"™ can be
computed with the methods explained in Chapters 18 and 19. Finally, we obtain
the perturbed kernel of the fermionic projector by summing over the generation
indices in an operation referred to as the sectorial projection,

P(z,y) == > Pgx,y). (21.26)
a,B=1

After introducing an ultraviolet regularization, this kernel can be analyzed in the
EL equations of the causal action principle, exactly as outlined in Section 21.2.

In order to gain the largest possible freedom in perturbing the system, the oper-
ator B should be chosen as general as possible. For this reason, in [45, Chapter 4],
a general class of potential was considered, including nonlocal potentials (i.e., inte-
gral operators). A general conclusion of the analysis is that, in order to satisfy the
EL equations, the potential B must be local, that is, a differential operator or
a multiplication operator by a potential that may involve left- and right-handed
potentials but also bilinear, scalar or pseudo-scalar potentials,

B(z) = xrAr(2) + xrAL(2) + 07 Ajj(2) + ®(2) + il Z(z), (21.27)

where each of the potentials is a g X g-matrix acting on the generations, and I"
is the pseudo-scalar matrix, which in physics textbooks is often denoted by ~°.
Analyzing the continuum limit for such multiplication operators, one gets the
abovementioned results.

One feature that at first sight might be surprising is that, despite local gauge
symmetry, we get massive gauge fields. In order to understand how this comes
about, we need to consider local gauge symmetries in connection with the chiral
gauge potentials in (21.27). On the fundamental level of the causal fermion system,
local gauge transformations arise from the freedom in choosing bases of the spin
spaces (see (5.90) and (5.91) in Section 5.9). In the present setting with four-
component Dirac spinors, the local gauge transformations take the form

W(z) = Ux)y(z)  with  Uz) € U2,2), (21.28)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.209, on 22 Nov 2025 at 08:13:17, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.027


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.027
https://www.cambridge.org/core

21.83 Overview of Results of the Continuum Limit Analysis 375

where U(2,2) is the group of unitary transformations of the spinors at the space-
time point x. The causal action principle is gauge invariant in the sense that the
causal action is invariant under such gauge transformations. The group U(2,2) can
be used to describe gravity as a gauge theory (for details, see Section 4.2 or [38]).
Restricting attention to flat spacetime, the main interest is that U(2,2) contains
the gauge group U(1) of electrodynamics as a subgroup. In other words, the causal
action principle is gauge invariant under local phase transformations

() = e M (), (21.29)

with a real-valued function A.

The chiral potentials in (21.27) also give rise to generalized phase transfor-
mations. This can be seen, for example, by working out the leading term to the
light-cone expansion (similar to (19.28) for the electromagnetic potential). One
finds that the chiral gauge potentials lead to phase transformations of the left-
and right-handed components of the wave functions, that is,

Y(x) = Ul(x) Y(x) with Ulz) = xpe M@ 4 ypemr@ (91 .30)

again with real-valued functions Ay, and Ag. The point is that this transformation
is not unitary with respect to the spin inner product because the chirality flips
when taking the adjoint

U* = xpe @ 4 ype 5@ pup U1 =y e 4 ype e (21.31)

note that x3 = (1 —I')*/2 = (14 1T)/2 = xgr because I'* = —T". Therefore, as
soon as Ay # Apg, the generalized phase transformation U(z) in (21.30) is not
a local transformation of the form (21.28). Consequently, the local transforma-
tion in (21.30) does not correspond to a symmetry of the causal action principle.
Therefore, it is not a contradiction if these gauge potentials arise in the effective
field equations as mass terms.

More specifically, the relative phases between left- and right-handed potentials
do come up in the closed chain A, = P(z,y)P(y, x), as one sees immediately from
the fact that, if P(x,y) is vectorial, then the chirality flips at the corresponding
factor, that is,

XLA;cy = XLP(I',y) XRP(y,.’,E)
— exp ( - i(AL(m) - AR(:E))) exp (i(AL(y) - AR(?J))) Agy -

Working out the corresponding contribution to the EL equations in the continuum

(21.32)

limit, one finds that the axial current and a corresponding axial mass term come
up in the effective field equations. The coupling constant and the bosonic mass
depend on the detailed form of the regularization. But they can be computed for
specific choices of the regularization, as is exemplified in [45, Chapter 3] for a hard
cutoff in momentum space and the ie-regularization.

We now move on to the system of two sectors as analyzed in [45, Chapter 4].
The vacuum is described by a kernel of the fermionic projector P(x,y) being a
direct sum of two summands, each of which is of the form (21.21), where we choose
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the number of generations as g = 3. Hence, P(z,y) is a 8 x 8-matrix. Replacing
the sums by direct sums, one obtains the corresponding auxiliary kernel P*"*(z, y)
(being represented by a 24 x 24-matrix). In order to account for the observational
fact that neutrinos are left-handed particles, one must break the chiral symmetry
of one of the sectors (the neutrino sector). To this end, we assume that the reg-
ularization of the neutrino sectors is different from that of the other sector (the
charged sector) by contributions which are not left-right invariant. The relevant
length scale is denoted by § 2 €. This procedure is very general and seems the right
thing to do because the regularization effects on the scale § are also needed in order
to obtain the correct form of the curvature term in the Einstein equations. In fact,
the obtained linearized Einstein equations involve the coupling constant G' ~ §2.
As briefly mentioned at the end of Section 10.2, the derivation of the Einstein
equations uses the (-formalism, which goes beyond the standard formalism of the
continuum limit.

