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Abstract

We present a straightforward, sound, Hindley–Milner polymorphic type system for algebraic

effects and handlers in a call-by-value calculus, which, to our surprise, allows type variable

generalisation of arbitrary computations, and not just values. We first recall that the soundness

of unrestricted call-by-value Hindley–Milner polymorphism is known to fail in the presence of

computational effects such as reference cells and continuations, and that many programming

examples can be recast to use effect handlers instead of these effects. After presenting the

calculus and its soundness proof, formalised in Twelf, we analyse the expressive power of effect

handlers with respect to state effects. We conjecture handlers alone cannot express reference

cells, but show they can simulate dynamically scoped state, establishing that dynamic binding

also does not need a value restriction.

1 Introduction

The following OCaml example (Leroy, 1992) demonstrates the problematic inter-

action between Hindley–Milner polymorphism, which increases code reuse, and

computational effects, such as reference cells, in a call-by-value language:

let r “ ref r s in p˚ generalise r : @α.α list ref ˚q

r :“ rpqs; p˚ specialise α :“ unit ˚q

true :: !r p˚ specialise α :“ bool ˚q

A näıve type inference algorithm would assign the type α list ref to the term ref r s.

Unrestricted, it would assign to r the type scheme @α.α list ref . But doing so allows
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2 O. Kammar and M. Pretnar

us to instantiate r with the unit type α :“ unit to store the singleton list with the

unit value, and then to instantiate r with the boolean type α :“ bool. The result is

a list whose second element is the unit value, but appears to the type system as a

list of booleans.

The current way to avoid this well-known unsound behaviour (Harper & Lil-

libridge, 1993b; Pierce, 2002; Rémy, 2015) is to enforce a value restriction: The

inference algorithm will generalise the type variables only in value terms that cannot

be reduced further (Wright, 1995). While this restriction can be weakened to allow

some computation (Garrigue, 2004), it still rules out sound pure programs:

let id “ pfun f ÞÑ fq pfun x ÞÑ xq in p˚ is not polymorphic id ˚q

id pidq p˚ type error ˚q

The problem only arises when all three components are present: computational

effects, polymorphism, and call-by-value evaluation order. Without effects, Milner’s

original calculus soundly integrates call-by-value with type inference (Milner, 1978).

Without polymorphism, computational effects behave predictably in call-by-value

languages like ML, as opposed to call-by-name languages like Haskell, which require

additional features such as monads to make effects predictable. Without call-by-

value, Leroy (1993) combines computational effects with polymorphism without

restriction. Leroy’s language has two constructs for sequencing: A call-by-name

polymorphic construct let x “ c1 in c2 in which c1 is re-executed whenever it

is specialised in c2, and a call-by-value monomorphic construct do x Ð c1 in c2

in which c1 is only evaluated once, but its type is not generalised. The situation is

identical in the Haskell programming language, from which we borrow this notation.

Programming with algebraic effects and handlers (Bauer & Pretnar, 2015) is

a new approach to structuring functional programs with computational effects.

The programmer declares a collection of algebraic effect operations with which

she structures her effectful code. Then, separately, she defines effect handlers that

implement these abstract operations. Bauer & Pretnar’s Eff programming language is

a strict (i.e., call-by-value) functional language with Hindley–Milner polymorphism,

in which all computational effects are treated as algebraic effects that can be handled.

As Eff combines the three problematic components (strictness, polymorphism, and

effects), it currently imposes the standard value restriction on the programmer.

In this paper, we show that if only algebraic effects and handlers are present,

no value restriction is necessary. We present a straightforward sound Hindley–

Milner polymorphic type system for a call-by-value language that incorporates

computational effects in the form of algebraic effects and their handlers. In the

given language, we can assign a polymorphic type to x in do x Ð c1 in c2 not only

if c1 is a pure computation, like in the id example above, but also if c1 calls effects.

Keep in mind that the language is strict, so c1 is evaluated only once.

In order to simplify the presentation, we present a type system without its associ-

ated complete inference algorithm. Doing so decouples the algorithmic concerns of

finding principal types and its complexity from the semantic concern for soundness.

As first-class polymorphism typically makes type inference undecidable (Wells, 1999),

our type system uses ML-style polymorphism.
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An important point of difference between our calculus and Bauer & Pretnar’s Eff

is the treatment of effect instances (Bauer & Pretnar, 2014; Pretnar, 2014; Bauer

& Pretnar, 2015). Instances provide dynamic generation of effect names, increasing

the modularity of effectful code. We do not know how to combine instances with

polymorphism, and so we do not advocate to lift the value restriction from Eff .

The rest of the paper is structured as follows. In Section 2, we review handlers as

a programming abstraction through an idealised core calculus of algebraic effects

and handlers, and demonstrate its use by simulating global state. In Section 3,

we give a type-and-effect system to the core calculus and sketch the proof of

its soundness. We formalised the proof in the Twelf proof assistant (Pfenning &

Schürmann, 1999), extending Bauer & Pretnar’s (2014) existing formalization of

Eff ’s core calculus, which we include in the supplementary material available at

https://doi.org/10.1017/S0956796816000320. In Section 4, we evaluate our type

system and discuss its expressiveness with respect to mutable references and

dynamically scoped state. In Section 5, we summarise and elaborate on related

work. In Section 6, we conclude.

2 Handlers of algebraic effects

Algebraic effects are an approach to computational effects based on a premise that

impure behaviour arises from a set of operations such as get and set for mutable

store, read and print for interactive input and output, or raise for exceptions (Plotkin

& Power, 2003). This approach naturally gives rise to handlers not only of exceptions,

but also of any other effect, yielding a novel programming abstraction that, amongst

others, can capture backtracking, co-operative multi-threading, Unix-style stream

redirection, and delimited continuations (Plotkin & Pretnar, 2013; Bauer & Pretnar,

2015).

2.1 Syntax

We base our development on the calculus (Figure 1) given in Pretnar’s (2015)

tutorial. The calculus is a variant of the fine-grained call-by-value λ-calculus of

Levy et al. (2003), in which terms are split into inert values and potentially effectful

computations.

Programmers introduce effects with the construct oppv; y. cq, which calls the

operation op with the parameter v. The effect invocation may yield a value to the

continuation c using the bound variable y. Programmers define the meaning of such

operation calls by enclosing them in effect handlers. A handler specifies a return

clause, used when the computation returns a final value, and a collection of operation

clauses oppx; kq ÞÑ c, which specify how we should execute an invocation of the

operation op called with the parameter x and a continuation k. The underlying idea

is that operation calls behave as signals that propagate outwards until they reach a

handler with a matching clause.

Our handlers are deep: Any additional effects in the continuation are also handled

by the current handler. Our handlers are also forwarding: Unhandled operations

propagate through each handler until they are handled or reach the top level. None
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Fig. 1. A calculus for effect handlers.

of these design choices is essential to the development below, but we make them to

mirror Eff ’s design choices.

We use the following syntactic sugar (Figure 1): Semicolons elaborate to bind-

ing fresh (dummy) variables; we use sequencing, with appropriate freshly bound

variables, to allow computations in places where values are expected in function

calls, conditionals, and operation calls; function introduction may abstract over

two arguments; and we assume a trivial continuation in operations without a

continuation argument. In our examples, we further assume to have the type unit

with the sole inhabitant pq and abbreviate opppqq to oppq.

