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Abstract
John Rognes developed a notion of Galois extension of commutative ring spectra, and this includes a criterion for
identifying an extension as unramified. Ramification for commutative ring spectra can be detected by relative topo-
logical Hochschild homology and by topological André–Quillen homology. In the classical algebraic context, it is
important to distinguish between tame and wild ramification. Noether’s theorem characterizes tame ramification
in terms of a normal basis, and tame ramification can also be detected via the surjectivity of the trace map. For
commutative ring spectra, we suggest to study the Tate construction as a suitable analog. It tells us at which inte-
gral primes there is tame or wild ramification, and we determine its homotopy type in examples in the context of
topological K-theory and topological modular forms.

1. Introduction

Classically, ramification is studied in the setting of extensions of rings of integers in number fields.
If K ⊂ L is an extension of number fields and if OK→OL is the corresponding extension of rings of
integers, then a prime ideal p⊂OK ramifies in L, if pOL = pe1

1 · . . . · pes
s in OL and ei > 1 for at least one

1 � i � s. The ramification is tame when the ramification indices ei are all relatively prime to the residue
characteristic of p, and it is wild otherwise. Auslander and Buchsbaum [1] considered ramification in the
setting of general noetherian rings. If K ⊂ L is a finite G-Galois extension, then OK→OL is unramified,
if and only if OK =OG

L →OL is a Galois extension of commutative rings, and this in turn says that
OL ⊗OK OL

∼=∏G OL (see [13, Remark 1.5 (d)], [1] or [44, Example 2.3.3] for more details).
Our main interest is to investigate notions of ramified extensions of ring spectra and to study

examples.

1.1. Galois extensions

Rognes [44, Definition 4.1.3] introduces G-Galois extensions of ring spectra. A map A→ B of com-
mutative ring spectra is a G-Galois extension for a finite group G, if certain cofibrancy conditions are
satisfied, if G acts on B from the left through commutative A-algebra maps and if the following two
conditions are satisfied:

1. The map from A to the homotopy fixed points of B with respect to the G-action, i : A→ BhG is
a weak equivalence.
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2. The map

h : B∧A B→
∏

G

B (1.1)

is a weak equivalence.

Here, h is right adjoint to the composite map:

B∧A B∧G+ −→ B∧A B−→ B,

induced by the G-action B∧G+ ∼=G+ ∧ B→ B on B and the multiplication on B.
Condition (1) is the fixed point condition familiar from ordinary Galois theory. Condition (2) is

needed to ensure that the map A→ B is unramified. Among other things, it implies for instance that the
A-endomorphisms of B, FA(B, B), correspond to the group elements in G in the sense that

j : B∧G+ → FA(B, B),

is a weak equivalence, where j is right adjoint to the composite map

(B∧G+)∧A B→ B∧A B→ B,

which is again induced by the G-action and the multiplication on B.
If A is the Eilenberg–MacLane spectrum HOK and B=HOL for a G-Galois extension K ⊂ L, then

HOK→HOL is a G-Galois extension of ring spectra if and only if OK→OL is a G-Galois extension of
commutative rings.

1.2. Ramification

For certain Galois extensions, Ausoni and Rognes [3] conjecture a version of Galois descent for algebraic
K-theory. A descent result that covers many of the conjectured cases is established in [15]. In some
cases, descent can be established even in the presence of ramification. Ausoni [2, Theorem 10.2] shows
for instance that the canonical map K(�p)→K(kup)hCp−1 is an equivalence after p-completion despite the
fact that the inclusion of the p-completed connective Adams summand, �p, into p-completed topological
connective K-theory, kup, should be viewed as a tamely ramified extension of commutative ring spectra.
In other cases that are not Galois extensions, for instance in the case of the map ko→ ku from real to
complex connective topological K-theory that shows features of a wildly ramified extension, one can
consider a modified version of descent [15, §5.4].

How can we detect ramification? The unramified condition from (1.1) ensures for instance that A→ B
is separable [44, Definition 9.1.1], and this in turn implies that the canonical map from B to the relative
topological Hochschild homology, THHA(B), is an equivalence and that the spectrum of topological
André–Quillen homology TAQA(B) [6] is trivial. So if we know for a map of commutative ring spectra
A→ B that B→ THHA(B) is not a weak equivalence or that π∗TAQA(B) 	= 0, then this is an indicator for
ramification. We will study examples of nonvanishing TAQ in Section 2.1 and study relative topological
Hochschild homology in examples related to level-2-structures on elliptic curves in Section 2.2.

1.3. Types of ramification

Whereas detecting ramification for structured ring spectra is rather straightforward in many cases, it is
less clear whether a map A→ B is tamely or wildly ramified; it might also be that there are more types
of ramification. Several methods from algebra do not carry over. One obstacle is for instance that there
is no concept of ideals for commutative ring spectra that has all features of the algebraic one. Jeff Smith
proposed a definition of ideals (see [25] for an available account), but this notion is not geared toward the
case of commutative ring spectra. Determining the homotopy type of the spectrum of topological André–
Quillen homology is often hard with the notable exception of suitable Thom spectra [8, Theorem 5 and
Corollary]. Therefore, we did not see a way of studying its annihilator as an analog of the different.
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Spectra with trivial negative homotopy groups are called connective. For a spectrum A, we denote by
τ�0A its connective cover. It is a connective spectrum whose homotopy groups in nonnegative degrees
agree with those of A. Akhil Mathew shows in [36, Theorem 6.17] that connective Galois extensions are
algebraically étale: the induced map on homotopy groups is étale in a graded sense. So, in particular,
connective covers of Galois extensions are rarely Galois extensions, because several known examples
such as KO→KU and examples of Galois extensions in the context of topological modular forms are
far from behaving nicely on the level of homotopy groups. We like to think of these connective covers
as analog of rings of integers in number fields, but we cannot offer any systematic approach behind this
interpretation. If you start with a periodic ring spectrum, then just cutting away the negative homotopy
groups might not produce a good connective model. In such cases, there might be several meaningful
choices for connective models and the analogy is then even less clear.

We determine relative topological Hochschild homology and the bottom nontrivial homotopy groups
of the topological André–Quillen spectrum in the cases ko→ ku, �→ ku(p), tmf0(3)(2)→ tmf1(3)(2),
tmf(3)→ tmf0(2)(3), Tmf(3)→ Tmf0(2)(3), and tmf0(2)(3)→ tmf(2)(3). We also study a version of the dis-
criminant map in the context of structured ring spectra and apply it to the examples �→ ku(p) and
ko→ ku in Section 2.3.

For certain finite extensions of discrete valuation rings, tame ramification is equivalent to being log-
étale (see for instance [46, Example 4.32]). It is known by work of Sagave [50] that �→ ku(p) is log-étale
if one considers the log structures generated by v1 ∈ π2p−2� and u ∈ π2(ku). We show that ko→ ku is not
log-étale if one considers the log structures generated by the Bott elements ω ∈ π8(ko) and u ∈ π2(ku).
This might be seen as in indicator for wild ramification in this case.

1.4. Tate cohomology and Tate construction

Emmy Noether shows [42, §2] that tame ramification is equivalent to the existence of a normal basis.
Tame ramification can also be detected by the surjectivity of the trace map [12, Theorem 2, Chapter 1,
§5]. This in turn yields a vanishing of Tate cohomology.

In stable homotopy theory, Tate cohomology is modeled by the Tate construction. If E is a spectrum
with an action of a finite group G, then there is a norm map N : EhG→ EhG from the homotopy orbits
of E with respect to G, EhG, to the homotopy fixed points, EhG. Its cofiber is the Tate construction of E
with respect to G, EtG. If E is an Eilenberg–MacLane spectrum E=HA, then the homotopy groups of
the Tate construction agree with the Tate cohomology groups in the sense that π∗(HAtG)∼= Ĥ−∗(G; A).

Using Tate spectra as a possible criterion for wild ramification is for instance suggested by Rognes in
[47] and in [37]. Rognes also shows a version of Noether’s theorem in [45, Theorem 5.2.5]: if a spectrum
with a G-action X is in the thick subcategory generated by spectra of the form G+ ∧W, then XtG �∗, so
in particular, if B has a normal basis, B�G+ ∧ A, then BtG �∗.

For a finite group G and a connective spectrum B, the Tate construction BtG is trivial if and only if the
unit 1 ∈ π0B is in the image of the algebraic norm map. We study examples in the context of topological
K-theory, topological modular forms, and cochains on classifying spaces with coefficients in Lubin–
Tate spectra (also known as Morava E-theory) whose Tate construction is nontrivial. Our hope is that the
structure of the Tate construction in such cases might tell us something about the type of ramification. In
the examples where we can completely determine the homotopy type of the Tate construction, however,
we obtain generalized Eilenberg–Mac Lane spectra.