The system analyzed in [45, Chapter 5] is obtained similarly by adding direct
summands to P(z,y) describing the three generations of quarks. We begin with
eight sectors. These eight sectors form pairs, giving rise to four blocks. We conclude
by outlining how this mechanism of spontaneous block formation comes about.
For this purpose, we return to the gauge phases as already mentioned in (21.28)
and (21.30). We already saw in (21.32) that, if the kernel of the fermionic projector
is vectorial, then the relative phases (i.e., the difference of left- and right-handed
gauge phases) show up in the eigenvalues of the closed chain. Such phase fac-
tors drop out of the causal Lagrangian because of the absolute values in (5.35).
However, the situation becomes more involved if the kernel of the fermionic pro-
jector is not vectorial. Indeed, expanding the vacuum kernel in powers of the rest
mass, the zero-order contribution to P(x,y) is vectorial, whereas the first-order
contribution is scalar (more generally, one sees from (19.1) that the even orders in
the mass are vectorial, whereas the odd orders are scalar). As a consequence, the
absolute values of the eigenvalues |A\7Y| depend in a rather complicated way on the
chiral gauge phases. Moreover, considering a direct sum of Dirac seas, one must
keep into account that the gauge phases in the formulas for P(x,y) (and similarly
in composite expressions) must be replaced by generalized phases, which can be
described in terms of ordered exponentials of the gauge potentials. Evaluating the
causal Lagrangian (5.35), one gets conditions for the chiral gauge phases. In sim-
ple terms, these conditions can be stated by demanding that matrices formed of
ordered exponentials of the gauge potentials must have degeneracies. Qualitatively
speaking these degeneracies mean that the left-handed gauge potential must be
the same in each block, and this condition even makes it possible to explain why
such blocks form. A more detailed and more precise explanation can be found
in [45, Chapter 5].

21.4 Exercises

Exercise 21.1 This exercise explains in a simple example how the reqularization
of the Hadamard expansion works.
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21.4 FEzxercises 377

(a) Consider the singular term of the first summand of the Hadamard expan-
sion (19.1) in Minkowski space,
li ! (21.33)
im ———— .
N0 E2 — v €07
where again £ := y — x. A simple method to remove the pole is not to take
the limit v \, 0, but instead to set v = 2¢,

1

_—. 21.34
£2 — 2ig &0 ( )

Show that this regularization can be realized by the replacement
S L (21.35)

up to a multiplicative error of the order

<1 + o(i)) . (21.36)

The basic concept behind the regularized Hadamard expansion is to regularize
all singular terms in this way, leaving all smooth functions unchanged. This
gives a consistent formalism is one works throughout with error terms of the
form (21.36). Hint: This is the so-called ie-regularization introduced in [45,
Section 2.4]. For details in curved spacetime, see [64].

(b) Show that for kernels written as Fourier transforms

K(z,y) = d'p K(p) e"v—2) (21.37)
W= [ g KO :

(with K supported in say the lower half plane {p° < 0}), the replacement
rule (21.34) amounts to inserting a convergence-generating factor =" into
the integrand.

Exercise 21.2 The goal of this exercise is to explore weak evaluation on the
light cone in a simple example.

—

(a) Show that, setting t = ¢° and choosing polar coordinates with r = [£],
regularizing the pole in (21.33) according to (21.34) gives the function
1

e (21.38)

s a simple example of a composite expression, we take the absolute square
b) A impl le of it i take the absolut
of the regularized function

1

m . (21.39)

Show that this expression is ill defined in the limit ¢ N\, 0 even as a
distribution.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.209, on 22 Nov 2025 at 08:13:17, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.027


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.027
https://www.cambridge.org/core

378 21 Basics on the Continuum Limit

(¢) Use the identity

1 1 1 1
(t—ie)2—r2  (t—ie—r)(t—ic+r) 2r \t—ie—r t—ic+r
(21.40)
to rewrite the integrand in (21.39) in the form

1

3 p.q(t:7,€) (21.41)

g (t—ie—r)P(t+ic—r)1’

with functions 7, 4(¢,7,¢), which in the limit ¢ N\, 0 converge to smooth
functions. Compute the functions 7, 4.

(d) We now compute the leading contributions and specify what we mean by
“leading.” First compute the following integrals with residues:

Io(e) == /Z R T)la KU (21.42)

Show that
- ma(t,r
/ - 71“)12((25 j R dt = Ip(e) na2(r, ) + O(e) . (21.43)

Explain in which sense this formula is a special case of the weak evaluation
formula (21.15).
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