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Abstract

Iseki [11] denned a general notion of ergodicity suitable for functions <p : J —> X where J is an arbitrary
abelian semigroup and X is a Banach space. In this paper we develop the theory of such functions,
showing in particular that it fits the general framework established by Eberlein [9] for ergodicity of
semigroups of operators acting on X. Moreover, let si be a translation invariant closed subspace of the
space of all bounded functions from J to X. We prove that if s/ contains the constant functions and <p
is an ergodic function whose differences lie in si then (f e srf. This result has applications to spaces of
sequences facilitating new proofs of theorems of Gelfand and Katznelson-Tzafriri [12]. We also obtain
a decomposition for the space of ergodic vectors of a representation T : J —> L(X) generalizing results
known for the case J = 1+. Finally, when 7 is a subsemigroup of a locally compact abelian group G,
we compare the Iseki integrals with the better known Cesaro integrals.

1991 Mathematics subject classification (Amer. Math. Soc): primary 43A60; secondary 47A10, 47D03,
28B05.
Keywords and phrases: Ergodic, semigroup, differences, Beurling spectrum, invariant means, system of
invariant integrals.

1. Introduction

In a successful attempt to unify and extend the growing collection of ergodic theor-

ems, Eberlein [9] introduced systems of almost invariant integrals for semigroups of

continuous linear transformations on locally convex spaces. A semigroup possessing

such a system he called ergodic, and for such semigroups he proved a very general

mean ergodic theorem ([9, Theorem 3.1]). Since that time many more ergodic the-

orems have appeared and many have been revealed as special cases of Eberlein's

classical theorem. See for example [17].
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In a different direction, Iseki [11] introduced the notion of ergodicity of functions
<p : J —> X where / is a semigroup and X is a locally convex space. With it he was
able to show that every such function which is almost periodic in the sense of Maak
is necessarily ergodic.

Ruess and Summers [18] considered asymptotically almost periodic functions (p :
R+ —> X. They showed that if the indefinite integral <1> of <p is weakly almost periodic
in the sense of Eberlein, then <$> is asymptotically almost periodic. Subsequently
Basit [3] observed that weak almost periodicity could be replaced by the more general
property of ergodicity, that is the Cesaro integrals of <J> converge uniformly to a
constant. Moreover, he replaced asymptotically almost periodic functions by large
classes of functions. Ruess and Phong [16] independently obtained some of these
results.

Basit also observed that the integral problem discussed above is closely related to
the difference problem: if <p e Cb(J, X) and A,(p e srf c Ch(J, X) for all t e J, find
conditions that ensure <p € &/. Basit investigated this problem for the cases J = R+

or R and gave applications to the solutions of certain integro-differential difference
equations [3] and to the abstract Cauchy problem [4]. Once again ergodicity of <p
played an important role.

In the present paper we develop the theory of (Iseki) ergodic functions <p : J —> X
where J is an arbitrary semigroup and X is a Banach space. For the sake of simplicity
and clarity, we restrict ourselves to the case of abelian J. In particular, we show how
this theory fits into the framework established by Eberlein. Our main result concerns
the difference problem and its relationship with ergodicity. This is in Section 2.

In Section 3 we apply our results to spaces of sequences. Among other things we
obtain new proofs of theorems of Gelfand and Katznelson-Tzafriri on power bounded
elements of Banach algebras. Section 4 deals with representations of semigroups
on Banach spaces. We obtain a decomposition for the subspace of ergodic vectors
generalizing known results for the case J — Z+.