1.5. Topological modular forms

Several of our examples use topological modular forms with level structures. The spectrum of topo-
logical modular forms, TMF, arises as the global sections of a structure sheaf of E∞-ring spectra on
the moduli stack of elliptic curves, Mell. A variant of it, Tmf, lives on a compactified version, Mell.
Its connective version is denoted by tmf. There are other variants corresponding to level structures on
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elliptic curves. Recall that a �(n)-structure (or level n-structure for short) carries the datum of a chosen
isomorphism between the n-torsion points of an elliptic curve and the group (Z/nZ)2. A �1(n)-structure
corresponds to the choice of a point of exact order n, whereas a �0(n)-structure comes from the choice
of a subgroup of order n of the n-torsion points. See [27, Chapter 3] for the precise definitions and for
background. These level structures give rise to a tower of moduli problems (see [27, p. 200] and [17])

with corresponding commutative ring spectra TMF0(n)→ TMF1(n)→ TMF(n) and their compactified
versions Tmf0(n)→ Tmf1(n)→ Tmf(n) [23, Theorem 6.1].

In [37], Mathew and Meier prove that the maps Tmf
[

1
n

]→ Tmf(n) are not Galois extensions but they
satisfy Tate vanishing, which might be seen as an indication of tame ramification. In contrast, we will
identify cases when tmf(n)tGL2(Z/nZ) is nontrivial (see Theorem 3.13).

This paper is intended as a starting point for the investigation of different types of ramification for
structured ring spectra. We are aware that for a deeper understanding of ramification, one probably needs
to use stacks (see e.g., [36, 41]).

2. Detecting ramification

For connective commutative ring spectra that satisfy a mild finiteness condition, the common notions
of étaleness are all equivalent [35, Corollary 3.1]: for a map A→ B of such spectra TAQA(B)�∗ if and
only if the natural map B→ THHA(B) is an equivalence if and only if A→ B is étale in the sense of
Lurie [32, Definition 7.5.1.4], in particular

π∗B∼= π∗(A)⊗π0(A) π0(B).

So we know that in the following examples there is ramification. The question is whether the invariants
that are used can tell us something about the type of ramification.

2.1. Topological André–Quillen homology

For a map of connective commutative ring spectra i : A→ B, we use the connectivity of the map to
determine the bottom homotopy group of TAQA(B) [6].

2.1.1. Algebraic cases
If OK→OL is an extension of number rings with corresponding extension of number fields K ⊂ L, then
of course we cannot use a connectivity argument for understanding TAQ, but here, the algebraic module
of Kähler differentials, �1

OL |OK
, is isomorphic to the first Hochschild homology group HHOK

1 (OL) which
in turn is isomorphic to π0TAQHOK (HOL). This follows from combining [7, Theorem 2.4], which ensures
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that π0TAQHOK (HOL) is isomorphic to the zeroth Gamma homology group H�0(OL|OK; OL), with [43,
Proposition 6.5], which yields H�0(OL|OK; OL)∼=�1

OL |OK
.

2.1.2. The connective Adams summand
Let � denote the Adams summand of connective p-localized topological complex K-theory, ku(p). Here,
p is an odd prime.

The inclusion i : �→ ku(p) induces an isomorphism on π0 and π1. Thus, by the Hurewicz theorem for
topological André–Quillen homology [6, Lemma 8.2], [4, Lemma 1.2], we get that π2TAQ�(ku(p)) is the
bottom homotopy group and is isomorphic to the second homotopy group of the cone of i, and this in
turn can be determined by the long exact sequence:

· · ·→ π2(�)= 0→ π2(ku(p))→ π2(cone(i))→ π1(�)= 0→· · · .

Hence, we have π2TAQ�(ku(p))∼=Z(p).
We know from [19] that �→ ku(p) shows features of a tamely ramified extension of number rings,

and Sagave shows [50, Theorem 6.1] that �→ ku(p) is log-étale.

2.1.3. Real and complex connective topological K-theory
The complexification map c : ko→ ku induces an isomorphism on π0 and an epimorphism on π1, so it
is a 1-equivalence. Hence, again π2cone(c)∼= π2(TAQko(ku)) is the bottom homotopy group, but here we
obtain an extension:

0→ π2ku=Z→ π2cone(c)→ π1(ko)=Z/2Z→ 0.

In order to understand π2cone(c), we consider the cofiber sequence:

�KO
η−→KO

c−→KU
δ−→�2KO

and the commutative diagram on homotopy groups:

Here, τe : e→ E denotes the map from the connective cover e of E to E. The middle vertical map g is
the map induced by the cofiber sequences. By the five lemma, g is an isomorphism hence

π2cone(c)∼= π2�
2KO∼=Z.

So this group is also torsion-free. We will later see that ko→ ku is not log-étale, and we will see some
other indicators for wild ramification, but the bottom homotopy group of TAQko(ku) does not detect that.

2.1.4. Connective topological modular forms with level structure (case n= 3)
We consider tmf1(3). Its homotopy groups are π∗(tmf1(3))∼=Z[ 1

3
][a1, a3] with |ai| = 2i. See [23] for

some background. There is a C2-action on tmf1(3) coming from the permutation of elements of exact
order three and one denotes by tmf0(3) the connective cover of the homotopy fixed points, tmf1(3)hC2 .
There is a homotopy fixed point spectral sequence that was studied in detail in [33] for the periodic
versions. In [23, p. 407], it is explained how to adapt this calculation to the connective variants: the
terms in the spectral sequence with s > t− s � 0 can be ignored. The C2-action on the ai’s is given by
the sign-action, so if τ generates C2, then τ (an

i )= (−1)nan
i .
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This implies that only H0(C2; π0(tmf1(3)))∼=Z[ 1
3
] survives to π0(tmf0(3)). For π1, we get a contri-

bution from H1(C2; π2(tmf1(3))), giving a Z/2Z generated by the class of a1 (this detects an η). For
π2(tmf0(3)), the class of a2

1 generates a copy of Z/2Z.
Hence, the map j : tmf0(3)(2)→ tmf1(3)(2) is 1-connected, so π2TAQtmf0(3)(2) (tmf1(3)(2)) is the bottom

homotopy group and is isomorphic to π2(cone(j)) which sits in an extension. We can use the commutative
diagram of commutative ring spectra from [23, Theorem 6.3]

in order to determine to π2(cone(j)). By [30, Theorem 1.2], there is a cofiber sequence of tmf1(3)(2)-
modules

�6tmf1(3)(2)
v2−→ tmf1(3)(2) −→ ku(2)

and hence π2(tmf1(3)(2))∼= π2(ku(2)).
The diagram

commutes and the 5-lemma implies that π2(cone(j))∼=Z(2).

2.1.5. Connective topological modular forms with level structure (case n= 2, p= 3)
Forgetting a �0(2)-structure yields a map f : tmf(3)→ tmf0(2)(3) such that f is a 3-equivalence. We
will recall more details about these spectra at the beginning of Section 2.2. Again, we obtain that
the bottom nontrivial homotopy group of the spectrum of topological André–Quillen homology is
π4(TAQtmf(3) (tmf0(2)(3)))∼= π4(cone(f )). There is a short exact sequence

0= π4tmf(3)→ π4tmf0(2)(3) =Z(3)→ π4cone(f )→ π3tmf(3)
∼=Z/3Z→ 0

so a priori π4cone(f ) could be isomorphic to Z(3) or to Z(3) ⊕Z/3Z.
There is an equivalence:

tmf(3) ∧ T � tmf0(2)(3)

where T = S0 ∪α1 e4 ∪α1 e8 with α1 denoting the generator of π s
3 at 3, [10, Lemma 2, p. 382], [36,

Theorem 4.15]. Thus, T is part of a cofiber sequence:
S0→ T→�4cone(α1)

and we obtain a cofiber sequence:
tmf(3) = tmf(3) ∧ S0→ tmf(3) ∧ T � tmf0(2)(3)→ tmf(3) ∧�4cone(α1)

and thus
π4(cone(f ))∼= π4(tmf(3) ∧�4cone(α1))∼= π0(tmf(3) ∧ cone(α1)).

But as we have a short exact sequence:
0= π0(�

3tmf(3))→ π0(tmf(3))∼=Z(3)→ π0(tmf(3) ∧ cone(α1))→ 0

we obtain
π4(TAQtmf(3) (tmf0(2)(3)))∼=Z(3).
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2.2. Relative topological Hochschild homology

In [19] (see also [20] for a correction), we show that the relative topological Hochschild homology
spectra THH�(ku(p)) and THHko(ku) have highly nontrivial homotopy groups. Here, we extend these
results to the relative THH-spectra of tmf(3)→ tmf0(2)(3), Tmf(3)→ Tmf0(2)(3) and tmf0(2)(3)→ tmf(2)(3).
For formulas concerning the coefficients of elliptic curves, we refer to [16].

Recall that we have tmf0(2)(3) � τ�0tmf(2)hC2
(3) . By [53, §7], we know that π∗tmf(2)(3)

∼=Z(3)[λ1, λ2] with
|λi| = 4 and with C2-action given by λ1 �→ λ2 and λ2 �→ λ1 [53, Lemma 7.3]. Since |C2| is invertible in
π∗tmf(2)(3), the E2-page of the homotopy fixed point spectral sequence is given by:

H∗(C2, π∗tmf(2)(3))=H0(C2, π∗tmf(2)(3))= π∗(tmf(2)(3))
C2 .

