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In this thesis we provide new results in additive combinatorics which in turn lead us to

new bounds of certain exponential sums. We also use known bounds on exponential

and character sums to give new results in additive combinatorics. Specifically, we will

see how bounds on some quantities from additive combinatorics appear naturally when

trying to bound multilinear exponential sums. We then find applications to bounds of

exponential sums of sparse polynomials. We also give new bounds for an analogue of

the energy variant of the sum-product problem over arbitrary finite fields. The thesis

consists of four key chapters. They study the topics of collinear triples, decomposition

of subsets of finite fields, multilinear exponential sums and multinomial exponential

sums.

Bounds on the number of collinear triples are of particular importance when finding

bounds on certain types of exponential sums as well as being a tool for giving bounds

on sum and product sets. We define the number of collinear triples, T(A,B), to be the

number of solutions of

(a1 − a2)(b1 − b2) = (a1 − a3)(b1 − b3), ai ∈ A, bi ∈ B, i = 1, 2, 3,

for A,B ⊂ Fp. We adapt existing techniques to give new bounds on the number

of collinear triples, which are stronger when A , B. These results have been pub-

lished in [3]. Previous results on this asymmetric case have been given using the

Cauchy–Schwarz inequality by first finding bounds on T(A,A). Additionally, we also

provide stronger bounds when our sets A and B are subgroups. We also consider a

more general form of T(A,B) than what has been considered previously. Instead we

consider collinear triples over two parameters λ and µ, which leads us to new bounds

on multiplicative energy of shifted subgroups.

Additive and multiplicative energy have seen much study recently, some of which

we outline in Chapter 3 of this thesis. Of particular importance is their relationship to
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sum and product sets. We define the additive energy

E+(A,B) = |{(a1, a2, b1, b2) ∈ A2 × B2 : a1 + b1 = a2 + b2}|.

Similarly, we define the multiplicative energy

E×(A,B) = |{(a1, a2, b1, b2) ∈ A2 × B2 : a1b1 = a2b2}|.

Here, we are most interested in the cases A = B and thus define E+(A,A) = E+(A)

and E×(A,B) = E×(A). We also define the sum and product sets respectively as

A + B = {a + b : a ∈ A, b ∈ B},

A · B = {ab : a ∈ A, b ∈ B}.

Using the Cauchy–Schwarz inequality and squaring, one can see that

|A +A|E+(A) ≥ |A|4.

It follows that strong upper bounds on additive energy correspond to strong lower

bounds on the size of the sum set. Similarly, for product sets. We prove an extension

of results of Roche and Newton, Shparlinski, and Winterhof who show

max(E+(B), E+( f (C))) ≪ |A|3−δ (1)

over Fq, where q is a prime power, f is a suitably chosen function andA is of sufficient

size. Our bounds rely on bounds on certain character sums. Our extensions will show

that we can replace E+ with E× in either or both terms in (1), as long as we suitably

change our restriction on our function f. These results have been published in [4].

Multilinear exponential sums are those of the form

T(X1, . . . ,Xn) =
∑

x1∈X1

· · ·
∑

xn∈Xn

ep(ax1 . . . xn)

for Xi ⊆ Fp for each i = 1, . . . , n and any a ∈ F∗p. The first results in this direction are

due to Vinogradov who provided a bound on bilinear exponential sums. The focus of

Chapter 4 is to consider multilinear exponential sums of the form

T(X1, . . . ,Xn) =
∑

x1∈X1

· · ·
∑

xn∈Xn

ω1(x) . . . ωn(x) ep(ax1 . . . xn) (2)

where a ∈ F∗p and the ωi are (n − 1)-dimensional complex weights, that is, complex

numbers of modulus |ωi| ≤ 1 depending on all but the ith coordinate of x. Our

results extend previous results of Petridis and Shparlinski and use similar techniques;

however, some improvements are made in certain regions on trilinear and quadrilinear

exponential sums due to estimates on collinear triples from Chapter 2 (see [3]). We

have also been able to extend these results to general multilinear sums beyond n = 4.

This extension is certainly nontrivial, and is due to some recent results in additive

combinatorics. Some of these results have been published in [1, 2, 5].

https://doi.org/10.1017/S0004972720001082 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720001082


508 S. Macourt [3]

We define a t-sparse polynomial

Ψt(X) =

t∑

i=1

aiX
ki

with pairwise distinct, nonzero, integer exponents k1, . . . , kt with corresponding

coefficients a1, . . . , at ∈ F
∗
p. We consider the multinomial exponential sum

SX(Ψt) =
∑

x∈F∗p

χ(x) ep(Ψt(x)). (3)

The bounds on such sums that appear in Chapter 5 come as a result of bounds on

weighted multilinear sums from the previous chapter. By extending the sum over

t multiplicative subgroups of F∗p we are able to express the multinomial sum as a

weighted multilinear sum. It is worth mentioning that in this chapter we find stronger

results on multilinear exponential sums than those in Chapter 4 when the arbitrary sets

are, instead, multiplicative groups.

The methods used to derive the bounds provide interesting results as our bounds

do not depend directly on the size of the powers of the polynomials, but rather they

depend on the size of some greatest common divisors of the powers. This is in contrast

to the well-known Weil bound, which gives

|SX(Ψt)| ≤ max{k1, . . . , kt}p
1/2.
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