2.2 State handlers

We represent state with an operation set, which sets the state contents to a given

parameter and returns pq, and get, which takes a unit parameter and returns the

state contents. For example, here is a computation that toggles the state and returns
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the old value:

T :“if getpq then

setpfalseq; return true

else

setptrueq; return false

In the runtime of Bauer & Pretnar’s (2015) Eff , there is a pre-defined collection of

effects that receive special treatment: runtime errors and memory accesses. If these

effects are not handled by the program, the runtime will handle them, invoking the

corresponding real computational effects. However, in our calculus, the behaviour

of operations will be determined exclusively by handlers, and computations such as

T get stuck when evaluated without an appropriate enclosing handler.

A simple example of a handler for stateful computations sets the state to a fixed

value, say true, and ignores all its modifications:

HC :“ handler t getp ; kq ÞÑ k true,

setps ; kq ÞÑ k pq,

return x ÞÑ return xu

Whenever we call a get operation, we yield true to the continuation, and ignore

any set operation calls by yielding the expected unit value pq and doing nothing

else. The return clause of the handler states that we return values unmodified. Thus,

when we handle T with HC , we get back the result true, no matter how many times

we previously called T .

A more useful handler is one that handles get and set in a way that results in the

expected stateful behaviour. It uses a technique called parameter-passing (Plotkin &

Pretnar, 2013), where we transform the handled computation into a function that

passes around a parameter, in our case the state contents:

HST :“ handler t getp ; kq ÞÑ return pfun s ÞÑ pk sq sq,

setps1; kq ÞÑ return pfun ÞÑ pk pqq s1
q,

return x ÞÑ return pfun ÞÑ return xqu

We handle get with a function that takes the current state contents s and in the

first application, passes them as a result of get to the continuation. As our handlers

are deep, the continuation is further handled into a function, which we again need

to supply with the state contents. Since reading does not modify the state, we again

pass s. We handle set by first passing the unit result, and then applying the handled

continuation to the new state s1 as given by the parameter of set. The return

clause of HST also needs to produce a function that depends on the given state, in

particular, a function that returns the given value regardless of the state contents.

2.3 Operational semantics

To see how to use HST to simulate state, consider the operational semantics of the

calculus, also copied verbatim from Pretnar’s (2015) tutorial. We give the semantics
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Fig. 2. The operational semantics for effect handlers.

in terms of the small-step relation c�c1, defined in Figure 2. As expected, there is

no such relation for values, as these are inert.

The rules for conditionals and function application are standard. For the sequenc-

ing construct, do x Ð c1 in c2, we start by evaluating c1. If c1 returns some value v,

we bind it to x and evaluate c2. But if c1 calls an operation, we propagate the call

outwards and defer further evaluation to the continuation of the call, for example,

do x1 Ð pdo x2 Ð oppv; y. c2q in c1q in c �
do x1 Ð oppv; y. do x2 Ð c2 in c1q in c �
oppv; y. do x1 Ð pdo x2 Ð c2 in c1q in cq

In our account, we gloss over the standard issues with capture-avoiding substitution

and implicitly assume the appropriate freshness conditions. For example, in this

case, that y is fresh for c and c1.

To evaluate with h handle c, we start by evaluating c. If it returns a value, we

continue by evaluating the return clause of h. If c calls an operation op, there are

two options. If h has a matching clause for op, we start evaluating this clause,

passing in the parameter and the continuation. Recall that our handlers are deep,

thus the continuation k is also handled by the current handler, see handled-op.

If h does not have a matching clause, we forward the call outwards just like in

sequencing, see unhandled-op.

Let us return to the state handler HST . If we use it on a stateful computation, no

effects occur as the handled computation returns a function waiting for an initial

state. To run it, we need to apply this function to the initial state. We abbreviate
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such an application by

xc, sy :“ pwith HST handle cq s

Note how we use the syntactic sugar for call-by-value function calls from Figure 1.

Even though our calculus is pure, we can show the handler HST simulates global

state in the following way. Let
st� be the usual small-step semantics for global state,

i.e.,

xgetpq, sy
st� xreturn s, sy xsetps1

q, sy
st� xreturn pq, s1

y

xc1, sy
st� xc1

1, s
1
y

xdo x Ð c1 in c2, sy
st� xdo x Ð c1

1 in c2, s
1
y

and so on.

We can prove that each transition xc1, sy
st� xc1

1, s
1y has a matching sequence of

transitions xc1, sy �` xc1
1, s

1y, and therefore the handler semantics simulates the

operational semantics for global state. First, calculate

xgetpq, sy “ pwith HST handle pgetppq; y. return yqqq s

�pfun s1
ÞÑ ppfun y ÞÑ with HST handle preturn yqq s1

q s1
q s

�ppfun y ÞÑ with HST handle preturn yqq sq s

�pwith HST handle preturn sqq s

“ xreturn s, sy

Similarly, we can prove

xsetps1
q, sy �`

xreturn pq, s1
y

We then conclude by straightforward induction on the relation xc1, sy
st� xc1

1, s
1y.

In summary, the HST handler faithfully simulates state. For more details on

simulating state, see Bauer & Pretnar (2014) and Danvy (2006). Therefore, even

though our calculus is pure, it faithfully simulates impure computation. By giving

an unrestricted Hindley–Milner type system to this calculus, we now show that the

effects expressible by effect handlers interact well with polymorphism.

3 Type system

The type-and-effect system (Figures 3 and 4) closely follows Pretnar (2015). It

comprises two kinds of types: Values have simple types A, whereas computation

types are additionally annotated with finite sets of operations Σ, as in the effect

system of Lucassen & Gifford (1988).

We modify Pretnar’s system in two ways. The first modification is minor. We

generalise the type system to allow for more flexible local operation signatures Σ,

where operations may have different types when handled by different handlers, as

in Kammar et al. (2013). In contrast, Pretnar’s account posits a global assignment

of predefined types to the effect operations, and the effect annotations Σ only list

https://doi.org/10.1017/S0956796816000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000320


8 O. Kammar and M. Pretnar

Fig. 3. Polymorphic types and effects for effect handlers.

which operations may be present. Local signatures allow the same operation symbol

to appear in disjoint parts of the program with different types. Local signatures also

give the calculus stronger theoretical properties, such as strong normalisation and

simpler denotational semantics, cf. Kammar et al.

The second modification is our main contribution. We incorporate Hindley–Milner

polymorphism in a standard way, without any value restriction. We indicate these

latter modifications by shading in the figures. Amongst these

‚ Local effect signatures Σ are finite mappings from operations op to pairs of

value types A, B, whose action we denote by pop : A Ñ Bq P Σ. We denote

the restriction of a signature Σ to the set of operations disjoint from a given

set Δ “ topi | 1 ď i ď nu by ΣzΔ.

‚ We extend the value types with type variables α and add type variable

environments Θ, which are just finite sets of type variables.

‚ We introduce schemes @�α.A, where �α denotes a finite set of |�α|-many type

variables ranged over by αi.

‚ We introduce kinding judgements Θ $ X to explicitly keep track of the free

type variables in X . The shorthand Θ $ X1, . . . , Xn stands for the conjunction

of the judgements Θ $ X1, . . . ,Θ $ Xn.

‚ Typing judgements Θ; Ξ; Γ $ M : X include the standard monomorphic

environments Γ, which are a unique assignment of types to variables. We extend

those with type variable environments Θ and polymorphic environments Ξ,

which are a unique assignment of schemes to variables. We assume that no

variable can appear in both Γ and Ξ.1 These polymorphic variables can be

specialised at any type.