Thus, we have

π∗tmf0(2)(3) =Z(3)[λ1 + λ2, λ1λ2]=Z(3)[a2, a4]

with a2 =−(λ1 + λ2) and a4 = λ1λ2. Recall the following facts about the homotopy of tmf(3) (see for
instance [18, p. 192]), we have

π∗tmf(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(3){1}, ∗= 0;

Z/3Z{α1} ∗ = 3;

Z(3){c4}, ∗= 8;

Z(3){c6}, ∗= 12;

0, ∗= 4, 5, 6, 7;

where α1 is the image of α1 ∈ π3(S(3)) under π3(S(3))→ π3tmf(3). By [53, Proof of Proposition 10.3],
we have that the map π∗tmf(3)→ π∗tmf0(2)(3) satisfies c4 �→ 16a2

2 − 48a4 and c6 �→−64a3
2 + 288a2a4.

(There is a discrepancy between our sign for c6 and that in [53].)
We know from personal communication with Mike Hill that there is a fiber sequence of tmf0(2)(3)-

modules:

Tmf0(2)(3) −→ tmf0(2)(3)[a
−1
2 ]× tmf0(2)(3)[a

−1
4 ]

f−−→ tmf0(2)(3)[(a2a4)−1].

See [24, Proposition 4.24] for the analogous statement at p= 2. The kernel of π∗(f ) has Z(3)-basis:{(
an

2am
4 ,−an

2am
4

) |n, m ∈N}
and the cokernel has Z(3)-basis: {

1

an
2am

4

| n � 1, m � 1

}
.

We get that in negative degrees π∗Tmf0(2)(3) is given by:
⊕
n,m�1

Z(3)

{
1

an
2am

4

}
,

where 1
an

2am
4

has degree −4n− 8m− 1. The π∗tmf0(2)(3)-action is given by:

a2 · 1

an
2am

4

=

⎧⎪⎨
⎪⎩

1

an−1
2 am

4

, if n � 2

0, otherwise,

and analogously for a4.
By the gap theorem (see for instance [28]), we have π∗Tmf(3)

∼= 0 for −21 < ∗< 0.
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Lemma 2.1.

π∗(tmf0(2)(3) ∧tmf(3) tmf0(2)(3))∼=Z(3)[a2, a4, r]/r3 + a2r2 + a4r =: Z(3)[a2, a4, r]/I

where r has degree 4 and is mapped to 0 under the multiplication map.

Proof. As above, we use that we have an equivalence of tmf(3)-modules tmf(3) ∧ T � tmf0(2)(3). Here,
T is defined by the cofiber sequences:

S3
(3)

α1−→ S0
(3) −→ cone(α1)−→ S4

(3)

and

S7
(3)

φ−→ cone(α1)−→T−→S8
(3),

where S7
(3)

φ−−→ cone(α1)→ S4
(3) is equal to α1. We get an equivalence of left tmf0(2)(3)-modules:

tmf0(2)(3) ∧tmf(3) tmf0(2)(3) � tmf0(2)(3) ∧tmf(3) (tmf(3) ∧ T)� tmf0(2)(3) ∧ T .

Smashing the above cofiber sequences with tmf0(2)(3) gives cofiber sequences of tmf0(2)(3)-modules:

�3tmf0(2)(3)
ᾱ1−−→ tmf0(2)(3) −−→ tmf0(2)(3) ∧ cone(α1)

δ−−→�4tmf0(2)(3)

and

�7tmf0(2)(3)
φ̄−−→ tmf0(2)(3) ∧ cone(α1)−−→ tmf0(2)(3) ∧ T

�−−→�8tmf0(2)(3).

The map ᾱ1 is zero in the derived category of tmf0(2)(3)-modules, because π∗(tmf0(2)(3)) is concentrated
in even degrees. We therefore get an equivalence of tmf0(2)(3)-modules:

tmf0(2)(3) ∧ cone(α1)� tmf0(2)(3) ∨�4tmf0(2)(3).

This implies that tmf0(2)(3) ∧ cone(α1) has nontrivial homotopy groups only in even degrees, and
therefore that φ̄ is zero in the derived category of tmf0(2)(3)-modules. We get an equivalence of
tmf0(2)(3)-modules:

tmf0(2)(3) ∧ T � tmf0(2)(3) ∨�4tmf0(2)(3) ∨�8tmf0(2)(3).

We can assume that the map tmf(3)→ tmf0(2)(3) factors in the derived category of tmf(3)-modules as:

tmf(3) −−→ tmf(3) ∧ cone(α1)−−→ tmf(3) ∧ T
�−−→ tmf0(2)(3)

This implies that the inclusion in the first smash factor:

ηL : tmf0(2)(3)→ tmf0(2)(3) ∧tmf(3) tmf0(2)(3)

is given by:

tmf0(2)(3) −−→ tmf0(2)(3) ∧ cone(α1)−−→ tmf0(2)(3) ∧ T
�−−→ tmf0(2)(3) ∧tmf(2) tmf0(2)(3).

We obtain that the map:

tmf0(2)(3) ∧ cone(α1)−−→ tmf0(2)(3) ∧ T � tmf0(2)(3) ∧tmf(3) tmf0(2)(3) −−→ tmf0(2)(3)

is a left inverse for tmf0(2)(3)→ tmf0(2)(3) ∧ cone(α1). It is also clear that the inclusion in the second
smash factor ηR : tmf0(2)(3)→ tmf0(2)(3) ∧tmf(3) tmf0(2)(3) is given by:

tmf0(2)(3)
�−−→ tmf(3) ∧ T −−→ tmf0(2)(3) ∧ T

�−−→ tmf0(2)(3) ∧tmf(3) tmf0(2)(3).

We claim that

ηR(a2) ∈ π4(tmf0(2)(3) ∧tmf(3) tmf0(2)(3))∼= π4(tmf0(2)(3) ∧ T)∼= π4(tmf0(2)(3) ∧ cone(α1))

maps to three times a unit under:

δ4 : π4(tmf0(2)(3) ∧ cone(α1))→ π4(�
4tmf0(2)(3))∼=Z(3).

https://doi.org/10.1017/S0017089523000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000083


Glasgow Mathematical Journal 537

By commutativity of the diagram:

it suffices to show that a2 ∈ π4(tmf(3) ∧ T) maps to three times a unit under the bottom map. This follows
by the exact sequence:

We define r to be the unique element in π4(tmf0(2)(3) ∧ cone(α1)) that maps to that unit under δ4 and that is
in the kernel of the composition of π4(tmf0(2)(3) ∧ cone(α1))∼= π4(tmf0(2)(3) ∧ T) and the multiplication
map

π4(tmf0(2)(3) ∧ T)∼= π4(tmf0(2)(3) ∧tmf(3) tmf0(2)(3))→ π4(tmf0(2)(3)).

We have that 3r− ηR(a2) is in the image of π4(tmf0(2)(3))→ π4(tmf0(2)(3) ∧ cone(α1)) and thus can be
written as 3r− ηR(a2)= n · a2 for an n ∈Z(3). Applying the map

π4(tmf0(2)(3) ∧ cone(α1))∼= π4(tmf0(2)(3) ∧ T)∼= π4(tmf0(2)(3) ∧tmf(3) tmf0(2)(3))→ π4(tmf0(2)(3))

gives n=−1.
We claim that ηR(a4) ∈ π8(tmf0(2)(3) ∧ T) maps to three times a unit under

�8 : π8(tmf0(2)(3) ∧ T)→ π8(�8tmf0(2)(3)).

As above one sees that it suffices to show that a4 maps to three times a unit under the map π8(tmf(3) ∧
T)→ π8(�8tmf(3)). For this, we consider the exact sequence:

Using that π4(tmf(3))= 0= π5(tmf(3)), one gets that π8(tmf(3))∼= π8(tmf(3) ∧ cone(α1)), and under this
isomorphism the first map in the exact sequence identifies with

π8(tmf(3))∼=Z(3){c4}→ π8(tmf0(2)(3))∼=Z(3){a2
2} ⊕Z(3){a4}, c4 �→ 16a2

2 − 48a4.

As π6(tmf(3))= 0= π7(tmf(3)), one gets that π7(tmf(3) ∧ cone(α1))∼= π7(�4tmf(3)), and under this isomor-
phism the third map in the exact sequence identifies with

π8(�8tmf(3))∼=Z(3)→ π3(tmf(3))∼=Z/3Z{α1}, 1 �→ α1.

One obtains that the second map in the exact sequence maps a4 to 3 ·m and a2
2 to 9 ·m for a unit m ∈Z(3).

Since the map π∗(tmf(3))→ π∗(tmf0(2)(3)) maps c4 to 16a2
2 − 48a4, we have the equation:

16 · a2
2 − 48 · a4 = 16 · ηR(a2)

2 − 48 · ηR(a4)

in π∗(tmf0(2)(3) ∧tmf(3) tmf0(2)(3)). Replacing ηR(a2) by 3r+ a2 and using torsion-freeness, one gets the
equation:

ηR(a4)= a4 + 3r2 + 2a2r.
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We apply the map �8 : π8(tmf0(2)(3) ∧ T)→ π8(�8tmf0(2)(3)) to this equation and obtain by torsion-
freeness of π∗(tmf0(2)(3)):

�8(r
2)=m.