Finally, in section 5 we exhibit a large class of semigroups J for which one can
take limits of Cesaro integrals of functions <p in Cub(J, X). We show that these limits,
when they exist, are identical to the Iseki means. Similarly, when G is a locally
compact abelian group, we show that the means studied by Argabright [2] and Datry
and Muraz [7] for <p e Cb(G, X) are identical to the Iseki means. We conclude by
giving a simple condition on the Beurling spectrum of a function <p e Cuh(G, X) that
ensures <p is ergodic.
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2. Ergodicity

Throughout this paper, / will denote an abelian semigroup and X a Banach space
over K or C By B(J, X) we denote the space of bounded functions <p : J —> X,
endowed with the norm ||<p||oo = suP,<=y 11 (̂011- For such a function, <ps and A ^
will denote the translate and difference by 5 of <p, denned by <ps(t) = <p(t + s) and
As<p = <ps — <p for s, t € J. The closed subspaces of B(J, X) consisting of continuous
and uniformly continuous functions respectively are denoted Cb(J, X) and Cub(J, X).
We will use the same symbol, say x, for an element of X and for the function in B(J, X)
taking the constant value x.

Following Iseki [11,1] we say that a function <p : J —»• X is ergodic ifcpe B(J, X)
and there exists Mv e X such that for each s > 0 there are elements t\,... ,tn & J
with | | ( l /n) ]T]"=1(^(, — M^Hoo < e. The element Mv, clearly unique, is called the
(Iseki) mean of <p and the class of all such ergodic functions is denoted E(J, X). We
define M : E(J, X) -»• X by M(cp) = Mv.

PROPOSITION 2.1. The space E(J, X) is a translation invariant closed subspace of
B(J, X) containing all the constant functions. Moreover, M : E(J, X) —>• X is a
bounded linear map.

PROOF. Let cp, ty € E(J, X). By the definition of ergodicity, for each e > 0 there
e x i s t e l e m e n t s s{,... ,sm,tu... ,tn € / s u c h t h a t \\(l/m) Y^=\Wst — A^)l loo < s

and HU//I) E"= iM, - M^Wco < £• Since \\<pt\\oc < \\<p\\oc for all t e J, we obtain
lld/nw) Er=. E"=iK+o + ^,+,; -Mv- M+n*, < 2e. Hence <p + xj, e E(J, X)
and M(cp + \j/) = M(<p) + M(i/f). The rest of the proposition is proved similarly.

The following result shows that there are many ergodic functions. Further examples
will be provided later.

PROPOSITION 2.2. If<p e B(J, X) ands e J then As<p e E(J, X) and M(As<p) =

o.
PROOF. Given e > 0, choose « e N such that ||(l/w)<p||oo < e/2. Since (As(p), —

As+,(p — A,<p, we have | | ( l /«) Yl"j=\^sf)js\\oo < £• This proves the proposition.

The following alternative characterization of ergodic functions will be useful. For
this we set &(J) = {F c / : \F\ < oo} where \F\ is the cardinality of F. Then
^(J) becomes a directed set if we define F\ < F2 whenever there exists F e ^(J)
such that F2 = F, + F.

PROPOSITION 2.3. Let cp e B(J, X). Then <p € E(J, X) if and only if there exists
y e X such that \imFe#(J} ((1/ |F |) ]T,£F <p,) = y. In this case, y = Mv.
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PROOF. Let <p e E(J, X). For each e > 0 there is a set FB e &(J) such that
11(1/1^1) EreFr (V-MJWoo <B. If F e & (J) satisfies F > Fe, thatis F = Fe + H
for some H e &(J), then

1
<

showing that limFejr(7) (1/ |F | ) YlteF ¥• = Mv. The converse is clear.

Our next task is to set Iseki ergodicity in the framework of Eberlein. For this, let
y b e a sub-semigroup under composition of the Banach algebra L(E) of all bounded
operators A : E —*• E where £ is a Banach space. The orbit of x € E under 5? is
orb^(;t) = {Sx : S e SP\. A net (Aa)a€A in L(E) is called a system of invariant
integrals for 5? if

(2.1) Aax €

(2.2) sup || Aa || < oo,
aeA

for all x e E and a e A,

(2.3) lim \\(AaS - Aa)x\\ = lim \\(SAa - Aa)x\\ = Oforallx e E and S e y .
oreA ar€A

If (2.1), (2.2) hold but (2.3) only holds at x0 e E then we say (Aa) is a jys^w of
invariant integrals for y at XQ.