‚ We add scheme judgements whose effect annotation is outside the scope of

the quantifier. The kinding assumption Θ $ Σ ensures that none of the type

1 This separation into two environments is not strictly necessary, as a monomorphic environment Γ may
be identified with a polymorphic environment where each quantifier ranges over an empty tuple of
type variables. We choose to separate the two to highlight which parts of the language interact with
polymorphism.
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Fig. 4. A polymorphic type-and-effect system for effect handlers.

variables �α appears in Σ. It is at this point that the hypothesised type inference

algorithm should decide which type variables �α will be generalised. Our choice

to separate scheme judgements from type judgements simplifies the let-rule,

and makes it very similar to its standard, monomorphic counterpart.
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The remaining kinding and typing rules are standard. Fine-grained call-by-value

functions take values and perform computations. An operation invocation is well-

typed if the type assigned to it by the local signature agrees with the type of

the given parameter value v, and with the type of argument the continuation c

expects. A handler is well-typed if the type of result the return clause expects

matches with the type of computation the handler can handle, and each operation

clause is well-typed when the parameter type and continuation type match the local

signature the handler can handle. All clauses may cause additional effects, and

their effect annotations must agree and include these operations, as well as any

effect operations the handler does not explicitly handle, reflecting the fact that our

handlers are forwarding. The fact that our handlers are deep is reflected by the

type of the continuation: The effects the continuation may cause have already been

handled, and so the continuation may cause effects in the resulting signature and of

the resulting return type.

For the given effect system, we then have

Theorem (Safety). If $ c : A ! Σ holds, then either

i. c�c1 for some $ c1 : A ! Σ;

ii. c “ return v for some $ v : A; or

iii. c “ oppv; y. c1q for some pop : Aop Ñ Bopq P Σ, $ v : Aop, and computation

y : Bop $ c1 : A ! Σ.

In particular, when Σ “ H, evaluation will not get stuck before returning a value.

For a calculus that differs from ours only in being set in a call-by-push-value (Levy,

2004) rather than fine-grain call-by-value setting, Kammar et al. (2013) strengthen

the result and show that all well-typed programs terminate. Such a result also holds

in this case with a standard proof. We do not pursue such a proof here as it is

orthogonal to our goal.

Proof

We prove progress and preservation lemmata separately by induction. We formalised2

the calculus and the safety theorem in the Twelf proof assistant (Pfenning &

Schürmann, 1999). Our formalization extends Bauer & Pretnar’s (2014) existing

formalisation of Eff’s core calculus with type schemes and polymorphism. The code

is compatible with version 1.7.1 of Twelf. We summarise the crucial step, namely

proving type-and-effect preservation under the do-op transition.

Assume that the reduct in do-op is well-typed, and invert its type derivation:

pop : Aop Ñ Bopq P Σ

...

Θ, �α $ v : Aop

...

Θ, �α; y : Bop $ c1 : A ! Σ

Θ, �α $ oppv; y. c1q : A!Σ

Θ $ oppv; y. c1q : p@�α.Aq ! Σ

...

Θ;x : @�α.A $ c2 : B ! Σ

Θ $ do x Ð oppv; y. c1q in c2 : B ! Σ

2 See supplementary material.
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The gen rule ensures that none of the type variables in �α appear in Σ. Because

Σ includes op : Aop Ñ Bop, none of these variables appear in Aop, and we may

strengthen the derivation of Θ, �α $ v : Aop to a derivation of Θ $ v : Aop. As a

consequence, the following derivation is valid:

pop : Aop Ñ Bopq P Σ

...

Θ $ v : Aop

...

Θ, �α; y : Bop $ c1 : A ! Σ

Θ; y : Bop $ c1 : p@�α.Aq ! Σ

...

Θ;x : @�α.A $ c2 : B ! Σ

Θ; y : Bop $ do x Ð c1 in c2 : B ! Σ

Θ $ oppv; y. do x Ð c1 in c2q : B ! Σ

Therefore, the reduction in do-op preserves the type-and-effect annotation. �

The Safety Theorem is robust under the following standard variations in the calculus:

Coarse annotations. We can make the signature Σ global, and only keep track

of which operations are used, as in Pretnar (2015). The types in this global

signature cannot use any type variables. The soundness proof remains essentially

unchanged.2 Due to the lack of type variables in the global signature, there is no

need to impose a side-condition on the well-formedness of the effect annotation

in the gen rule.

It may seem that this coarser system is a restriction of our current system, where

the type information for each operation has to agree in all effect annotations,

and hence it is sound by the Safety Theorem. This is not the case. In this coarser

system, the signatures on function types are not annotated with the types of the

operations. If those types were fully written out, they would involve the global

signature, leading to potential mutual recursion between signatures and function

types. For example, if we elaborate the global signature

Σ “ top : unit Ñ punit Ñ unit !topuqu,

we would get:

Σ “ top : unit Ñ punit Ñ punit ! Σqqu

where the outermost arrow is part of the signature syntax and receives no effect

annotation on the co-domain. This recursion is not a mere formality. As mentioned

above, the type-and-effect system with local signatures we have described ensures

well-typed terms terminate, cf. Kammar et al. (2013). When we switch to a

global signature, we can use effect operations with higher order return types

to express well-typed diverging computations. With the above global signature

Σ “ top : unit Ñ punit Ñ unit !topuqu, consider the handler

H :“ handler treturn x ÞÑ return x,

opp ; kq ÞÑ kpfun ÞÑ op pq pqqu

In the coarse type system, we can derive the judgement

$ H : punit !topuq ñ punit ! Hq
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12 O. Kammar and M. Pretnar

Handling the computation $ op pq pq : unit !topu with H diverges

with H handle oppq pq �` with H handle
`

fun ÞÑ oppq pq
˘

pq

� with H handle oppq pq

In fact, by a variation on Landin’s (1964) knot, we can express a variant of

the Y -combinator, such that for a function f that is pure, Y f behaves like the

fixed-point of f when invoked on pure arguments.

No annotations. We can remove all the effect annotations Σ from type judgements

and fix a single, global signature Σ. The advantage of having an effect system is

the additional guarantee in clause (iii) of the Safety Theorem, which ensures that

any unhandled operation must appear in Σ. Without annotations, any operation

may be called. This system is a restriction of the coarse variation, where each

effect annotation is the entire signature. Consequently, it is sound.

Additional language features. To the calculus with coarse annotations, we can add

fixed-points, structural subtyping and static effect instances. The soundness proof

remains essentially unchanged2 as these modifications are orthogonal to polymor-

phism. Similarly, we can replace deep handlers with shallow ones,2 as in Kammar

et al. (2013) and Kiselyov et al. (2013). As the changes are again orthogonal to

polymorphism, we may reasonably assume a similar soundness result to hold

for a calculus that incorporates all of the above: subtyping, instances for coarse

annotations, and, through two separate syntactic constructs, both deep and shallow

handlers.

While the strong normalisation property of the fully annotated calculus shows

non-termination cannot be admitted through the back-door, it does not mean

recursion cannot be safely integrated with polymorphism through an explicit fixed-

point construct. Compare the situation with, for example, the simply-typed λ-calculus

and its sound extension with a fixed-point operator in the PCF calculus (Plotkin,

1977; Scott, 1993). We conjecture it is straightforward to add an appropriate fixed-

point operator to our fully annotated calculus safely, and the fact that the coarsely

annotated calculus can be safely extended with fixed-points supports this conjecture.

4 Expressiveness

There is currently no simple type system integrating reference cells with polymor-

phism without the value restriction. This non-existence contrasts the simplicity of

our type system, and calls into question both its degree of feature integration and

its expressiveness. First, we evaluate the degree and smoothness of the interaction

between polymorphism and other features in our calculus. Then, we highlight the

difference in expressiveness between effect handlers and reference cells. As a basis

for our evaluation and comparison, we use Leroy’s (1992) set of example programs

for analysing the usefulness of a polymorphic type system for reference cells.
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4.1 Evaluation

Algebraic effects allow us to lace a piece of code with operations in the signature

tget : unit Ñ α, set : α Ñ unitu

The scheme assigned to the handler HST , which handles them away, is

HST : @α, β.α !tget : unit Ñ β, set : β Ñ unitu ñ pβ Ñ α ! Hq ! H

It takes a computation of type α that interacts with a state of type β, and handles

it to a pure function of type β Ñ α ! H. The rightmost H indicates that no effects

can occur when producing the function.