We thus have an isomorphism of left π∗(tmf0(2)(3))-modules:

π∗(tmf0(2)(3) ∧tmf(3) tmf0(2)(3))∼= π∗(tmf0(2)(3))⊕ π∗(tmf0(2)(3)){r} ⊕ π∗(tmf0(2)(3)){r2}.
Since the map π∗(tmf(3))→ π∗(tmf0(2)(3)) maps c6 to −64a3

2 + 288a2a4, we have

−64 · a3
2 + 288 · a2 · a4 =−64 · ηR(a2)3 + 288 · ηR(a2) · ηR(a4)

in π∗(tmf0(2)(3) ∧tmf(3) tmf0(2)(3)). Replacing ηR(a2) by 3r+ a2 and ηR(a4) by a4 + 3r2 + 2a2r and using
torsion-freeness, one gets

r3 + a2r
2 + a4r= 0.

This implies the lemma.

Remark 2.2. One can give a different proof of Lemma 2.1 using the perspective of Hopf algebroids and
associated stacks (see computations in [9, Section 5]).

Theorem 2.3. The canonical map tmf0(2)(3)→ THHtmf(3) (tmf0(2)(3)) is far from being an equivalence.
More precisely,

THHtmf(3)
∗ (tmf0(2)(3))∼=Z(3)[a2, a4]⊕

⊕
i�0

�14i+5Z(3)[a2]

∼= π∗tmf0(2)(3) ⊕
⊕
i�0

�14i+5π∗tmf0(2)(3)/(a4).

Proof. We use the Tor spectral sequence

E2
∗,∗ = Tor

π∗(tmf0(2)(3)∧tmf(3)
tmf0(2)(3))

∗,∗ (π∗tmf0(2)(3), π∗tmf0(2)(3))⇒ π∗THHtmf(3) (tmf0(2)(3))

in order to calculate relative topological Hochschild homology. For determining

TorZ(3)[a2,a4,r]/I
∗,∗ (Z(3)[a2, a4], Z(3)[a2, a4])

we consider the free resolution of Z(3)[a2, a4] as a Z(3)[a2, a4, r]/I-module:

· · · −→�12Z(3)[a2, a4, r]/I
r2+a2r+a4−−−−−−−→�4Z(3)[a2, a4, r]/I

r−−→Z(3)[a2, a4, r]/I.

Applying (−)⊗Z(3)[a2,a4,r]/I Z(3)[a2, a4] yields

· · · −−→�12Z(3)[a2, a4]
a4−−→�4Z(3)[a2, a4]

0−−→Z(3)[a2, a4]

and hence we get

E2
n,∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π∗(tmf0(2)(3)), n= 0;

�4+12kZ(3)[a2], n= 2k+ 1, k � 0;

0, otherwise.

We note that all nontrivial classes in positive filtration degree have an odd total degree. Since the edge
morphism π∗(tmf0(2)(3))→ THHtmf(3)

∗ (tmf0(2)(3)) is the unit, the classes in filtration degree zero cannot
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be hit by a differential and the spectral seqence collapses at the E2-page. Since E2
n,m = E∞n,m is a free

Z(3)-module for all n, m, there are no additive extensions.

As for the connective covers, we have an equivalence of Tmf(3)-modules Tmf(3) ∧ T � Tmf0(2) [36,
§4.6] such that the map Tmf(3)→ Tmf0(2)(3) factors in the derived category of Tmf(3)-modules as:

Tmf(3)→ Tmf(3) ∧ cone(α1)→ Tmf(3) ∧ T � Tmf0(2)(3).

Using the gap theorem, one can argue analogously to the proof of Lemma 2.1 to show that

π∗(Tmf0(2)(3) ∧Tmf(3) Tmf0(2)(3))∼= π∗Tmf0(2)(3)[r]/(r3 + a2r2 + a4r).

Theorem 2.4. There is an additive isomorphism:

THHTmf(3) (Tmf0(2)(3))∼= π∗Tmf0(2)(3) ⊕
⊕
i�0

�14i+5Z(3)[a2]⊕
⊕
i�1

�14iZ(3)

{
1

ai
2a4

}
.

Proof. As above we have the following free resolution of π∗(Tmf0(2)(3)) as a module over

C∗ = π∗(Tmf0(2)(3) ∧Tmf(3) Tmf0(2)(3)):

· · · r−−→�12C∗
r2+a2r+a4−−−−−−−→�4C∗

r−−→C∗ −−→ π∗Tmf0(2)(3) −−→ 0.

We get that the E2-page of the Tor spectral sequence:

E2
∗,∗ = TorC∗

∗,∗(π∗Tmf0(2)(3), π∗Tmf0(2)(3))−−→ π∗THHTmf(3) (Tmf0(2)(3))

is given by:

E2
n,∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π∗Tmf0(2)(3), n= 0;

�4+12kπ∗Tmf0(2)(3)/a4, n= 2k+ 1, k � 0;

ker
(
�12kπ∗Tmf0(2)(3)

·a4−−→�12(k−1)+4π∗Tmf0(2)(3)

)
, n= 2k, k > 0

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π∗Tmf0(2)(3), n= 0;

�4+12kZ(3)[a2], n= 2k+ 1, k � 0;

�12k
⊕

n�1 Z(3){ 1

an
2a4

}, n= 2k, k > 0.

Since all nontrivial classes in positive filtration have an odd total degree, the spectral sequence collapses
at the E2-page. There are no additive extensions, because the E∞ = E2-page is a free Z(3)-module.

Theorem 2.5. We have an additive isomorphism:

π∗THHtmf0(2)(3) (tmf(2)(3))∼=Z(3)[λ1, λ2]⊕
⊕
i�0

�10i+5Z(3)[λ1].

Proof. The map π∗tmf0(2)(3)→ π∗tmf(2)(3) is given by Z(3)[λ1 + λ2, λ1λ2]→Z(3)[λ1, λ2]. One easily
sees that

Z(3)[λ1, λ2]∼=Z(3)[λ1 + λ1, λ1λ2]⊕Z(3)[λ1 + λ2, λ1λ2]λ1,

so π∗tmf(2)(3) is a free π∗tmf0(2)(3)-module. We get

π∗(tmf(2)(3) ∧tmf0(2)(3) tmf(2)(3))= π∗tmf(2)(3) ⊗π∗tmf0(2)(3) π∗tmf(2)(3)

=Z(3)[λ1, λ2, a]/a2 + λ1a− λ2a,
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where a= ηR(λ1)− λ1. Let C∗ =Z(3)[λ1, λ2, a]/a2 + λ1a− λ2a. We have the following free resolution
of π∗tmf(2)(3) as a C∗-module:

· · · ·a−−→�8C∗
·(a+λ1−λ2)−−−−−−−→�4C∗

·a−−→C∗ −−→ π∗tmf(2)(3) −−→ 0

Thus, the E2-page of the Tor spectral sequence:

E2
∗,∗ = TorC∗

∗,∗(π∗tmf(2)(3), π∗tmf(2)(3))−−→ π∗THHtmf0(2)(3) (tmf(2)(3))

is given by:

E2
n,∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π∗tmf(2)(3), n= 0;

�8k+4π∗tmf(2)(3)/(λ1 − λ2), n= 2k+ 1, k � 0;

0, otherwise.

Since the nontrivial classes in positive filtration have odd total degree, the spectral sequence collapses
at the E2-page. There are no additive extensions, because the E2 = E∞-page is a free Z(3)-module.

2.3. The discriminant map

Let A→ B be a map of commutative ring spectra and G be a finite group that acts on B through A-algebra
maps such that A→ BhG is an equivalence. One then can define the discriminant map dB|A : B→ FA(B, A)
[44, Definition 6.4.5]. The map dB|A is right adjoint to the trace pairing:

B∧A B
μ−−→ B

tr−−→ A.

Here, μ is the multiplication of B, and tr is defined to be the composite:

B−−→ BhG
N−−→ BhG �←− A,

where N is the norm map. One has that (A→ B) ◦ tr is homotopic to
∑

g∈G g. If A→ B is a G-Galois
extension, then dB|A is a weak equivalence [44, Proposition 6.4.7]. Rognes proposes that the deviation of
dB|A from being a weak equivalence might be used for measuring ramification. Note that if A and B are
connective, then tr and dB|A are defined even if only A� τ�0BhG. We show in the examples of �p→ kup

and ko→ ku that d does notice the ramification, but it does not give any information about the type of
ramification.

Proposition 2.6. There is a cofiber sequence:

kup

dkup |�p−−−−−→ F�p (kup, �p)−−→
p−2∨
i=1

�−2p+2i+2HZp.

Proof. We know that F�p (kup, �p) can be decomposed as:

F�p (kup, �p)� F�p

(
p−2∨
i=0

�2i�p, �p

)
∼=

p−2∏
i=0

�−2i�p �
p−2∨
i=0

�−2i�p

and dkup|�p can be identified with a map:
p−2∨
i=0

�2i�p→
p−2∨
i=0

�−2i�p.

As π∗kup is a free graded π∗�p-module, we can calculate the effect of dkup|�p algebraically via the trace
pairing: the element �2i1 ∈ π∗�2i�p corresponds to ui, and it maps an element uj to tr(ui · uj). Since
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(�p→ kup) ◦ tr is
∑

g∈Cp−1
g, the sum of (p− 1) �p-algebra maps, we have

tr(ui+j)=
⎧⎨
⎩

0, (p− 1) � i+ j,

(p− 1)ui+j, (p− 1) | i+ j.