For (p e B(J, X), F e &(J) and s e 7, define RF<p = (1/ |F | ) XI,eF <P,, inter-
preted as 0 if F = 0, and Rs = R{s). Hence /? f , Rs e L(F) where £ = B(7, X).

PROPOSITION 2.4. T/ze net (RF)FG^(J) is a system of invariant integrals for the
translation semigroup & = {Rs : s e J}.

PROOF. For <p e B(J,X), (RFRS - RF)<P = RF(&s<p)- By Proposition 2.2,
) = 0 and so by Proposition 2.3, l\mFe^U)(RFRs — RF)(p = 0. Hence (2.3)

follows, and (2.1), (2.2) are obvious.

By Eberlein's mean ergodic theorem [9, Theorem 3.1] we have immediately

COROLLARY 2.5. For (p e B(J, X) the following are equivalent

(1) <p <= E(J,X)andM(<p) = y,
(2) ?/je «e? (RF<p)Fe^(j) converges to y,
(3) some subnet of (RF<P)F£&(J) converges weakly to y,
(4) y e co orbg? (<p) with y a constant function.
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Recall that the space W(J, X) of Eberlein weakly almost periodic functions consists
of the bounded functions <p : J —> X for which orb^(^) is weakly relatively compact.
From Corollary 2.5 we obtain

COROLLARY 2.6. W(J, X) is a closed linear subspace of E(J, X).

Note that M : E(J, X) —> X is a (translation) invariant mean in the sense of
[6, p.79] for scalar X and [21] for general X. The latter proved the existence of an
invariant mean on W(J, X) for certain non-abelian semigroups J [21, Theorem 8.7].
However, the invariant means in these references are not given explicitly.

To conclude this section we prove our main result for ergodic functions. With the
additional assumption that si contains the constant functions, this theorem provides
a solution of the difference problem.

THEOREM 2.7. Let si be a translation invariant closed subspace of B(J, X). If
<p e E{J, X) and A,cp <= si for all t e J, then <p - M((p) € si.

PROOF. For each non-empty/7 e ^(J)weha\e(p — RF(p = —(l/\F\)YlieF
si. The theorem follows from Corollary 2.5 by taking the limit over F in

3. Sequence spaces

In this section we give some applications of our results to spaces of sequences.
Here we take J = 2,2+ or Z~ and use the condition

(3.1) si is a closed subspace of B(J, X) such that i/r,|y e ,K/whenever i/f e B(I,X),
t e 1 and ir\j e si.

Examples of such subspaces si include E(J, X), the space C0(J, X) of functions
convergent to 0 at infinity, the space AP(Z, X) of almost periodic functions and the
space WAP(J, X) of Eberlein weakly almost periodic functions.

Following [3, Definition 4.1.2] we define the spectrum with respect to si of a
function <p e B(l, X) by sp^Op) = {y el : f(y) = 0 for all / e I^((p)} where 1
is the (unitary) character group of 1, f : Z —> C is the Fourier transform of / , and
I*(<P) = {/ e L'(Z) : (<p * f)\j e si}.

The following proposition is well-known for the case si = {0} and / = 2, in
which case sp -̂(̂ p) = sp(^), the Beurling spectrum of cp.

PROPOSITION 3.1. Let<p,f e B(Z,X), f e L'(Z), y e Z and si satisfy condition
(3.1).

(i) sp^(<p) = sp^(</>,) for all t e Z.
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(ii) sp (̂</> * / ) c sp^(<p) n supp(/) .
(iii) sp^(<p + f)£ sp^(<p) U sp^(f).
(iv) sp^(y<p) = y + sp^(<p).
(v) sp^(#>) = 0 if and only if<p\j € si.

