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1. Introduction

In this note we intend to discuss the method of A. Cordoba and R. Fefferman of using
covering lemmas to control maximal functions, and make some simplifications which
allow us to obtain alternative proofs of some of their results.

Let J be a collection of bounded open sets in R", and let the associated maximal
operator Mm be defined by Afa/(x) = sup«3R3,(l/|/?|)JJl|/| if xe\]K^mR, and zero
otherwise. Of interest to us will be the case when 88 is some collection of rectangles—the
family of all cubes gives the Hardy-Littlewood maximal function, the family of all
rectangles with sides parallel to the axes gives the strong maximal function. When n ̂  2,
we may let 88 be the collection of all rectangles pointing in one of a specified set of
directions—and little is known about such maximal operations in general. The original
impetus for this research was to try and open up to geometric methods the study of
certain maximal functions which have hitherto only been treatable by the Fourier
transform—notably when 88 is the family in U2 of rectangles with one side parallel to
(1,2J), some jeZ. We have one small success with this maximal function—we are able
to show geometrically that it is bounded in L2;—see Section 3(c). Cordoba and
Fefferman [4] had previously shown it to be weak type 2, and Nagel, Stein and
Wainger [7] used the Fourier transform to obtain LP boundedness, p> 1.

In a previous paper [1], S.-Y. A. Chang, J. Garnett and the author studied the
problem of characterising the weights co for which

(1)

holds whenever / is supported in the cube Q (where M is the Hardy-Littlewood
maximal function.) Using the methods of the present paper we are able to give a
simplified (albeit still unsatisfactory) necessary and sufficient condition for (1) to hold.
We do this in Section 3(d).

Some of the topics in this paper have also been treated in a similar but lengthier
manner by Jawerth, [6].

2. Covering lemmas

One of the standard proofs of the Hardy-Littlewood maximal theorem reduces to the
following covering property of cubes in IR": there exists a constant C(n) such that given
any (finite) family of cubes in W we may extract a subfamily which is pairwise disjoint,
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and such that the measure of the union of the original family does not exceed C(ri) times
the measure of the union of the selected subfamily. The method of Cordoba and
Fefferman is to reduce an estimate of the form M4g:L

p-+Lpoo(p> 1) to an Lq((l/p) +
(l/q) = 1) analogue of the above property:

Theorem A ([3]). Let l<p<co. Then M is of weak type p if and only if 38 satisfies
the property Vq.

There exist constants C< oo and c>0 so that given any
{Rx} £$?, there exists a subfamily {R} such that

Notice that (as in the classical covering lemma for the Hardy-Littlewood maximal
function), an element of strategy is needed to choose the subfamily satisfying (i) and (ii)
when applying this theorem in any given situation. We shall show here that this element
may be removed if the collection 38 of rectangles satisfies some mild extra requirement,
such as, for example, being invariant under the usual isotropic dilations of W.

Let us fix some notation. For a e Z" let Qa be the unit cube centred at a; A will denote
any finite subset of Z" with cardinality #A. 38\ will denote the subfamily of 3$
consisting of members of 38 all of whose sides are greater than or equal to one. For
aeZ", Rx will denote some rectangle in 391 with RxnQaj=0. Finally, (l/p) + (l/q) = l.

Theorem 1. Let 1 <p<oo, and let 38 be a collection of rectangles in W invariant under
dilations. Then Mm is of weak type p if and only if there is a constant Cq such that
whenever R,e@lt Ra<^Q*=h0, and AcZ", then

] l = ^q\ rr <-L). (2)
'1/

Theorem 2. Let 1 <p<oo, and 39 be as above. Then Mm is of strong type p if and only
if there exists a constant Cq such that whenever RXE&1, RxnQai=£0, then

(3)

Remarks. 1. Theorems 1 and 2 are, in fact, very natural corollaries of the method
used by Cordoba [2] to control the maximal function associated to rectangles of a given
eccentricity in U2, and seem more straightforward to apply than Theorem A. It therefore
seems surprising that Cordoba and Fefferman did not employ Theorem 2 in some of
their work.

2. The hypothesis that 39 consist of rectangles and be invariant under dilations may
be relaxed. We leave it to the reader to formulate the more general theorems.

3. Variants of Theorems 1 and 2 will hold if we are studying the behaviour of M
from one Banach space to another; all that is required is that the function spaces have
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suitable duals. This observation allows us to characterise the weights co for which (1)
holds. See Section 3(d).

4. Consequently there is no "weak type 1" theory, as in the case of Theorem A.
However, while V^ holds, for example, when {% is the family of cubes, the analogue
of (2) is false for cubes. In general, one seems to gain an extra constant
l/(p—1) when applying Theorem 1: put another way, a shortcoming of the method is
that if a maximal function actually is bounded from L(logL)* to weak Ll, the best one
can hope to prove using Theorem 1 is that L(\ogL)k+i goes to weak L1.

The following two lemmas are elementary:

Lemma 1. Let 0$2 consist of all rectangles in 96 ̂  expanded by a factor 2^/n+ 1. Then
there exists a constant Cn such that

Lemma 2. Let SB be invariant under dilations. Then Mm is strong (weak) type i

is strong (weak) type p.