This handler can handle computations with different types of state, for example,

pwith HST handle setpqq pq;

pwith HST handle getpqq true

We can also use effects in polymorphic code:

do f Ð if getpq then return fun x y ÞÑ return x

else return fun x y ÞÑ return y

p˚ f : @α.α Ñ pα Ñ α ! Hq ! H ˚q

in pf pfun b ÞÑ return bq p˚ α :“ bool Ñ bool !tgetu ˚q

pfun b ÞÑ setpbq; return bqq

pf true falseq p˚ α :“ bool ˚q

In our call-by-value semantics, if we wrap this computation with the state handler,

the memory look-up in f ’s definition will only occur once.

To demonstrate that the polymorphic, effectful, and high-order features interact

well, we hypothetically extend our calculus with lists. The hypothesised extension

may include primitives such as the empty list r s, a list cons p::q, and tail-recursive

iteration foldl, which we expect to interact smoothly with polymorphism. Thus, we

can use HST to implement functional features in an imperative style.

do imp map Ð fun f xs ÞÑ

with HST handle pfoldl pfun x ÞÑ set pf x :: getpqq

pq

xs;

reverse pgetpqq

r s p˚ initial state ˚q in . . .

The scheme assigned to imp map is

imp map : @αβ.pα Ñ β ! Σq Ñ pα list Ñ β list ! Σq ! H

for any Σ. This implementation is imperative in style, but not imperative per se, as

all operations are handled by high-order functions. The function imp map can also

be partially applied and retain its polymorphism, for example, in

do list id Ð imp map id in

do nil Ð list id r s in . . .
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we have the scheme assignments:

list id : @α.α list Ñ α list ! H

nil : @α.α list

Most importantly, the following program is well-typed:

do id Ð pfun f ÞÑ fq pfun x ÞÑ xq in

do id1
Ð id pidq in . . .

and both functions are assigned the polymorphic scheme @α.α Ñ α!Σ. Such mixed-

variance polymorphism is ruled out by all current variants of the value restriction.

4.2 Reference cells

We conjecture that it is impossible to simulate full-blown reference cells using effect

handlers without other language features, but we do not have a formal proof for this

statement. We can increase modularity by introducing instances (Bauer & Pretnar,

2014, 2015; Pretnar, 2014). These may be thought of as first class atomic names.

With instances, each effect instance ι and an operation symbol op determine an

operation ι#op. In handlers, each operation clause v#oppx; kq ÞÑ c specifies which

instance, dynamically given by the value v, of the statically chosen effect operation

symbol op the handler handles. At runtime, invocations of the same operation op

but with different instances will not be caught by this handler and will be forwarded.

Instances allow us to pass a cell around by passing an instance, but they are

still less expressive than having the ability to allocate arbitrarily many new cells

dynamically. For example, we do not know how to implement even the simplest of

Leroy’s (1992) benchmarks:

do make ref Ð fun x ÞÑ ref x in . . .

Eff provides a mechanism that can both generate fresh instances and attach them

to a stateful resource (Bauer & Pretnar, 2015), allowing one to directly implement a

make ref analogue: make ref creates a fresh instance that has get and set operations

associated with it. Only code that knows what the instance is, can handle these

effects. However, it is not easy to find a corresponding type-and-effect system for

fresh instances (Bauer & Pretnar, 2014; Pretnar, 2014), let alone a polymorphic one.

Without an alternative to reference cells, the expressiveness of our calculus is limited.

As a final example, recall the problematic reference cell example which cannot be

directly expressed in our calculus:

do r Ð ref r s in

r :“ rpqs;

true :: !r
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We can express a computation that writes a unit list value and reads a bool list

value:

setprpqsq;

true :: getpq

However, this computation has the effect annotation

tset : unit list Ñ unit, get : unit Ñ bool listu

which is incompatible with the type of the state handler HST . Other handlers for

the state operations may have a compatible type. For example, the read-only state

handler HRO which ignores any memory updates:

HRO :“ handler t return x ÞÑ fun ÞÑ return x,

getp ; kq ÞÑ fun s ÞÑ k s s,

setp ; kq ÞÑ fun s ÞÑ k pq su

It has the scheme

HRO : @α, β, γ.α !tget : unit Ñ β, set : γ Ñ unitu ñ pβ Ñ α ! Hq ! H

and can be applied to the above computation without run-time errors.

4.3 Dynamically scoped state

As we saw in Section 2.2, we can simulate global state using the handler HST ,

and handle this state locally to give a pure computation. While we do not know

whether effect handlers can simulate reference cells or not, we will now characterise

the handler HST as expressing the notion of dynamically scoped state.

In order to explain what we mean by dynamically scoped state, and to make the

discussion precise, we consider the calculus presented in Figure 5. It is a fine-grained

call-by-value variation on the dynamic scope calculi of Kiselyov et al. (2006) and

Moreau (1998).

We assume a set of parameters ranged over by p that name dynamically scoped

memory cells. These cells can be dereferenced, !p, or assigned to, p :“ v, just like

ref cells. The rebinding construct dlet p Ð v in c declares that in executing c, all

references to p will be bound to this occurrence of p, and shadow other binding

declarations that may be in place.

For example, assuming we have a type of integers, the following code will evaluate

to return 2.

do f Ð dlet p Ð 0 in

return pfun ÞÑ

p :“ 1`!pq in

dlet p Ð 1 in

f pq;

!p
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Fig. 5. A calculus for dynamically scoped state.

Fig. 6. The semantics for dynamically scoped state.

During its execution, the state changes inside the function f bind dynamically to

the closest enclosing rebinding, which is the second one.

Figure 6 describes the (Felleisen-style) operational semantics for this calculus. We

kept the style of semantics as close as possible to Kiselyov et al. (2006) to make

it clear we use the same notion of dynamic scope, and our theoretical treatment

closely mirrors theirs. The semantics uses the set of parameters bound in a given

context E, denoted by bppEq. The three shaded transitions are the transitions
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Fig. 7. Handlers expressing dynamically scoped state.

specific to dynamic scope. First, a fully evaluated computation removes a preceding

parameter binding, as it will no longer be used. For the other two transitions, the side

condition p R bppE1q ensures the uniqueness of the decomposition into the context

E1 by locating the closest rebinding of p. The semantics of dereferencing returns

the value associated to this closest rebinding, while the semantics of assignment

modifies it. In our design, assignment evaluates to the unit value, deviating from

Kiselyov et al.’s semantics. This purely cosmetic change does not alter the nature of

dynamically scope state we are dealing with, and makes the relationship with HST

tighter.

The example above evaluates as follows:

do f Ð dlet p Ð 0 in

return pfun ÞÑ

p :“ 1`!pq in

dlet p Ð 1 in

f pq;

!p

dyn
ù

do f Ð return pfun ÞÑ

p :“ 1`!pq in

dlet p Ð 1 in

f pq;

!p

dyn
ù

dlet p Ð 1 in

pfun ÞÑ

p :“ 1`!pq pq;

!p

dyn
ù

dlet p Ð 1 in

p :“ 1`!p;

!p

dyn`
ù return 2

Figure 7 shows how effect handlers express dynamically scoped state. Using

Felleisen’s (1991) terminology, it is a macro translation. First, it does not use any

information collected globally as it is defined homomorphically over the syntax of

the language. Second, it keeps the common core of the two languages unchanged,

translating a boolean value to itself, a function to a function, and so forth. The

translation is straightforward: It translates dereferencing and assignments to p as

specially named effects, get p and set p. Rebinding amounts to handling with HST ,

and passing the translated rebinding value as the initial value.
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This translation simulates dynamic allocation:

Theorem (Simulation). For all c
dyn
ù c1, we have rcs �` rc1s.