PROOF. The arguments are the same as for the Beurling spectrum. See for example
[8, part II, p.988] or [5]. We present a proof for (v). If <p\j e si then by (3.1),
<p,\j e ^ f o r a l H e Z . Hence f o r / e Ll(2), (<p* f)\j = EnezfW<P-\j e ** • S o

Irf(<p) = Ll(I) and sp^(<p) = 0. Conversely, if sp^(<p) = 0 then l^{<p) = LX(T).
Choose /„ e L1 (Z) such that <p * /„ —> <p in 5 (2 , X). Since /„ e / ^ (#>), ((p * fn)\j €
^ / and since ^ is closed, <p\j e srf.

In the sequel we denote the elements of Z by yx or A., where A. e T the circle group
and Yx(n) = A." for n € Z. Hence yi or 1 is the unit in Z.

PROPOSITION 3.2. Suppose s/ satisfies (3.1), <p e fi(7, X), <p\} € £ (7 , X)
c {1}. rA«/i <0|y - M{<p\j) e si.

PROOF. By Wiener's tauberian theorem [15, 7.2.5] the condition sp^,(<p) c {1}
is equivalent to I^(<p) 2 {/ e L\T) : / ( I ) = 0}. For / € Z, g € L'(Z) and
X e J we have (A,g)"U) = (KA.(^) — O g M - Hence A,g e I^(<p). In other words,
(A,<^*g)|y = (<p* A,g)|y € ^ / . Settings = X[0), the characteristic function of {0} in
Z we have A,<p = A,#> * g and so A,̂ >|y G si. By Theorem 2.7, ^|y — M(<p\j) e si.

As a consequence we have the following application of spectra to the difference
problem.

T H E O R E M 3.3. Suppose si satisfies (3.1) and (p e B(l, X). Then sp^(<p) c j l ) if

and only if A,(p\j e s/for all t e / .

PROOF. Let A,^|y e si for all t € J. Kg e L\T) then by (3.1), (<p * A,g)|y =
Ef l £z«(«) (A,^)-Jy e ^ . So / ^ ( ^ ) 2 {A,£ : r e J, g e L'(Z)}. But (A,g;TU) =
( n ( 0 - l)g(A.) is zero for all t e J and g e V (Z) only when A = 1. So sp^(ip) c
{1}. Conversely, let sp^Up) c {1}. By Proposition 2.2, A,^|y e E(J,X) and

|y) = 0 for each f e / . By Proposition 3.2, A,<p\j e si.

In order to apply Theorem 3.3, we first prove the following result. In it, a(x)
denotes the Banach algebra spectrum of x.

THEOREM 3.4. Let X be a unital Banach algebra. Suppose si c B(J, X) satisfies
(3.1) and in addition ysi C si for all y € X. Let <p : Z —> X be a bounded
solution of the recurrence equation (p(n + 1) = xcp(n) + x//(n)for some x € X
i/r G Cfc(Z, X). //T/r|y € si then sp^(^) c a(x) D T.
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PROOF. Let A.o e T\CT(X). Choose 8 > 0 such that BS(XO) = {X <= C : |A. - A.o| <
$} ^ C\CT(JC). Take / e L'(Z) with f(k0) = 1 and supp(/) c Bj/4(X0). Let
£ = (p * / . It suffices to prove £|y e £/ , for then / € I^Up) and Ao ^ sp^(#>).

To do this, let g e L1 (Z) be such that g(A) = 1 for k e Bs/2(k0) n T, supp(g) c
fi,s(A.o) and £ e C'(T). Define h : T -»• X by A(X) = g(A.)(A.e - * ) - \ interpreted
as 0 outside Bs(k0), where <? is the unit in X. Then ^ € Cl(J, X) so h(k) =
Y.Z-och(n^~" f o r s o m e ^ e L ' (Z ' x ) with /i(/i)x = xh(n) for all n e T. Moreover,
if r}k(n) = Yi.(n + l)e - yk(n)x, where yk(n) = X" and X € B«/2(A.O) D T, then

h * r)x = yk. Indeed,

h * ^ ( n )
j J

= X"(Xe - x)g(X)(Xe - x)"1 = X".