Thus in proving theorems one and two we may replace Mf by Tf(x) =
|^a|)jR fxo.(x) and obtain constants independent of the choice of {Ra}c@lt

±0

Proofs of Theorems 1 and 2. If M is strong (weak) type p, then T* defined by T*h(x) =
^ W K D W

 i s bounded from L\I3-') to 13. Setting h = Y.KlQ±.l^AQ)
yields (3) ((2)). If now & satisfies (3), T* satisfies

Jfc £

and therefore T and M are of strong type p. Finally, if @ satisfies (2), A>0 and
A = {a\(l/\Rx\)\RJ>X},then

{x\Tf(x)>X} = Ue.
= #A

XR,

Hence, by (2), and so •

https://doi.org/10.1017/S0013091500006647 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006647


148 A. CARBERY

3. Applications

(a) The family of cubes in W. We shall use Theorem 1 to show the weak type p, p > 1
of the Hardy-Littlewood maximal operator. (It is interesting to notice that if we try and
apply Theorem 2 we would first require the strong type for the analogue of the maximal
operator for sequences, cf. Hardy and Littlewood [IS].) We partially order the family of
cubes 38 by R^S if RnS±0 and |K|^|S|. Observe that with this 'definition,
#{x\Rx^R}^C\R\ (where Rx,Re@u Rxr\Qxj=0). Thus if qeN,

(b) The family of rectangles in W with sides parallel to the axes. For simplicity, we
shall deal only with the case n = 2, using the Hardy-Littlewood maximal function to
control the strong maximal function. (In W, one proceeds inductively, dealing suc-
cessively with rectangles (n — k) of whose sides are equal, for fc = 0, l,...,n —1.) We shall
obtain (3) from the corresponding estimate for cubes when qeN, and we shall assume
that our rectangles are dyadic, and have long side pointing in the x^ -direction. Order
such rectangles by R^T if RnT£0, and the long side of R is less than or equal to
the long side of T. If now Ra^R, Ra, Re@u Rxr\Qx=fc0, and Sx is the dyadic cube
containing Qx of side the small side of Rx, then |Kan/?|/|/?a| = |San/?|/|Sa|; if
RXi^RX2,...,Kv then RXi^RX2n • •• nRXq and so

\RXin---nRXq\ _\SXinRX2n---nRx<i\

Therefore,

•Y<c
' a — a *'''' a

..1

n ••

• R > ,

So by Holder's inequality,

since {Sx} is a family of cubes for which (3) holds.
Notice that (2) for rectangles in the case q = 2 implies that whenever

l !t n e n t h e r e ' s a t l e a s t o n e R*o for which ^ l ^ n R ^ I / I ^ I ^ C l i ? ^ ! . However,
there does not seem to be a simple geometric criterion for determining which rectangle
should be RX(j. This phenomenon may still occur when 0& is a one-parameter family of
rectangles.
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(c) The family of rectangles in lacunary directions in U2. To see that the maximal
operator here is strong type 2, order the rectangles by longest sidelength; Cordoba and
Fefferman [4] observed that if Ra£R, then | /?anR|/ |Ka |g |Sanl? | / |Sa | where Sa is the
triple of the smallest rectangle with sides parallel to the axes which contains Rx. Arguing
as in (b) and using the result from (b) concludes the proof.

(d) Weighted inequalities for the Hardy-Littlewood maximal function near L1. In [1],
Chang, Garnett and the author gave a necessary and sufficient condition on a
nonnegative locally integrable weight co that

f M / c o ^ C f | / | log + | / | a> + cco(e) (1)
Q Q

hold whenever / is supported in the cube Q, M denoting the Hardy-Littlewood
maximal operator. This condition was very ugly, and really amounted to saying that co
satisfied a "strong-type exponential" covering lemma involving doubly-indexed families
of cubes. (See also Jawerth [6].) Assuming without loss of generality that M and Q are
dyadic, and using Theorem 2 and Remarks 2 and 3 following its statement, we come
immediately to:

Theorem 3. The weight co(x) satisfies (1) if and only if

>| codx
sup sup f exp < e Y — I . > < oo (4)

for some £>0, the inner sup being taken over all decompositions of Q into congruent
dyadic subcubes Tx, and over all choices Rx of a dyadic cube with TX^RX^ Q.

It is tempting to speculate that perhaps the 'canonical' choice RX = TX in (4) may give
a sufficient condition for (1) to hold. Unfortunately this is not the case, since (4) with
the choice Rx = Tx is certainly implied by

sup } exp < e'
Q Q I co J w(Q)

which is equivalent to

...
(5)

. f Na>Q\ codx
supfexp-^"-5^—— <co, 6)

Q
 }

Q *{ a) co(Q)

and (6) in [1] was shown to be insufficient for (1) to hold.

Lemma 3. (5) and (6) are equivalent.

Proof. Clearly (5) implies (6), so assume (6) holds. Let Ap(co) =
supQ{$Q(coQ/a>)q(a>dt/co(Q))}p~l denote the Ap constant of co. It is shown in [1] that (6)

https://doi.org/10.1017/S0013091500006647 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006647


150 A. CARBERY

implies Ap(co) = 0(l/p — 1) as p | 1. A careful perusal of the paper of Sawyer [8] reveals
that

Therefore

<odx ^ 2, e^ (M(coXQ)\k<odx\
hJX ) )

^ (
co jco(Q) khklJX co ) co(Q))

OO

I
if s' is sufficiently small. D
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