Proof

First, extend the translations to evaluation contexts, and show that rErcss “ rEsrrcss.

Then, show the translation respects substitution: rcrv{xss “ rcsrrvs{xs. To deal with

the mismatch between Felleisen-style and small-step semantics, show that for all

evaluation contexts E, if c
dyn
ù c1 then rEsrcs �` rEsrc1s. It therefore suffices to

prove the theorem for each of the transitions in Figure 6 specialised to E :“ r s.

For each of the common constructs of the two calculi, the proof is immediate, for

example,

rdo x Ð return v in cs “ do x Ð return rvs in rcs�rcsrrvs{xs “ rcrv{xss

The next remaining transition amounts to handling a terminal computation:

rdlet p Ð v in return v1
s “ pwith Hp

ST handle return rv1
sq rvs

�`
pfun ÞÑ return rv1

sq rvs�return rv1
s

For the final two transitions, show that, for all contexts E, parameters p R bppEq,

operations op that is either get p or set p, and x fresh for E, we have

rEsroppv;x. cqs �˚ oppv;x. rEsrcsq

And finally, calculate

rdlet p Ð v in Er!pss “pwith Hp
ST handle rEsrget pppq;x. return xqq rvs

�˚
pwith Hp

ST handle get pppq;x. rEsrreturn xsqq rvs

�`
pfun s ÞÑ ppfun x ÞÑ with Hp

ST handle rEsrreturn xsq sq sq rvs

�`with Hp
ST handle rEsrreturn vs rvs

“rdlet p Ð v in Erreturn vss

A similar calculation for assignment completes the proof. �

This translation, while being straightforward, also preserves the type system.

Figure 8 presents the types for the calculus. The only notable feature is that, like

Kiselyov et al., we assume a global signature assigning to each parameter a type.

As the signature is global, these (monomorphic) types do not contain any type

variables.

Figure 9 presents the kind and (Hindley–Milner polymorphic) type system for the

calculus. The kind system ensures well-kinded signatures assign types without type

variables. Typing judgements Θ; Ξ; Γ $
dyn
Σ c : A refer to the fixed, ambient, well-

kinded parameter signature Σ. The typing rules specific to dynamically scoped state

(shaded) ensure that we may only dereference, assign to, and rebind a parameter

in accordance with the ambient signature. The assignment rule also highlights our

decision to ascribe the unit type to assignment, in a minor deviation from Kiselyov
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Fig. 8. Polymorphic types for dynamically scoped state.

et al. The (gen) rule is now completely unrestricted, ensured by the assumption that

the type signature does not involve type variables.

Figure 10 extends the translation to types. The parameter signature Σ translates

into an effect signature containing the distinct pair of effects corresponding to this

parameter, namely get p and set p, with the appropriate type. Function types may

cause any effect in this translated signature rΣs. This translation is therefore not-

well-defined: If Σ contains any function types, then rΣs refers to rA Ñ Bs, which

refers to rΣs again.

There are at least three ways around this issue. The simplest solution, presented

in the top half of Figure 10 is to restrict Σ to ground types, i.e., prohibit storing

functions.

A less restrictive solution is to use the coarser type system for effect handlers that

does not track effect annotations at all, and define tA Ñ Bu :“ tAu Ñ tBu, as in the

bottom half of Figure 10. This solution works well, as the effects get p and put p

maintain their type.

A more sophisticated potential solution is to use equi-recursive effect signatures.

At this point in time, such a type-and-effect system has not been developed, but

we do not foresee any serious obstacles in developing it: Its denotational semantics

would involve a recursive domain equation in the same spirit as in Bauer & Pretnar

(2014).

The fact that higher order parameter types merit domain-theoretic semantics is

not surprising in light of a piece of folklore due to Oleg Kiselyov—such parameters

allow non-terminating programs. We call a type A inhabited if there exists a closed

value $
dyn
Σ v : A.

Proposition. If Σ contains a higher order type parameter pp : A Ñ Bq P Σ for some

inhabited type A, then there is a term c satisfying

c
dyn`
ù c
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Fig. 9. A polymorphic type system for dynamically scoped state.

Proof

Let $
dyn
Σ v : A be an inhabitant of A, and take

c :“ dlet p Ð pfun a ÞÑ p!pq aq in

p!pq v

https://doi.org/10.1017/S0956796816000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000320


No value restriction is needed for algebraic effects and handlers 21

Fig. 10. Handlers type system expressing dynamically scoped state.

Then

c
dyn
ù

dlet p Ð pfun a ÞÑ p!pq aq in

pfun a ÞÑ p!pq aq v

dyn`
ù

dlet p Ð pfun a ÞÑ p!pq aq in

p!pq v
“ c

as required. �

Moreover, every parameter pp : A Ñ Bq lets us define a form of a fixed-point

combinator Y : ppA Ñ Bq Ñ A Ñ Bq Ñ pA Ñ Bq by a variant of Landin’s knot,

provided the functions passed to this combinator and their arguments do not involve

p.

The two proposed translations are correct:

Theorem (Type Preservation). For every Θ; Ξ; Γ $
dyn
Σ c : A and Θ; Ξ; Γ $

dyn
Σ v : A,

we have

‚ If Σ is ground, then rΘs; rΞs; rΓs $ rcs : rAs ! rΣs and rΘs; rΞs; rΓs $ rvs : rAs.

‚ tΘu; tΞu; tΓu $ rcs : tAu and tΘu; tΞu; tΓu $ rvs : tAu.

Proof

For the first part only, first show that if A is ground, then rAs “ A, and so if Σ is a

well-kinded ground signature, then rΣs is well-defined and well-kinded.

Then, the proofs of both parts follow the same lines. By mutual induction on the

kinding judgements, show that well-kinded types, schemes, and contexts translate

into well-kinded types, schemes, and contexts, respectively. Then, show that both

translations respect type-level substitution:

rBrAi{αis1ďiďns “ rBsrrAis{αis1ďiďn

and similarly for the coarse translation.

Finally, by mutual induction on typing judgements for values and computations,

and on scheming judgements, show the hypothesis. We mention only the interesting

cases.
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For dereferencing a cell pp : Aq P Σ, by the translation’s definition,

pget p : unit Ñ rAsq P rΣs

Use this fact to derive that r!ps has the type rAs. Use a similar argument for

assignment.

Next, show that for all pp : Aq P Σ

rΘs; rΞs; rΓs $ Hp
ST : pB !rΣsq ñ pprAs Ñ pB !rΣsqq !rΣsq

and use this fact, together with the induction hypotheses, to give a valid derivation

for rdlet p Ð v in cs. �

In summary, the handler HST expresses dynamically scoped state, in both terms

and types.

5 Related work

In addition to all above discussions of immediately relevant work, we now provide

the interested reader with a short survey of existing literature in related areas.