Now £ = cp * f e B(I, X) and sp(£) c supp(/) c Bi/4(A.O), so there is a
sequence of trigonometric polynomials 7rm e B(2, X) converging pointwise to £ and
with sp(^n) c Bs/2(k0). Let r)m(n) = 7rm(n + l)e - x^m(n). Then h*r)m = nm.

From the recurrence equation, rjm(n) —> %(n + 1) — x^(«) = r(r * f(n) for each
n el. Hence £ ~h*\ff* f. Since £ = £ n e Z h(n) {^r * /)_„ and ys? c ^ for each
y € X, it follows from (3.1) that §|y e ^ / as required.

As a consequence we easily obtain the following two results. The first was proved
by Gelfand (see [12]) and the second by Katznelson and Tzafriri [12]. Recall that an
element x of a unital Banach algebra X is called power bounded if {x" : n e Z+} is
bounded and doubly power bounded if {x" : n e Z} is bounded.

COROLLARY 3.5. Let x be a doubly power bounded element of a unital Banach
algebra X. Ifo{x) = {1} then x = e.

PROOF. We may apply Theorem 3.4 with sf = {0}, J = 1, yjr = 0 and <p(n) = x".
So sp(<p) c a (x) n T - {1}. By Theorem 3.3, A,(p = 0 for all t e 1 and hence x = e.

COROLLARY 3.6. Let x be a power bounded element of a unital Banach algebra X.
If a (x)C\J c {Ijthen \\x"+] - x"\\ ->• Oas n -> oo.

PROOF. Apply Theorem 3.4 with .c/ = CQ(J,X), J = 1+ and <p, f as follows.
For n > 0 set <p(n) = jr", i/r(/i) = 0 and for n < 0 set <p(n) = e, rj/(h) — e — x. So

£ {1} a n d by Theorem 3.3, A,cp\j e ^z/forallf € 7. This gives the corollary.

In a subsequent paper we will use ergodicity and the difference problem to obtain
generalizations of these last two results.
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4. Ergodic vectors of representations

Throughout this section J will denote an abelian semigroup and T : J —>• L(X)
a representation. That is, T is a semigroup homomorphism mapping J into the
semigroup under composition L(X). The dual representation T* : J -> L{X*) is
defined by {x, T*(t)(p) = {T(t)x, <p)forxeX, t e J and <p e X*.

The space of faced points of T is N = N(T) = f)l€jker(T(t) - /) and its
complementary space is R = R(T) = span{r(^)x — x : x e X, s e J}. The closure
of R is denoted ~R = ~R{T). The set of ergodic vectors of T is Xerg = Xerg(7') = {x e
X : T(-)x e £ ( / , X)}.

Next let T( / ) be the range of T in L(X) and for F 6 ^ ( 7 ) define 7> € L(X) by
7fx = (1/|F|) ^leF T(t)x, again interpreted as 0 if F = 0. Finally, the orbit under
r of an element .* G X is orbr(jc) = orb^y^.*).

PROPOSITION 4.1. lfT:J-^>- L(X) is a representation and orbrU) is bounded
for some x e X, then the set (TF)Fe^-(J) is a system of invariant integrals for the
semigroup T(J) at x.

PROOF. Let s e J. The function T(-)x : J ->• X is bounded and hence by
Proposition 2.2, AsT(-)x e E(J,X) and M(AsT(-)x) = 0. By Corollary 2.5,
UmFRFAsT()x = 0 and in particular limf ||/?/rAsr(?)-*l! = 0 for each t e J. But
RFAsT(t)x = (RF+,T(s) -/?f+,)xandsolimf \\(RFT(s) - RF)x\\ =0 . Condition
(2.3) follows for this x. Since (2.1) and (2.2) are clear the proposition is proved.