Hence on the level of homotopy groups, dkup|�p maps 1 ∈ π0�
0�p to (p− 1) · 1 ∈ π∗�0�p = π∗�p and for

0 < i � p− 2 it maps �2i1 ∈ π∗�2i�p via multiplication with (p− 1)v1 = (p− 1)up−1 to π∗�−2p+2i+2�p.
On the summands �2i�p, we get the following maps:

As (p− 1) is a unit in π0(�p) the cofiber of

�2i�p
(p−1)v1−−−−−−→�−2p+2i+2�p

is �−2p+2i+2HZp.

Note that ko� τ�0kuhC2 , but as the trace map tr : ku→ kuhC2 has the connective spectrum ku as a
source, it factors through τ�0kuhC2 � ko, and we obtain a discriminant dku|ko : ku→ Fko(ku, ko). We fix
notation for π∗ko as:

π∗ko=Z[η, y, ω]/(2η, η3, ηy, y2 − 4ω)

with |η| = 1, |y| = 4, and |ω| = 8.

Proposition 2.7. There is a cofiber sequence ku
dku|ko−−−−→ Fko(ku, ko)−−→�−2HZ.

Proof. The cofiber sequence �ko
η−−→ ko

c−−→ ku
δ−−→�2ko

η−−→�ko induces a cofiber sequence:

Fko(�ko, ko)
η−−→ Fko(�2ko, ko)

δ−−→ Fko(ku, ko)
c−−→ Fko(ko, ko)

η−−→ Fko(�ko, ko)

which is equivalent to

�−1ko
η−−→�−2ko

δ−−→ Fko(ku, ko)
−c−−→ ko

−η−−→�−1ko.

This is the twofold desuspension of the cofiber sequence of and hence,

Fko(ku, ko)��−2ku.
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We consider the composition c∗ ◦ dku|ko : ku→ Fko(ku, ko)→ Fko(ku, ku). As c∗ is part of the cofiber
sequence

Fko(ku, �ko)
η∗−−→ Fko(ku, ko)

c∗−−→ Fko(ku, ku)

and as η is trivial on ku, we know that c∗ induces a monomorphism on the level of homotopy groups.
As dku|ko is adjoint to the trace pairing, the composite

π∗ku−−→ π∗Fko(ku, ko)−−→ π∗Fko(ku, ku)

can be identified with

π∗ku−−→ π∗Fko(ku, ku)
(id+t)∗−−−−→ Fko(ku, ku)

where t denotes the generator of C2, and the first map is adjoint to the multiplication ku∧ko ku→ ku.
The target of c∗ is Fko(ku, ku)� Fku(ku∧ko ku, ku), and we know by work of the first author,

documented in [20, Proof of Lemma 0.1] that

π∗Fku(ku∧ko ku, ku)∼=Homku∗ (ku∗[s]/(s2 − su), �−∗ku∗),

so we can control the effect of c∗ ◦ dku|ko on homotopy groups.
Note that t induces a ku-linear map t∗ : ku→ t∗ku, where t∗ku is the ku-module given by restriction

of scalars along t.
As t2 = id, we therefore obtain

Fko(ku, ku)
t∗−−→ Fko(ku, t∗ku)

and a commutative diagram

Here, β induces the map on π∗ that sends an f : (ku∧ko ku)∗ →�−iku∗ to

(ku∧ko ku)∗
(t∧id)∗−−−→ (ku∧ko ku)∗

f−−→�−iku∗
t−−→�−iku∗.

If we denote the right unit ηR : ku→ ku∧ko ku applied to u by ur, then we have the relation 2s+ ur = u.
As (t ∧ id)∗(u)=−u and (t ∧ id)∗(ur)= ur, this implies that

(t ∧ id)∗(2s)= 2s− 2u.

Torsion-freeness then yields (t ∧ id)∗(s)= s− u.
The adjoint of the multiplication map π∗ku→ π∗Fko(ku, ku) maps ui to the map that sends 1 to �−2iui

and s to zero. Therefore, the composite c∗ ◦ dku|ko maps ui to the map with values 1 �→�−2i(ui + (−1)iui)
and

s �→ (s− u)ui �→−t(ui+1)= (−1)iui+1.

In order to understand the effect of dku|ko, we consider the diagram

where we can identify c∗ : π∗Fko(ku, ko)∼= π∗+2(ku)→ π∗(ko) with π∗�−2δ.
The application of c∗ gives the restriction to the unit c : ko→ ku. Say (dku|ko)∗(u2)= x ∈ π6(ku). Then

π∗�−2δ(x)= λy, and as c∗(y)= 2u2, we obtain that c∗(dku|ko)∗(u2)=�−4y and therefore (dku|ko)∗(u2)= u3.
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Similarly c∗(dku|ko)∗(u4)=�−82ω and (dku|ko)∗(u4)= u5. By π∗(ko)-linearity, these calculations yield

(dku|ko)∗(u
2i)= u2i+1

for all i � 0.
Restriction to the unit of the odd powers of u gives zero.
All the ui send s to±ui+1 under c∗ ◦ (dku|ko)∗, so also the odd powers of u have to hit a generator under

(dku|ko)∗, so as a map from ku to �−2ku the map dku|ko has cofiber �−2HZ.

Remark 2.8. To prove Proposition 2.7, one can alternatively use that the map dku|ko : ku→ Fko(ku, ko)�
�−2ku is in fact ku-linear [44, Lemma 6.4.6] and that it becomes an equivalence after applying −∧ko

KO�−∧ku KU, because KO→KU is a Galois extension.

3. Describing ramification
3.1. Log-étaleness

It is shown in [49] and [50] that �→ ku(p) is log-étale with respect to the log structures that are generated
by v1 and by u. We will use the class u ∈ π2ku(2) in order to define a pre-log structure for ko(2)→ ku(2)

and show that ko(2)→ ku(2) is not log-étale with respect to this pre-log structure. This indicates that the
map is not tamely ramified. We use the notation from [50].

Let ω denote the Bott element ω ∈ π8ko(2). The complexification map sends ω to u4.
By [50, Lemma 6.2], we have an exact sequence

Here, D(u) and D(ω) are the pre-log structures for the elements u and ω as in [50, Construction 4.2],
and TAQ(−,−)(−,−) is log topological André–Quillen homology [50, Definition 5.20]. The commu-
tative ring spectrum C is given by ko(2) ∧SJ D(w) SJ D(u), where SJ is the functor from commutative
J -space monoids to commutative ring spectra defined in [52, p. 2139]. For the definition of the functor
γ (−), see [51, Section 3] and [50, p. 457]. Using [50, Lemma 4.6], it follows that γ (D(w)) and γ (D(u))
have the homotopy type of the sphere and that γ (D(w))→ γ (D(u)) is multiplication by 4. Therefore,
we get

π0

(
ku(2) ∧ γ (D(u))/γ (D(w))

)
=Z/4Z.

We want to show that π1TAQC(ku(2))= 0= π0TAQC(ku(2)). By [6, Lemma 8.2], it suffices to show that
C→ ku(2) is an 1-equivalence. Since π1(ku(2))= 0, it is enough to show that the map is an isomorphism
on π0. Since SJ D(w) and SJ D(u) are concentrated in nonnegative J -space degrees by [48, Example
6.8], they are connective. Thus, it is enough to show that SJ D(w)→ SJ D(u) induces an isomorphism on
π0. For this, we only have to prove that H0(SJ D(w), Z)→H0(SJ D(u), Z) is an isomorphism. Since this
map is a ring map, we only need to know that both sides are Z. This follows from [49, Proposition 5.2,
Corollary 5.3]. Hence, we obtain the following result:

Theorem 3.1. The map (ko(2), D(ω))→ (ku(2), D(u)) is not log-étale.

One could try to distinguish between tame and wild ramification by testing for log-étaleness. In
many examples, however, it is less obvious what a suitable log structure would be. Calculations with log
structures that are generated by more than one element are challenging because the methods above do
not work. For a thorough investigation of log-étaleness and for related calculations, see Lundemo [31].
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3.2. Ramification and Tate cohomology

In the algebraic context of Galois extensions of number fields and corresponding extension of number
rings, tame ramification yields a normal basis and a surjective trace map. Both facts are actually also
sufficient in order to distinguish tame from wild ramification. For structured ring spectra, it does not
work to impose these properties on the level of homotopy groups, because even for finite faithful Galois
extensions these would not hold. Instead, we propose to use the Tate construction in order to understand
ramification.

Remark 3.2. Let G be a finite group. Usually one calls a G-module M cohomologically trivial, if
Ĥi(H; M)= 0, for all i ∈Z and all H < G. If M is a commutative ring S, however, it suffices to require
Ĥi(G; S)= 0 for all i ∈Z: In particular, Ĥ0(G; S)= 0, and hence the norm map NG : SG→ SG (resp. the
trace map trG : S→ SG) is surjective. Thus, 1SG is in the image of the norm, say NG[x]= 1SG for [x] ∈ SG.
If H < G, then we consider the diagram:

and therefore we can express can express 1SH as:

1SH = i∗(1SG )= i∗NG[x]=NHtrG
H[x],

so 1SH is in the image of NH and Ĥ0(H; S)= 0. But Ĥ∗(H; S) is a graded commutative ring with unit
[1SH ]= 0, and thus Ĥ∗(H; S)= 0.