Polymorphism and type inference. The System F of Girard (1972) and the poly-

morphic λ-calculus of Reynolds (1974) pioneer the meta-theory of polymorphic

computation to which we contribute. The impredicativity of their proposed systems

has two consequences relevant to our setting. First, because polymorphic types can

appear anywhere a type may appear, type inference becomes undecidable (Wells,

1999). Second, because universally quantified type variables range over the types

which they are used to define, these calculi have no set-theoretic models (Reynolds,

1984). Hindley–Milner polymorphism (Milner, 1978) avoids these two shortcom-

ings (Harper & Mitchell, 1993; Ohori, 1989), providing a convenient theoretical and

practical setting for investigating the integration of effects and polymorphism. Row

polymorphism (Wand, 1987; Ohori, 1995; Ohori, 1992; Garrigue, 2001; Garrigue,

2010; Garrigue, 2015) allows a polymorphic treatment for extensible records,

or labelled products. The salient features of such records and their operations

(Cardelli & Mitchell, 1991; Harper & Pierce, 1991) is their contribution to program

modularity and their compatibility with Hindley–Milner polymorphism (Rémy,

1990; Rémy, 1991), which may be relevant for programming with algebraic effects

and handlers (Hillerström & Lindley, 2016).

The effect polymorphism problem and the value restriction. Gordon et al. (1979) first

describe the problem under consideration in the context of integrating references

with Hindley–Milner polymorphism. Harper & Lillibridge (1993b) noticed the same

issue arises with the control operators call{cc and throw and announced it on the

types mailing list in July 1991. There have been many proposed solutions, notably

Leroy (1992, 1993), Leroy & Weis (1991), Tofte (1990) and Appel & MacQueen’s

(1991) Standard ML of New Jersey. Wright (1995) argues for the sufficiency of

the value restriction in practical implementations, and Garrigue (2004) argues
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for its relaxation. Wright’s solution has become standard undergraduate textbook

material (Pierce, 2002; Rémy, 2015; Pitts, 2011–2016). Nonetheless, Kiselyov (2015)

advocates relaxing the value restriction even further to facilitate implementation

techniques for staged computation. Our contribution demonstrates such relaxation

is possible in the algebraic case. Our work originates from a semantic analysis of

the interaction of effects and polymorphism. In this vein, Zeilberger (2009), Munch-

Maccagnoni (2009), and Lepigre (2016) propose semantic perspectives on the value

restriction using focussed calculi and realisability semantics, and Jaber & Tzevelekos

(2016) propose game semantics as an investigatory tool.

Effect systems. The effect system plays a central role in the typing of algebraic

effects in general, and in particular in our system. Lucassen & Gifford (1988)

introduce a polymorphic effect system to improve execution times using implicit

parallelism in the context of the FX programming language. While the original

system only kept track of region-based memory accesses and allocation, it was

clear the methodology can be adapted to multiple kinds of effects and analyses,

including: control-flow analysis, binding-time analysis, and process communication,

see Nielson & Nielson (1999) for a survey. The nature of the effect annotations can

be descriptive, over-approximating which effects may be caused, or more intensional

and prescriptive, tracking exactly the order in which the effects must occur. Wadler

& Thiemann (2003), Tolmach (1998), and Benton et al. (1998) independently make

the connection between type-and-effect systems and multi-monadic type systems,

marking the beginning of a general theory. Marino & Millstein (2009) propose

a general framework for effect systems, and Kammar & Plotkin (2012), Kammar

(2014), and Katsumata (2014) propose general theories of effect systems that include

a denotational semantic account, which underlies the system we propose. Leroy &

Weis’s (1991) use of an effect system to address the effect polymorphism problem

is very close to ours. Effect systems have also been used by Rompf et al. (2009)

to enable a more efficient compilation of delimited control from Scala to Java

bytecodes, and by Lippmeier’s (2009) compiler for the Disciple language during the

optimisation process and to mix lazy and strict evaluation order. In the context

of algebraic effects and handlers, Bauer & Pretnar (2014) propose an effect system

with sub-effecting, and Hillerström & Lindley (2016) propose an effect system with

effect polymorphism based on their implementation of row types in the Links web

programming language (Cooper et al., 2006; Lindley & Cheney, 2012).

The algebraic theory of computational effects. Algebraic effects and handlers arise

from the monadic and algebraic account of computational effects, which we survey

briefly here. Moggi (1991) conceptualises computational effects using monads.

Plotkin & Power (2003, 2002) refine this account by incorporating the syntactic

constructs causing the effects into the meta-theory in terms of equations between

universal algebraic terms. The algebraic account allows a more refined analysis of ex-

isting effects (Staton, 2010; Staton, 2009; Staton, 2013b; Melliès, 2014; Melliès, 2010)

and new effects (Staton, 2013a; Staton, 2015; Fiore & Staton, 2014). The inclusion of

effect operations into the meta-theory facilitates a broader development accounting
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for: effect combination (Hyland et al., 2006), extended program logics (Plotkin &

Pretnar, 2008; Pretnar, 2010), effect-dependent program transformations (Kammar

& Plotkin, 2012; Kammar, 2014), monadic lifting of logical relations (Katsumata,

2013), dependent types (Ahman et al., 2016) and refinement types (Ahman, 2015),

and normalization-by-evaluation (Ahman & Staton, 2013).

Programming with algebraic effects and handlers. Several researchers simultaneously

advocated the use of the handler programming abstraction. In analogy with Wadler’s

(1992) use of monads to structure imperative functional programming, Bauer &

Pretnar (2015) advocate a similar use of algebraic effects and handlers in the

programming language Eff, an ML-style language with type inference (Pretnar,

2014). Kiselyov et al. (2013) and Kiselyov & Ishii (2015) implement an effect

handlers library for Haskell, based on Cartwright & Felleisen’s (1994) work on

extensible denotational semantics and interpreters. Kammar et al. (2013), in addition

to Haskell implementations based on continuations and free monads (Swierstra,

2008; Hancock & Setzer, 2000), implement handler libraries in OCaml, Standard-

ML, and Racket, and give a sound small-step operational semantics for a core

calculus of handlers with local effect signatures, which underlies the semantics we

give here. Handlers integrate smoothly with other program features: Brady’s (2013,

2014) effect handler library in the Idris language uses dependent-types to reason

about effectful code, and Saleh & Schrijvers (2016) add effect handlers to the Prolog

language as a high-level alternative to delimited control. Wu et al. (2014) propose a

generalisation to effect handlers that allows scoped effects, which seems to increase

their expressiveness. While we deal with the semantic foundations of handlers,

there is ongoing investigation into their implementation. Wu & Schrijvers (2015)

analyse and explain the runtime efficiency of implementation techniques for effect

handlers, and in particular, free monads. The Koka language of Leijen (2014, 2017)

offers run-time and compilation support for algebraic effects and handlers, using a

selective continuation-passing-style transformation. McBride investigates untyped

effect handlers through the Shonky language3 and variations on polymorphic

effect systems through the Frank language (Lindley et al., 2017). Dolan, White,

Sivaramakrishnan, Yallop, and Madhavapeddy recently propose4 a language and

runtime extension to the OCaml language to support algebraic effects.

Delimited control. We also view handlers as a delimited control operator. Felleisen

(1988) first introduces control delimiters as a mechanism for improving the meta-

theory of control operators. Early on (Felleisen et al., 1988), they were used to

implement algorithms with sophisticated control structure, such as tree-fringe com-

parison, and other control mechanisms, such as coroutines. Danvy & Filinski (1990)

study control operators systematically using continuation-passing-style conversion,

and introduce a hierarchy of control operators, including the operators shift and

shift0, the latter being the traditional control operator deep handlers are closest

3 https://github.com/pigworker/shonky
4 Talk given at the OCaml Workshop 2015.
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to. Danvy & Filinski (1989) give the first well-known type system for delimited

control. The different variations in control structure and the desire to relax the type

system to accept more sophisticated programs involving answer-type modification,

lead to a plethora of type systems for delimited control, and Kiselyov & Shan

(2007) give a substantial list of references. The most relevant to this work are

the polymorphic type systems of Gunter et al. (1995), Kiselyov et al. (2006), and

Asai & Kameyama (2007). The expressive relationship between different delimited

control constructs is subtle, and Shan (2007) establishes some untyped relationships

using Felleisen’s (1991) notion of macro expressibility. In collaboration with Forster

et al. (2016), we similarly investigate the expressiveness of handlers with delimited

control and monadic reflection. Danvy (2006) and Kiselyov et al. (2006) show how

delimited control operators can simulate global state and Moreau’s (1998) notion of

dynamically scoped state, respectively, on which we base our characterisation of the

HST handler.