COROLLARY 4.2. IfT.J^- L(X) is a representation and orbr(jc) is bounded for

some x e X then the following are equivalent

(i) x € Xerg(r) and M{T{-)x) = y,
(ii) (TFx)Fe#U) converges to y,

(iii) some subnet of(TFx)Fe$-(J) converges weakly to y,
(iv) y e N(T)DcdoTbT(x).

PROOF. By Eberlein's mean ergodic theorem (see Theorem 3.1 in [9] and the remark
following it) we conclude that (ii), (iii) and (iv) are equivalent. Let K = sup{||z|| :
z e OTbT(x)}. Then for each t e J and F e &{J) we have ||7y+,x — >>|| =
\\RFT(t)x - y\\ < \\RFT(-)x - y]^ < K\\TFX - y\\. Hence (TFx) -»• y in X if and

only if (RFT(-)x) -+ y in B(J, X). By Corollary 2.5, (ii) is equivalent to (i).

PROPOSITION 4.3. 7/T : / ->• L(X) is a bounded representation, then Xerg is a
closed linear subspace ofX. Moreover, Xerg = N © R.
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PROOF. Since £ ( / , X) is a linear space, so too is Xerg. The closedness of Xerg

follows from the boundedness of T and the closedness of E(J, X) in B(J, X). If
x € N then T(t)x = x for all t e / . Hence T{-)x e E(J, X) and M(T(-)x) = x,
showing N c Xerg. If z e R then there exist ti,... , tn e J and xu ... , xn e X such
that z = EJ=i (nO)* ; - -v;). Hence T(-)z = £y"=1 \TUxj- B y Proposition 22,
T(-)z e E(J, X) and M ( 7 ( ) z ) = 0. By Proposition 2.1, the same is true for z € ~R.
Hence R c Xerg and moreover, N D /? = {0}.

Finally we show Xerg c A? + ^ . If y e Xerg then by Corollary 4.2, M(T(-);y) e N.
Setting z = y — M(T(-)y) we show z e R. Indeed, for each e > 0 there exist
f,,... ,*„ e / such that \\(l/n)J2"j=l[T(t)T(tj)y - M(T(-)y)]\\ < e forall / € 7.
Now zc = ( l / « ) I ] " = l [ z - T(t + tj)z] e /? and ||z - ze|| < e, so z e fi. Hence
y € N + R and the proposition is proved.

The following two results provide examples of ergodic vectors.

COROLLARY 4.4. Let T : J ->• L(X) foe a representation andx e X. //orbr(;t) w
weakly relatively compact then x e XeTg(T).

PROOF. Since orbr(;t) is weakly relatively compact, it is bounded and by Proposi-
tion 4.1, (7>) is a system of invariant integrals for T(J) at x. Moreover, coorbr(;t)
is weakly relatively compact so (TFx) has a weak limit point y. By Corollary 4.2,
x e Xerg(r).

PROPOSITION 4.5. Let T : J ->• L(X) foe a bounded representation. If X is
reflexive, or more generally if N + R is dense in X, then Xerg = X.

PROOF. Since N + R c Xerg c X we conclude that Xerg = X whenever N + R is
dense in X. It remains to prove that N + R is dense in X if X is reflexive. For S c X
let S 1 = {<? e X* : (JC, ^) = 0 for all x <= 5}. It is easy to check that R1- = N(T*).
Hence for reflexive X, RiT*)1 = N(T**) = N. Further, Nx = R(T*)±L = ~R(T*).
Hence (N + R)1 = N±nR± = R~(T*) D N(T*) = {0}, showing that N + R is dense
inX.

As an application we present the following

PROPOSITION 4.6. Given A <E L(X) define T : Z+ -»• L(X) foy 7(n) = A". / /

x e Xerg(r) anJ A"+1x — A"x —> 0 as n —> oo //je« A"^: —>• >>/or some y e X with
Ay = y.