The same argument shows that the surjectivity of the trace map suffices for being cohomologically
trivial.

In particular, if the Tate cohomology is nontrivial, then the trace map is not surjective and this
indicates wild ramification. In the following, we transfer this relationship to structured ring spectra.

We need the following generalization of Tate cohomology; for background, see [21]. If E is a spec-
trum with an action of a finite group G, then there is a norm map N : EhG→ EhG from the homotopy
coinvariants of E with respect to G, EhG, to the homotopy fixed points, EhG. Its cofiber is the Tate con-
struction of E with respect to G, EtG. If E is an Eilenberg–MacLane spectrum E=HD for some abelian
group D, then π∗((HD)tG)∼= Ĥ−∗(G; D).

Even if A→ B is a G-Galois extension of ring spectra in the sense of Rognes [44, Definition 4.1.3],
it is not true that this implies that B is faithful as an A-module [44, Definition 4.3.1]. An example due
to Wieland is the C2-Galois extension F((BC2)+, HF2)→ F((EC2)+, HF2)�HF2 which is not faithful:
the F((BC2)+, HF2)-module spectrum (HF2)tC2 is not trivial, but HF2 ∧F((BC2)+ ,HF2) (HF2)tC2 ∼∗. In fact,
a G-Galois extension A→ B is faithful if and only if BtG is contractible [44, Proposition 6.3.3].

In the following, we denote by τ�0X the connective cover of a spectrum X. Note that for a map
A→ B between connective commutative ring spectra with a finite group G acting on B via commutative
A-algebra maps it makes sense to replace the usual homotopy fixed point condition by the condition that
A is weakly equivalent to τ�0BhG. In many examples, BhG won’t be connective. The map A→ B factors
through A→ BhG→ B, but as A is connective, we can consider the induced map on connective covers
and obtain a map of commutative ring spectra:

τ�0A= A→ τ�0B
hG→ τ�0B= B,

that turns τ�0BhG into a commutative A-algebra spectrum.
For any spectrum X, we denote by τ<0X the cofiber of the map τ�0X→ X.

https://doi.org/10.1017/S0017089523000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000083


Glasgow Mathematical Journal 545

Lemma 3.3. Let G be a finite group and let e be a naive connective G-spectrum. Then,

τ�0ehG→ ehG→ τ<0etG

is a cofiber sequence and in particular, τ<0etG � τ<0ehG.

Proof. We consider the norm sequence:

ehG
N−−→ ehG −−→ etG.

As ehG is a connective spectrum, we have that π−1ehG = 0. Hence, applying τ�0 still gives rise to a cofiber
sequence:

We combine the norm cofiber sequences with the defining cofiber sequence of τ<0 and obtain

Thus, τ<0ehG � τ<0etG and the cofiber sequence in the second row then yields the claim.

Remark 3.4. In many cases, if BtG 	� ∗, then π∗(BtG) is actually periodic. As the canonical Künneth
map:

π∗(B
tG)⊗π∗(BhG) π∗(B)→ π∗(B

tG ∧BhG B)

is a map of graded commutative rings and as π∗(BtG)∼= π∗(BhG) in negative degrees, a periodicity gen-
erator in a negative degree would map to zero in π∗B for connective B and hence π∗(BtG)⊗π∗(BhG) π∗(B)
is the zero ring. But then also π∗(BtG ∧BhG B)∼= 0 and

BtG ∧BhG B�∗.
Therefore, B would not be a faithful BhG-module in these cases. This emphasizes the importance of
replacing the condition that A be weakly equivalent to BhG by the requirement that A� τ�0(BhG).

From Lemma 3.3, we also know that in order to show that BtG 	� ∗ for connective B it is sufficient to
show that τ<0BhG is not trivial.

We recall the following result from [44]:

Proposition 3.5. [44, Proposition 6.3.3] Assume that G is a finite group, B is a cofibrant commutative
A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an
A-module and if

h : B∧A B
∼−−→ F(G+, B),

then BtG �∗.
Rognes assumes that A� BhG, but that assumption is not needed. A referee actually noted

that it follows from the remaining assumptions in the Proposition: smashing the map A→ BhG
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with B over A yields B→ B∧A BhG. Dualizability of B as an A-module identifies the latter with
(B∧A B)hG � (F(G+, B))hG � B. As B is faithful as an A-module, this implies A� BhG.

Remark 3.6. Assume that G is a finite group and that B is a cofibrant commutative A-algebra on which
G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if BtG 	� ∗,
then we know that h : B∧A B→ F(G+, B) cannot be a weak equivalence, that is, that A→ B is ramified.

In the following, we study the Tate constructions in several examples. To compute the homotopy of
BtG, we use the Tate spectral sequence:

E2
n,m = Ĥ−n(G; πm(B))=⇒ πn+mBtG

which is of standard homological type, multiplicative, and conditionally convergent. In particular by
[11, Theorem 8.2], it converges strongly if it collapses at a finite stage.

If the spectrum B is connective, then the vanishing of π∗BtG is equivalent to the fact that 1 ∈ π0B is in
the image of the norm map N : π0(BhG)→ π0B. We learned a proof of this fact from one of the referees
of an earlier version: one direction follows directly because the Postnikov section B→H(π0(B)) is a
G-equivariant map of commutative ring spectra. For the reverse note that the vanishing of Ĥ∗(G; π0(B))
implies the vanishing of Ĥ∗(G; πn(B)) for all n. Thus, the E2-page of the Tate spectral sequence is trivial
and hence BtG �∗.

Remark 3.7. Fix a prime p. In the connective examples below, if Ĥ∗(G; π0(B(p)))= 0, then we might say
that B has tame ramification at p and for primes p with Ĥ∗(G; π0(B(p))) 	= 0 we might say that B has wild
ramification at the prime p.

Work by Greenlees, Hovey, Kuhn, and Sadofsky [22, 26, 29] shows that for any finite group and any
K(n)-local spectrum (or T(n)-local spectrum), the Tate construction is trivial K(n)-locally (or T(n)-
locally). See also [14]. Note that in our examples, K(n)-localization for large n is actually trivial, so the
information about ramification is concentrated at small n.

We will now investigate the Tate construction in examples. First, we establish faithfulness:

Lemma 3.8. The map tmf0(2)(3)→ tmf(2)(3) identifies tmf(2)(3) as a faithful tmf0(2)(3)-module.

Proof. For the map tmf0(2)(3)→ tmf(2)(3), we know that C2 acts on tmf(2)(3) via commutative
tmf0(2)(3)-algebra maps and that tmf0(2)(3) � τ�0(tmf(2)hC2

(3) ). The trace map tr : tmf(2)(3)→ tmf(2)hC2
(3) fac-

tors through τ�0(tmf(2)hC2
(3) )� tmf0(2)(3), because tmf(2)(3) is connective. As in [44, Lemma 6.4.3], one

can show that the composite:

tmf0(2)(3) � τ�0(tmf(2)hC2
(3) )−−→ tmf(2)(3)

(0.3)tr−−→ τ�0(tmf(2)hC2
(3) )� tmf0(2)(3)

is homotopic to the map that is the multiplication by |C2| = 2. As 2 is invertible in π0tmf0(2)(3), the trace
map tr : tmf(2)(3)→ tmf0(2)(3) is a split surjective map of tmf0(2)(3)-modules and hence tmf0(2)(3)→
tmf(2)(3) is faithful.

Alternatively, faithfulness also follows from the fact that π∗tmf(2)(3) is a free π∗tmf0(2)(3)-module (see
the proof of Theorem 2.5).

Lemma 3.9. The spectrum tmf0(2)(3) is faithful as a tmf(3)-module spectrum.

This result also follows from [40, Proposition 4.15].

Proof. We already mentioned the identification tmf0(2)(3) � tmf(3) ∧ T where T = S0 ∪α1 e4 ∪α1 e8 with
α1 ∈ (π3S)(3), [10, Lemma 2, p. 382], [36, Theorem 4.15]. Note that α1 is nilpotent of order 2 because
(π6S)(3) = 0.
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Assume that M is a tmf(3)-module with

∗�M ∧tmf(3) tmf0(2)(3) �M ∧ T .

Then, the cofiber sequences

S0 −−→ T −−→�4cone(α1) and cone(α1)−−→ T −−→ S8

imply that �4cone(α1)∧M��M and �8M ��cone(α1)∧M and therefore,

�10M �M.

The equivalence is induced by a class in π10S(3)
∼=Z/3Z{β1}. As this is nilpotent, we get that M �∗.

Remark 3.10. It is known that ko→ ku is faithful [44, Proposition 5.3.1] and dualizable, and it is clear
that �→ ku(p) is faithful and dualizable as the inclusion of a summand. As tmf1(3)(2) can be identified
with tmf(2) ∧DA(1) as a tmf(2)-module [36, Theorem 4.12], where DA(1) is a finite cell complex realizing
the double of A(1)= 〈Sq1, Sq2〉, it is dualizable. An argument as in [44, Proof of Proposition 5.4.5] shows
that tmf(2)→ tmf1(3)(2) is faithful.