Expressing recursion with delimited control. The ability to encode Landin’s (1964)

knot, while possible with handlers and coarse type annotation, is already recurrent

in the study of control operators. Lillibridge (1999) shows unchecked exceptions

are Turing-complete by defining the Y-combinator. Filinski’s (1994) type system for

shift and reset fixes the answer type, and it is well-known folklore that if the answer

type is a function type, the calculus is non-terminating. Consequently, Filinski’s

continuation-passing-style translation into the simply typed lambda calculus requires

recursive types. Kameyama & Yonezawa’s (2008) simple type system for Felleisen’s

(1988) delimited-control operators control and prompt can similarly tie the knot.

6 Conclusion and further work

Unexpectedly, Hindley–Milner polymorphism integrates smoothly and robustly

with existing type-and-effect systems for algebraic effects and handlers. However,

combining reference cell allocation with polymorphism remains an open problem,

as does incorporating dynamic generation of instances as used in Eff . Consequently,

Eff still uses the value restriction. Our contribution is to identify a larger class of

languages in which effects and polymorphism coexist naturally.

For type-system cognoscenti, these results may not come as a complete surprise.

First, using effect systems to ensure soundness has been proposed (Leroy & Weis,

1991) before Wright’s value restriction. Second, even if we consider the non-

effect-annotated safety result, we do not believe the type system can encode the

problematic effects: local reference cells and continuations. Nonetheless, previous

solutions require a specialised, and sometimes subtle, type system. In the algebraic

setting, adding polymorphism to existing systems is strikingly natural.

There is an intuitive explanation for polymorphism-by-name and the value

restriction using an analogy between the polymorphic type abstraction operation,

i.e., Λ in System F (Girard, 1972; Reynolds, 1974), and the function abstraction

operation, i.e., λ in the λ-calculus, which is already present in, e.g. Leroy (1992, 1993),

Cardelli (1991), Gifford & Lucassen (1986), Wright (1995), and Harper&Lillibridge
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(1993a). By elaborating the types of bound variables and inserting an explicit type

abstraction operation to the example in the introduction, we get

let id “ Λα.pfun f : pα Ñ αq Ñ α Ñ α ÞÑ fq pfun x : α ÞÑ xq in p˚@α.α Ñ α˚q

id pidq

The λ-abstraction operation suspends computation in the λ-calculus, and so, by

analogy, we may choose to suspend computation under Λ-abstraction as well. Doing

so results in Leroy’s polymorphism by name. If we want to keep a call-by-value

evaluation order on polymorphic let and treat Λ as computation suspending, the

value restriction is the natural solution.

However, Garrigue’s relaxation of the value restriction and its implementation

in OCaml show that programmers are interested in separating suspension of

computation from type abstraction, departing from the behaviour for function

abstraction. Moreover, Levy’s (2004) call-by-push-value shows that functional calculi

for effects, and their resulting equational theories, benefit from a lingual separation

between suspension of computation, i.e., thunking, and functional abstraction. In this

situation, we are interested to know how to integrate call-by-value polymorphism

with effects.

An anonymous reviewer suggests the following intuition to our result in terms

of sharing (Leroy, 1992). Reference cells allow creating some shared state without

exposing its type in the shared context. As a result, without the value restriction,

it becomes possible to generalise this type wrongly. In contrast, our type system is

fully explicit. Any state manipulation, and more generally, any effect manipulation,

is through the handlers via the operation signatures, whose types are either declared

globally (in the coarser system) or explicitly. The cause for this explicitness is clear:

Unlike state manipulation operations for reference cells whose meaning is fixed,

algebraic effect operations are decoupled from their concrete semantics. Thus, we

need to track types explicitly so that the enclosing handler uses the correct types.

As a consequence, the hidden sharing is lost, and there is no need to restrict

polymorphism. But by losing the ability to hide shared state, we can no longer easily

express reference cells.

We have also shown formally that the ‘local’ state handler HST simulates

dynamically scoped state. In particular, our type-preserving translation establishes

that, like algebraic effects, dynamically scoped state does not need a value restriction.

We contrast this result with one of Wright’s motivations for the value restriction —

providing a safe type system for an imperative language with no additional

annotation on function types. Therefore, as far as dynamically scoped state is

concerned, the unannotated polymorphic calculus for effect handlers demonstrates

there is no need for the value restriction to achieve Wright’s goal.

These results arose as part of a broader (denotational) semantic investigation of

effects and polymorphism, which does not yet account for reference cells. We hope

that an algebraic understanding of locality (Staton, 2013b; Fiore & Staton, 2014)

and scope and polymorphic arities (Wu et al., 2014) will explain the interaction

between reference cells and polymorphism. As mentioned in the end of Section 3,
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our proof easily adapts to the presence of effect instances, though only for global

signatures. The question of how to combine effect instances with local annotations

is still open, and will most likely also be answered by understanding locality. The

robustness of type safety leads us to believe standard extensions, such as type

inference, principal types, and impredicative and row polymorphism will not pose

problems. The latter is particularly interesting, as it can serve as an effect system

with effect variables (Lindley & Cheney, 2012; Hillerström & Lindley, 2016; Leijen,

2014; Pretnar, 2014).

We want to investigate the expressive difference between effect handlers and

delimited control, and polymorphism forms another comparison axis. We defer a

thorough comparison, as there are several notions of delimited control (shift, shift0,

with, or without answer-type modification) and several proposals for polymorphic

type systems (Asai & Kameyama, 2007; Gunter et al., 1995; Kiselyov et al., 2006),

and as delimited control is subtle. That said, there are two immediate points of

comparison between delimited control and effect handlers.

First, Kiselyov et al.’s translation of dynamic scope into delimited control requires

some complication in order to preserve types. This complication is caused by their

effect system for delimited control tracking the return type of the computation

enclosed by the nearest rebinding. When an access to a dynamically scoped cell

escapes the current binding in scope, the type expected in the nearest rebinding

may change, resulting in a type error of their translated program. The example

on page 15 demonstrates such a shift from a function type to an integer type. In

contrast, our effect system only tracks the local type for each effect operation, and

the translation from dynamically scoped state to effect handlers extends smoothly

to types.

Second, these systems include a form of a purity restriction or value restriction.

As a consequence, they cannot type purely functional computations like the final

example in Section 4.1. In contrast, the type system proposed here allows unrestricted

Hindley–Milner polymorphism in both purely functional and effectful code.
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April 2–8, 2016, Jacobs, B. & Löding, C. (eds), Lecture Notes in Computer Science, vol.

9634. Berlin: Springer, pp. 36–54.

Ahman, D. & Staton, S. (2013) Normalization by evaluation and algebraic effects. Electr.

Notes Theor. Comput. Sci. 298, 51–69.

Appel, A. W. & MacQueen, D. B. (1991) Standard ML of New Jersey. In PLILP, pp. 1–13.