PROOF. We apply Theorem 2.7 with &/ = C0(J, X), J = 1+ and <p(n) = A"x.
Since L,<p z si for all r € 7 and ̂  e £ ( / , X) we conclude that <p — Mv e &/. So
J4"JC -> y where >• = Mv.
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REMARK 4.7. If A G L(X) and T : 1+ -* L(X) is given by T(n) = A" then
N(T) = ker(A - / ) and R(T) = range(A - / ) . If A is power bounded then T is
a bounded representation and if the Cesaro sums Anx = (l/n) YL"=\ &'x converge
weakly for some x € X then T(-)x is ergodic. If in addition X is reflexive then by
Propositions 4.1 and 4.5, X — N ® R. This special case may be found in [20, p.214].
Also see [10].

5. Cesaro and other means

Throughout this section we will assume that J is a measurable sub-semigroup of a
locally compact abelian group G carrying a fixed Haar measure fi. Let Jt(G) denote
the set of compact neighbourhoods of 0 in G and set Jf(J) = {V n / : V e J(f(G)
and fi(V n / ) ^ 0}. We shall call a net (Ka)a€A in JT(7) , a F0lner net if

,. n(KaA(Ka + s))
(5.1) hm = 0 forall.se/,

«£A fl(Ka)

where A denotes symmetric difference.
Condition (5.1) was introduced by F0lner (see [6, p.80]). As an example, let

G = K2 and / = {(xux2) e K2 : \x2\ < m{xx - a)} where a > 0 and m > 0. If
K,={x € J : \x\ < r) then K, e J T ( / ) , /i(«:) ~ r2 and /i(K,A(Kr + s)) ~ r for
fixed s e l Hence (A",.)r>a is a F0lner net.

We define the Cesaro integrals of functions cp € Ch(J, X) by CK<p(t) = (1//J.(K))

JK <p(t + 5 ) ^ M ( J ) for K G

PROPOSITION 5.1. 7/(5.1) toW^ then (CKa)aeA is a system of invariant integrals
for the translation semigroup ffi acting on Cub(J, X).

PROOF. Let K G X(J) and <p G CHfc(y, X). Given e > 0 choose V G J f (G) such
that ll^-^rlloo < eforall? e J andall^ G (t + V)DJ. Since ||Cjf^(s)-Cjf^(OII 5
\\<Ps -<Pt\\oo we conclude that CK<p G Ca6(y, J ) . Moreover, C^ € L(Cuh(J, X)). Next,
by the compactness of A" we can choose t\,... ,tm € K such that K c (Jm

=| (r; + V).
Set 7Ti = (r, + V) n K and for 2 < j < m, n, = {t, + V) D K\\jUxj. Then
K — U7=i7ry1 a n c ' t n e ni a r e disjoint measurable sets. Since

< £

we conclude that CKcp G coorb^(^), thereby proving (2.1).
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For (2.3), let s e J. Then

1

263

\\{CKR,-CK)<p\\0C =
teJ

= sup
teJ

I [<p(t + s + u) - <p(t + u)]d/x(u)

1

and (2.3) follows from (5.1). Since (2.2) is clear, the proposition is proved.

COROLLARY 5.2. If<p e Cub(J, X) and (5.1) holds, then the following are equival-
ent

(i) <p € E(J,X)andM(<p) = y,
(ii) the net {CKa,(p)a^A converges to y,

(iii) some subnet of (CKa<p)a£\ converges weakly to y.

PROOF. By Corollary 2.5 and Eberlein's mean ergodic theorem again, each of these
conditions is equivalent to y e coorba(<p) with y a constant function.

We come to our final system of invariant integrals. Let & = {/ e LX{G) : / > 0
and /(0) = 1}. Reiter [14, p.l 13] has proved the existence of a net (fa)aeA in &
satisfying lim\\R5fa — fa\\i = 0 for all s e G. For <p e Cub(G, X) we can define

Aa<p € cJ(G, X) by Aacp = <p * /„ . So \\Aa<p\\co < MU and Aa e L(Cub(G, X)).