At the moment we don’t know whether tmf0(3)(2)→ tmf1(3)(2) is faithful. The diagram

commutes, so if M is a tmf0(3)(2)-module spectrum with M ∧tmf0(3)(2) tmf1(3)(2) �∗, then multiplication
by 2 is a trivial self-map on M. Meier shows [40, Proposition 4.13] that tmf1(3) is not perfect as a
tmf0(3)-module; hence, tmf1(3) is not a dualizable tmf0(3)-module.

Meier also proves that tmf
[

1
n

]→ tmf(n) is dualizable and faithful for all n [40, Theorem 4.4,
Proposition 4.15]; thus, tmf(2)(3) is dualizable and faithful as a tmf(3)-module.

We show that the extensions tmf0(3)(2)→ tmf1(3)(2) and tmf(3)→ tmf(2)(3) have nontrivial Tate
spectra. For ku, the Tate spectrum with respect to the complex conjugation C2-action satisfies

kutC2 �
∨
i∈Z

�4iHZ/2Z.

This result is due to Rognes (compare [44, §5.3]). As kutC2
(p) �∗ for odd primes p, 2 is the only wildly

ramified prime.

Theorem 3.11. For tmf1(3)(2) with its C2-action, we obtain an equivalence of spectra:

tmf1(3)tC2
(2) �

∨
i∈Z

�8iHZ/2Z.

Proof. We use the calculations in [33]. They compute the homotopy fixed point spectral sequence:

E2
n,m =H−n(C2; πmTMF1(3)(2))−−→ πn+mTMF0(3)(2),

where π∗TMF1(3)(2) =Z(2)[a1, a3][�−1] with �= a3
3(a3

1 − 27a3). From their computations, we deduce
the following behavior of the Tate spectral sequence:

E2
n,m = Ĥ−n(C2; πmTMF1(3)(2))−−→ πn+mTMF1(3)tC2

(2) : (3.1)

Let Rn,m be the bigraded ring Z/2[a1, a3][�−1][ζ±] with |ζ | = (−1, 0). If we assign odd weight to a1,
a3, and ζ , then the E2-page of the Tate spectral sequence is the even part of Rn,m. Alternatively, it is
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given by:

E2
∗,∗ = S∗[�

−1][x±],

where S∗ is the subalgebra of Z/2Z[a1, a3] generated by a2
1, a1a3, a2

3, and where x= ζa3
3 ∈ E−1,18. Note

that a2
3 is invertible in this ring with a−2

3 = ((a1a3)a2
1 − 27a2

3)�−1. By Mahowald–Rezk’s computations,
the first nontrivial differential is d3 and we have

d3(a2
1)=(x(a1a3)a−4

3 )3, d3(a1a3)= 0, d3(a2
3)= x3(a1a3)a−8

3 ,

d3(x)=0, d3(�−1)= 0.

Using the Leibniz rule, we get that the class cn,m,k,l,i = (a2
1)n(a1a3)m(a2

3)
k�−lxi with n, m, k, l ∈N and i ∈Z

has differential

d3(cn,m,k,l,i)= (n+ k)x3(a1a3)a−10
3 cn,m,k,l,i.

It follows that ker d3 is generated as an F2-vector space by the classes cn,m,k,l,i with n+ k= 0 in F2. We
claim that

E4
∗,∗ ∼= F2[x±, �±].

To see this, note the following: If n+ k= 0 in F2 and m > 0, then cn,m,k,l,i is zero in E4
∗,∗ because

d3(cn,m−1,k+5,l,i−3)= cn,m,k,l,i.

If n+ k= 0 in F2 and n, k > 0, then we have cn,0,k,l,i = cn−1,2,k−1,l,i. This is in the image of d3, because
n− 1+ k− 1= 0 in F2 and 2 > 0. If n= 0 in F2 and n > 0, then

cn,0,0,l,i = (a2
1)n�−lxi

= (a1a3)2(a2
1)

n−1a−2
3 �−lxi

= (a1a3)2(a2
1)

n−1((a1a3)a2
1 + a2

3)�−1�−lxi

= cn,3,0,l+1,i + cn−1,2,1,l+1,i,

and both of these summands are in the image of d3. Furthermore, note that in E4
∗,∗ we have

�= (a1a3)3 + a4
3 = c0,3,0,0,0 + a4

3 = a4
3.

This implies that for k= 0 in F2 we have

c0,0,k,l,i = (a4
3)

k
2 �−lxi ≡�−l+ k

2 xi

in E4
∗,∗. We thus get a surjective map F2[x±, �±]→ E4

∗,∗, which is injective, because the classes �lxi for
l, i ∈Z are not divisible by (a1a3) in S∗[�−1][x±].

From Mahowald–Rezk’s computations, we get that the next nontrivial differential is d7 and that we
have

d7(x)= 0 and d7(�)= x7�−4.

This gives E8
∗,∗ = 0.

We now want to determine the behavior of the Tate spectral sequence:

E2
n,m = Ĥ−n(C2; πmtmf1(3)(2))=⇒ πn+mtmf1(3)tC2

(2) . (3.2)

If we assign again odd weight to a1, a3, and ζ , then the E2-page is the even part of

Z/2Z[a1, a3][ζ±],
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and one sees that the map of spectral sequences from (3.2) to (3.1) is injective. We get that d3 is the first
nontrivial differential in (3.2) and that we have

d3(a1a3)= 0, d3(a2
1)= (a1ζ )3,

d3(a2
3)= a1a2

3ζ
3, d3(a3ζ )= (a1a3)ζ 4,

d3(a1ζ )= 0, d3(ζ 2)= a1ζ
5.

Note that an F2-basis of the E3-page is given by the classes:

dn,m,i =(a2
1)n(a2

3)
m(ζ 2)i,

en,m,i =(a2
1)n(a1a3)(a2

3)
m(ζ 2)i,

fn,m,i =(a2
1)n(a2

3)
m(a1ζ )(ζ 2)i,

gn,m,i =(a2
1)n(a2

3)
m(a3ζ )(ζ 2)i,

for n, m ∈N, and i ∈Z.
The d3-differential on these classes is given by:

d3(dn,m,i)= (n+m+ i) · fn,m,i+1,

d3(en,m,i)= (n+m+ i) · gn+1,m,i+1,

d3(fn,m,i)= (n+m+ i) · dn+1,m,i+2,

d3(gn,m,i)= (n+m+ i+ 1) · en,m,i+2.

We get

E4
∗,∗ =

⊕
m∈N,i∈Z

m+i=0 in F2

F2{d0,m,i} ⊕
⊕

m∈N,i∈Z
m+i+1=0 in F2

F2{g0,m,i}.

The map of spectral sequences from (3.2) to (3.1) satisfies

d0,m,i �→�
m−3i

2 x2i, g0,m,i �→�
m−3i−1

2 x2i+1.

In particular, one sees that it is injective on E4-pages. We conclude that the next nontrivial differential
in spectral sequence (3.2) is d7 and that we have

d7(d0,m,i)= m− 3i

2
g0,m,i+3, d7(g0,m,i)= m− 3i− 1

2
d0,m+1,i+4.

We obtain that

E8
∗,∗ =

⊕
i∈Z

F2{d0,0,4i} =
⊕
i∈Z

F2{ζ 8i}.

Since the E8-page is concentrated in the zeroth row, the spectral sequence collapses at this stage. This
gives the answer on the level of homotopy groups. As tmf1(3)tC2 is an E∞-ring spectrum [39], it is in
particular an E2-ring spectrum and therefore a result by Hopkins–Mahowald (see [38, Theorem 4.18])
implies that tmf1(3)tC2 receives a map from HF2 and therefore is a generalized Eilenberg–MacLane
spectrum of the claimed form.

Theorem 3.12. The �3-action on tmf(2)(3) yields

tmf(2)t�3
(3) �

∨
i∈Z

�12iHZ/3Z.
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Proof. We use the calculation of [53]. She proves that Tmf(2)t�3
(3) �∗ via the Tate spectral sequence:

E2
n.m = Ĥ−n

(
�3; πm(Tmf(2)(3))

)=⇒ πn+m(Tmf(2)t�3
(3) ).

The E2-page is given by:

Z/3Z[α, β±, �±]/α2

with |α| = (−1, 4), |β| = (−2, 12), and |�| = (0, 24), and the differentials are determined by:

d5(�)= αβ2 and d9(α�2)= β5.

Since tmf(2)(3) is the connective cover of Tmf(2)(3), the E2-page of the Tate spectral sequence:

Ē2
n,m = Ĥ−n

(
�3; πm(tmf(2)(3))

)=⇒ πn+m(tmf(2)t�3
(3) )

is the Z/3Z-module ⊕
k,l∈Z

k+2l�0

Z/3Z{βk�l} ⊕
⊕
k,l∈Z

1+3k+6l�0

Z/3Z{αβk�l}.

Using the map of Tate spectral sequences Ē∗∗,∗ → E∗∗,∗ one sees that

Ē6
∗,∗ =

⊕
k,l∈Z

k+6l�0

Z/3Z{βk(�3)l} ⊕
⊕
k,l∈Z

13+3k+18l�0

Z/3Z{(α�2)βk(�3)l}.