Asai, K. & Kameyama, Y. (2007) Polymorphic delimited continuations. In APLAS, Lecture

Notes in Computer Science, vol. 4807. Springer, pp. 239–254.

Bauer, A. & Pretnar, M. (2014) An effect system for algebraic effects and handlers. Log.

Methods Comput. Sci. 10(4:9), pp. 1–29.

Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Log.

Algebr. Meth. Program. 84(1), 108–123.

Benton, N., Kennedy, A. & Russell, G. (1998) Compiling standard ML to java bytecodes. In

Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming

(ICFP ’98), Baltimore, Maryland, USA, September 27–29, 1998, Felleisen, M., Hudak, P.

& Queinnec, C. (eds), ACM, pp. 129–140.

Brady, E. (2013) Programming and reasoning with algebraic effects and dependent types.

In Proceedings of ACM SIGPLAN International Conference on Functional Programming,

ICFP’13, Boston, MA, USA, September 25–27, 2013, Morrisett, G. & Uustalu, T. (eds),

ACM, pp. 133–144.

Brady, E. (2014) Resource-dependent algebraic effects. In Proceedings of the 15th International

Symposium on Trends in Functional Programming, TFP 2014, Soesterberg, The Netherlands,

May 26–28, 2014. Revised Selected Papers. Hage, J., & McCarthy, J. (eds), Lecture Notes

in Computer Science, pp. 18–33. Berlin: Springer.

Cardelli, L. (1991) Typeful programming. In Formal Description of Programming Concepts,

Neuhold, E. J. & Paul, M. (eds). Berlin: Springer-Verlag, pp. 431–507.

Cardelli, L. & Mitchell, J. C. (1991) Operations on records. Math. Struct. Comput. Sci. 1(1),

3–48.

Cartwright, R. & Felleisen, M. (1994) Extensible denotational language specifications. In

Proceedings of International Conference TACS ’94 on Theoretical Aspects of Computer

Software, Sendai, Japan, April 19–22, 1994, Hagiya, M. & Mitchell, J. C. (eds). Lecture

Notes in Computer Science, vol. 789. Springer pp. 244–272.

Cooper, E., Lindley, S., Wadler, P. & Yallop, J. (2006) Links: Web programming without tiers.

In Proceedings of the 5th International Symposium on Formal Methods for Components

and Objects, FMCO 2006, Amsterdam, The Netherlands, November 7–10, 2006, Revised

Lectures, de Boer, F. S., Bonsangue, M. M., Graf, S. & de Roever, W. P. (eds), Lecture

Notes in Computer Science, vol. 4709. Springer, pp. 266–296.

Danvy, O. (2006) An Analytical Approach to Programs as Data oObjects. DSc dissertation,

Department of Computer Science, University of Aarhus.

Danvy, O. & Filinski, A. (1989) A Functional Abstraction of Typed Contexts. Technical Report

89/12. DIKU.

https://doi.org/10.1017/S0956796816000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000320


No value restriction is needed for algebraic effects and handlers 29

Danvy, O. & Filinski, A. (1990) Abstracting control. In LISP and Functional Programming.

pp. 151–160.

Felleisen, M. (1988) The theory and practice of first-class prompts. In Conference Record

of the 15th Annual ACM Symposium on Principles of Programming Languages, San Diego,

California, USA, January 10–13, 1988, Ferrante, J. & Mager, P. (eds), ACM Press, pp.

180–190.

Felleisen, M. (1991) On the expressive power of programming languages. Sci. Comput. Program.

17(1–3), 35–75.

Felleisen, M., Wand, M., Friedman, D. P. & Duba, B. F. (1988) Abstract continuations: A

mathematical semantics for handling full jumps. In LISP and Functional Programming , pp.

52–62.

Filinski, A. (1994) Representing monads. In Conference Record of POPL’94: 21st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, Oregon,

USA, January 17–21, 1994, Boehm, H.-J., Lang, B. & Yellin, D. M. (eds), ACM Press, pp.

446–457.

Fiore, M. P. & Staton, S. (2014) Substitution, jumps, and algebraic effects. In CSL-LICS.

ACM, pp. 41:1–41:10.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2016) On the expressive power of user-

defined effects: Effect handlers, monadic reflection, delimited control. arXiv:1610.09161

[cs.LO].

Garrigue, J. (2001) Simple type inference for structural polymorphism. In Proceedings of the

2nd Asian Workshop on Programming Languages and Systems, APLAS’01, Korea Advanced

Institute of Science and Technology, Daejeon, Korea, December 17–18, 2001, pp. 329–343.

Garrigue, J. (2004) Relaxing the value restriction. In FLOPS. Lecture Notes in Computer

Science, vol. 2998. Berlin: Springer, pp. 196–213.

Garrigue, J. (2010) A certified implementation of ML with structural polymorphism. In

Proceedings of the 8th Asian Symposium on Programming Languages and Systems, APLAS

2010, Shanghai, China, November 28–December 1, 2010, Ueda, K. (ed), Lecture Notes in

Computer Science, vol. 6461. Springer, pp. 360–375

Garrigue, J. (2015) A certified implementation of ML with structural polymorphism and

recursive types. Math. Struct. Comput. Sci. 25(4), 867–891.

Gifford, D. K. & Lucassen, J. M. (1986) Integrating functional and imperative programming.

In LISP and Functional Programming, pp. 28–38.

Girard, J.-Y. (1972) (June) Interprétation fonctionnelle et élimination des coupures de l’arith-
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Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4), 423–436.

Tofte, M. (1990) Type inference for polymorphic references. Inf. Comput. 89(1), 1–34.

Tolmach, A. P. (1998) Optimizing ML using a hierarchy of monadic types. In Proceedings

of the 2nd International Workshop on Types in Compilation, TIC ’98, Kyoto, Japan, March

25–27, 1998, Leroy, X. & Ohori, A. (eds), Lecture Notes in Computer Science, vol. 1473.

Springer, pp. 97–115.

Wadler, P. (1992) The essence of functional programming. In Proceedings of the 19th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’92),

January 19–22, 1992, Sethi, R. (ed), ACM, New York, NY, USA, pp. 1–14.

Wadler, P. & Thiemann, P. (2003) The marriage of effects and monads. ACM Trans. Comput.

Log. 4(1), 1–32.

Wand, M. (1987) Complete type inference for simple objects. In Proceedings of the Symposium

on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22–25, 1987. IEEE

Computer Society, pp. 37–44.

https://doi.org/10.1017/S0956796816000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000320


34 O. Kammar and M. Pretnar

Wells, J. B. (1999) Typability and type checking in System F are equivalent and undecidable.

Ann. Pure Appl. Logic 98(1–3), 111–156.

Wright, A. K. (1995) Simple imperative polymorphism. Lisp Symbol. Comput. 8(4), 343–355.

Wu, N. & Schrijvers, T. (2015) Fusion for free—efficient algebraic effect handlers. In

Proceedings of the 12th International Conference on Mathematics of Program Construction,

MPC 2015, Königswinter, Germany, June 29–July 1, 2015, Hinze, R. & Voigtländer, J.

(eds), Lecture Notes in Computer Science, vol. 9129. Springer, pp. 302–322.

Wu, N., Schrijvers, T. & Hinze, R. (2014) Effect handlers in scope. In Haskell. ACM, pp. 1–12.

Zeilberger, N. (2009) Refinement types and computational duality. In Proceedings of the

3rd ACM Workshop on Programming Languages meets Program Verification, PLPV 2009,

Savannah, GA, USA, January 20, 2009, Altenkirch, T. & Millstein, T. D. (eds), ACM,

pp. 15–26.

https://doi.org/10.1017/S0956796816000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000320