PROPOSITION 5.3. The net (Aa)aeA is a system of invariant integrals for the trans-
lation semigroup Sf. = (Rs)seG acting on Cub(G, X).

PROOF. Given V e Jif(G) and q> e Cub(G, X) let fv = (l//x(V))x_v where
X-v is the characteristic function of —V. Then fv e 2? and since <p * fv =
(1//^(V))/V^(i^(5) = Cyi^, it follows from Proposition 5.1 that(p*/v ecoorb^(<p).
It is easy to check that &> c co{/v : V e J(f{G)}. Hence, <p * g? c coorb^(i^),
proving (2.1). Since || Aa || < 1, (2.2) holds. Finally, for s e G we have

\\{AaRs-A^U = MRstp-v)*/.^ = \\ip*(R,f«-fa)\\«, <

From the definition of (/„), (2.3) follows and the proposition is proved.

As for Corollary 5.2 we obtain

COROLLARY 5.4. For cp e Cub(G, X) the following are equivalent
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(i) <p e E(G,X)andM((p) = y,
(ii) the net (Aa<p)a€A converges to y,

(iii) some subnet of (Aa(p)aeA converges weakly to y.

Argabright [2] used the Reiter nets (/„) to prove an ergodic limit for scalar-valued
Eberlein weakly almost periodic functions on G. Datry and Muraz [7] also used them
to introduce ergodicity in Banach L1 (G)-modules.

We conclude with two more examples, firstly of some ergodic functions and
secondly of a non-ergodic one. Recall that for a function <p e Cb(G, X) the set
I((p) = {/ € L\G) : <p * f = 0} is a closed ideal of L\G). Let G denote the
character group of G, 0 the unit of G, and / : G —*• C the Fourier transform of / .
The Beurling spectrum of q> is sp(<p) = [y e G : f(y) = 0 for all / e /(<?)}.

THEOREM 5.5. Ifcp e Cuh(G, X) andO g sp(<p) then cp € E(G, X).

PROOF. Take V e J(f(G) with V n sp(<p) = 0 and / e L'(G) with /(0) = 1
and supp(/) c V. Then sp(<p * / ) = 0 so >̂ * / = 0. Moreover, / is continuous.
Now, given e > 0, choose a compact set K in G such that JC.K \f(t)\d^i{t) <
e/{\ + 2IMU). For 5 e G define g(s) = (<p - <p-s)f{s). Hence fc g(s)dlx(s) =
cp — cp * f = cp. Moreover, by Proposition 2.2, g(s) e E(G, X) and since <p is
uniformly continuous, g : G —> E(G, X) is continuous. Since K is compact, g\K is
separably-valued and hence Bochner integrable. Therefore fK g(s)dfi(s) e E(G,X).
But \\<p - fK g(s)d/j,(s)\\ < || / c ^ g(s)dfj,(s)\\ < e and so <p e E(G, X) as claimed.

EXAMPLE 5.6. Define cp : R ->• c0 by <p(t) = (sin(r//j)),^,. One easily checks that
<p e Cub(R, c0). Now the range of y> is not relatively compact in c0. For, if it were, then
given 0 < e < 1/4 there would exist ^ , . . . , tm e R such that inf; ||<p(?) — <p(tj)\\ < s
for all t e R. In particular we would have | sin(?/«)| < 2s for all n > N(e) and all
( 6 R , which is false. It follows that <p is not almost periodic. On the other hand <p' is
almost periodic (see [1, p. 53]) and so q> 4 E(R, c0). For otherwise, by Levitan [13]
or Basit [3, Theorem 3.1.1] it would follow that <p is almost periodic. From Theorem
5.5 we conclude that 0 e sp(<p).
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