Since E6
∗,∗ =Z/3Z[α�2, β±, �±3]/(α�2)2 the map Ē6

∗,∗ → E6
∗,∗ is injective. Thus, d̄9 is determined by

d9 and one gets

Ē10
∗,∗ =

⊕
k∈Z

Z/3Z{(β−6�3)k}.

The class β−6�3 has bidegree (12, 0), and so Ē10
∗,∗ is concentrated in line zero and the spectral sequence

collapses at this stage.

So the extensions ko(2)→ ku(2), tmf(3)→ tmf(2)(3), and tmf0(3)(2)→ tmf1(3)(2) have nontrivial Tate
constructions.

In contrast, KO→KU is a faithful C2-Galois [44, §5], and TMF0(3)→ TMF1(3) and Tmf0(3)→
Tmf1(3) are both faithful C2-Galois extensions [37, Theorem 7.12]. In general, TMF[1/n]→ TMF(n)
is a faithful GL2(Z/nZ)-Galois extension [37, Theorem 7.6] and the Tate spectrum Tmf(n)tGL2(Z/nZ) is
contractible [37, Theorem 7.11].

For general n > 1, constructions of tmf1(n) and tmf0(n) are tricky: for some large n, π1Tmf1(n) is non-
trivial. Lennart Meier constructs a connective version of Tmf1(n) with trivial π1 as an E∞-ring spectrum
in [40, Theorem 1.1] so that there are E∞-models of tmf1(n) for all n.

We cannot determine the homotopy type of the GL2(Z/nZ)-Tate construction of tmf(n) for arbitrary
n > 1, but we can identify cases where it is nontrivial.

Theorem 3.13. Assume that for n � 2 we have that π1Tmf1(n)= 0. Then tmf(n)tGL2(Z/nZ) �∗ if and only
if the order of SL2(Z/nZ), or equivalently the order of GL2(Z/nZ), is a unit in Z

[
1
n

]
.

In particular, if n � 2 with π1Tmf1(n)= 0 and 2 � n or if n= 2k for k � 1, then tmf(n)tGL2(Z/nZ) 	� ∗.
Proof. Since tmf(n)hGL2(Z/nZ) is connective, the defining cofiber sequence of tmf(n)tGL2(Z/nZ) gives an

exact sequence:

· · · −−→ π0tmf(n)hGL2(Z/nZ)
N−−→ π0tmf(n)hGL2(Z/nZ) −−→ π0tmf(n)tGL2(Z/nZ) −−→ 0.
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We have that π0(tmf(n))∼=Z[ 1
n
, ζn], where ζn is a primitive nth root of unity. Consider the commutative

diagram

By the homotopy orbit spectral sequence, we have that the left-hand vertical map is an isomorphism.
By [27, p. 282], an element A ∈GL2(Z/nZ) acts on ζ i

n as:

Aζ i
n = ζ det A·i

n .

This implies that the ring in the lower right corner is Z
[

1
n

]
. Since we also have

π0tmf(n)hGL2(Z/nZ) ∼= π0tmf
[

1

n

]
=Z

[
1

n

]
and since the right-hand vertical map in the diagram is a map of rings, it follows that it is an isomorphism.
We thus have to compute the cokernel of the algebraic norm map:

N : Z

[
1

n
, ζn

]
GL2(Z/nZ)

−−→Z

[
1

n
, ζn

]GL2(Z/nZ)

=Z

[
1

n

]
.

We claim that its image is |SL2(Z/nZ)|Z [ 1
n

]
so that π0(tmf(n)tGL2(Z/nZ))∼=Z

[
1
n

]
/|SL2(Z/nZ)|.

Let ϕ(−) denote the Euler ϕ-function and let μ(−) denote the Möbius function. If d is the order of a
power ζ i

n, then the norm map N sends ζ i
n to∑

A∈GL2(Z/nZ)

ζ i det (A)
n = |SL2(Z/nZ)| ·

∑
r∈(Z/nZ)×

ζ ir
n

= |SL2(Z/nZ)| · ϕ(n)

ϕ(d)
·μ(d)

For the second equality note that the canonical map (Z/nZ)× → (Z/dZ)× is a surjection whose kernel
has order ϕ(n)

ϕ(d)
. Now, let d be the maximal number which is square-free and divides n. Then, since d is

square-free, we have μ(d) ∈ {1,−1}. If

n=
∏
p|n

[p prime

pkp ,

we have

ϕ(n)=
∏
p|n

p prime

pkp−1(p− 1)

and
ϕ(n)

ϕ(d)
=
∏
p|n

p prime

pkp−1.

Since the latter is a unit in Z
[

1
n

]
, we get that the image of the norm is |SL2(Z/nZ)|Z [ 1

n

]
. Therefore, we

have tmf(n)tGL2(Z/nZ) �∗ if and only if |SL2(Z/nZ)| is a unit in Z
[

1
n

]
. Since

|SL2(Z/nZ)| = n3
∏
p|n

p prime

1

p2
(p+ 1)(p− 1)

and |GL2(Z/nZ)| = ϕ(n) · |SL2(Z/nZ)|, we see that |SL2(Z/nZ)| is invertible in Z
[

1
n

]
if and only if

|GL2(Z/nZ)| is invertible in Z
[

1
n

]
.

https://doi.org/10.1017/S0017089523000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000083


552 Eva Höning and Birgit Richter

If n � 2 and 2 � n, then |GL2(Z/nZ)| and |SL2(Z/nZ)| are not units in Z
[

1
n

]
: let q be an odd prime

factor of n. Then in

n3
∏
p|n

p prime

1

p2
(p+ 1)(p− 1)

we have a factor of q− 1 and this is even, but 2 is not invertible in Z
[

1
n

]
.

If n= 2k for some k � 1, we obtain

|SL2(Z/nZ)| = 23k 3

4

which contains 3 as a non-invertible factor.

Note that Meier shows [40, Theorem 4.4 and Proposition 4.15] that tmf(n) is dualizable and faithful
as a tmf[1/n]-module.

Remark 3.14. For many n, the Tate construction tmf(n)tGL2(Z/nZ) is actually trivial. If n= 2k3� with k, ��
1 for instance, the order of GL2(Z/nZ) is invertible in Z

[
1
n

]
. Similarly, if n= p1 · . . . · pr for primes pi,

then |GL2(Z/nZ)| is invertible in Z
[

1
n

]
if for all pi the numbers pi − 1 and pi + 1 are invertible in Z

[
1
n

]
.

This is for instance the case if n= 2 · 3 · · · · · pm is the product of the first m prime numbers for any m � 2
or for n= 2 · 3 · 7= 42 but not for n= 2 · 3 · 11.

We close with a periodic example. For a fixed prime p, let En denote the Lubin-Tate spectrum whose
coefficient ring is

π∗(En)=W(Fpn )[[u1, . . . , un−1]][u±1],

where u is an element of degree 2 and the uis have degree 0. For a perfect field k, W(k) denotes the ring
of Witt vectors of k. The ring W(Fpn )[[u1, . . . , un−1]]= π0(En) represents deformations of the height
n Honda formal group law over Fpn . The quotient En/(p, u1, . . . , un−1)=Kn is a 2-periodic version of
Morava K-theory whose coefficient ring is the graded field π∗(Kn)= Fpn [u±1].

For any finite group G, F(BG+, En)→ F(EG+, En)� En is faithful in the Kn-local category [5,
Theorem 4.4]. At the moment, we don’t know whether En is a dualizable F(BG+, En)-module for any
finite group G.

In [5, Theorem 5.1], it is shown that F((BCpr )+, En)→ En is ramified and one can also consider more
general groups than Cpr . The corresponding Tate constructions are not trivial:

Lemma 3.15. For all r � 1 and n � 1

E
tCpr

n 	� ∗.
Proof. The Tate spectral sequence

Es,t
2 = Ĥ−s(Cpr ; πtEn)⇒ πs+t(E

tCpr

n )

has as E2-term

Ĥ−s(Cpr ; πtEn)∼=
⎧⎨
⎩

πtE
Cpr

n /pr = πtEn/pr, for s even,

ker (N)/im(t− 1)= 0, for s odd.
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As π∗(En) is concentrated in even degrees, the whole E2-term is concentrated in bidegrees (s, t) where
s and t are even. Therefore, all differentials have to be trivial and E2 = E∞. Thus, π∗(E

tCpr

n ) is highly
nontrivial.

Theorem 3.16. Assume that G is a finite group with p | |G|. Then, EtG
n is nontrivial when En is the

Lubin-Tate spectrum at the prime p.

Proof. The assumption implies that G has Cp as a subgroup. The restriction map induces a map on
Tate constructions EtG

n → E
tCp
n . For the remainder of the proof, we use the notation from [21], denoting

the Tate construction EtG
n by the G-fixed points t((En)G)G of a G-spectrum t((En)G). McClure [39] shows

that the E∞-structure on Tate constructions t((En)G)G is compatible with inclusions of subgroups and
Greenlees–May show [21, Proposition 3.7] that for any subgroup H < G the H-spectrum t((En)G) is
equivalent to t((En)H). Therefore, the inclusion of fixed points t((En)G)G→ t((En)G)H is a map of E∞-ring
spectra. As we know that E

tCp
n = t((En)G)Cp is nontrivial by Lemma 3.15, EtG

n cannot be trivial, either.
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