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Abstract

Bulk directional enhancement factors are determined for axisymmetric (girdle and single-max-
imum) orientation fabrics using a transversely isotropic grain rheology with an orientation-
dependent non-linear grain fluidity. Compared to grain fluidities that are simplified as
orientation independent, we find that bulk strain-rate enhancements for intermediate-to-strong
axisymmetric fabrics can be up to a factor of ten larger, assuming stress homogenization over
the polycrystal scale. Our work thus extends previous results based on simple basal slip
(Schmid) grain rheologies to the transversely isotropic rheology, which has implications for
large-scale anisotropic ice-flow modelling that relies on a transversely isotropic grain rheology.
In order to derive bulk enhancement factors for arbitrary evolving fabrics, we expand the c-
axis distribution in terms of a spherical harmonic series, which allows the rheology-required
structure tensors through order eight to easily be calculated and provides an alternative to current
structure-tensor-based modelling.

Introduction

The viscosity of polycrystalline ice depends on physical properties such as the orientation dis-
tribution of individual grains (orientation fabric) (Shoji and Langway, 1985, 1988), grain sizes
(Goldsby and Kohlstedt, 1997; Kuiper and others, 2020a, 2020b; Fan and others, 2020), and
hardening effects due to crystal lattice defects (Faria and others (2014) and references therein).
The orientation fabric is particularly important because ice monocrystals deform by disloca-
tion slip (shear) along crystallographic planes (Fig. 1 left), where basal plane shear (planes
with normal c) is up to 100–1000 times softer than along any other plane (Weertman,
1973; Duval and others, 1983). As a consequence, anisotropic orientation fabrics can introduce
local directional hardening of a polycrystal (Thorsteinsson (2001, 2002) among others), which
in turn can affect the deformation of ice masses at large scales (Thorsteinsson and others,
2003; Gillet-Chaulet and others, 2006; Pettit and others, 2007; Martín and Gudmundsson,
2012; Hruby and others, 2020).

General monocrystal rheologies for ice, such as those proposed by Castelnau and others
(2008) and Suquet and others (2012), should be able to account for the variation in shear
resistance that occurs between different slip systems, including the observed non-linear
power law behaviour (Kamb, 1961; Duval and others, 1983). A popular simplified rheology
is the transversely isotropic rheology of Johnson (1977) (see Supplementary A and the nota-
tion section):

ė′ = h−1

(
t′ − E′

cc − 1
2

(t′·· cc)I+ 3(E′
cc − 1)− 4(E′

ca − 1)
2

(t′·· cc)cc

+ (E′
ca − 1)(t′· cc+ cc · t′)

)
,

(1)

h−1 = A′
(
t′·· t′ + 3(E′

cc − 1)− 4(E′
ca − 1)

2
(t′·· cc)2 + 2(E′

ca − 1)t′2·· cc
)(n′−1)/2

, (2)

which approximates monocrystals as axisymmetric with symmetry axis c (Meyssonnier and
Philip, 1996). Here t′ and ė′ are the microscopic deviatoric stress and strain-rate tensors,
A′ is an isotropic rate factor, and n′ is the power-law exponent. The enhancement factors E′

cc
and E′

ca are the strain-rate enhancements for compression/extension along c and shear parallel
to basal planes (Fig. 1):

ė′cc = ė′·· cc = h−1E′
cct

′
cc, (3)
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ė′ca = ė′·· ca = h−1E′
cat

′
ca, (4)

where a denotes any direction transverse to c, and the indices c and
a indicate the tensorial components in the direction of c and a,
respectively.

By averaging the rheology (1)–(2) over a polycrystal (defined
below), it is possible to construct a bulk (polycrystalline) rheology
that provides an anisotropic extension to Glen–Nye’s isotropic
flow law (Svendsen and Hutter, 1996), or to infer bulk directional
enhancement factors, the latter a prerequisite for bulk rheologies
such as the orthotropic flow law proposed by Gillet-Chaulet
and others (2005). Past work has, however, focused on the linear
(n′ = 1) monocrystal rheology (Gillet-Chaulet and others, 2005,
2006; Durand and others, 2007) or neglected the orientation-
dependent contributions to the non-linear fluidity h−1 (Pettit
and others, 2007; Martín and others, 2009; Ma and others,
2010; Martín and Gudmundsson, 2012; Hruby and others,
2020) by setting

h−1 ≃ A′(t′·· t′)(n′−1)/2. (5)

For strongly developed fabrics, bulk directional enhancement fac-
tors calculated using (1) with (5) (Gödert and Hutter, 1998;
Gagliardini and Meyssonnier, 1999) can meanwhile lead to smal-
ler enhancements compared to basal slip (Schmid) models that
include an orientation-dependent fluidity (Thorsteinsson, 2001).
Bulk rheologies that rely on (5) as the grain fluidity might there-
fore produce different flow regimes compared to (2).

It is not clear over which regimes of orientation fabric strength
(5) provides a good approximation to (2) (in the grain-averaged
rheology), or what fabric information the grain-averaged rheology
requires if (2) is to be used. In this letter, we address these ques-
tions by calculating bulk directional enhancement factors for
single-maximum and girdle fabrics using both the full (2) and
approximate (5) fluidities. In doing so, we find that the full fluid-
ity (2) requires specifying more detailed information about the
orientation distribution of grains (higher-order structure tensors),
which leads us to propose a new non-parametric spectral fabric
model instead of directly modelling the structure tensors.

Notation

Throughout, primes shall be used to denote rheological para-
meters, stresses and strain rates of monocrystals, as opposed to
non-primed variables used to denote bulk rheological parameters,
stresses and strain rates of polycrystals. Boldface symbols denote
vectors or tensors, the order of the latter being implicit by the
context. Let a and b be vectors, and A and B be second-order
tensors. The following products are then used: a·b = aibi, ab =
aibj (the outer, dyadic product), A·a = Aijaj, A··ab = Aijajbi,

A·B = AijBjk, and A··B = AijBji = tr(A·B), where summation
over repeated indices is implied. The identity matrix is denoted
by I, and the superscript T denotes the matrix transpose.

Averaged rheology

Following Azuma (1994) (among others), we define the bulk
strain rate, ė, as the average strain rate of grains in a polycrystal.
Moreover, we adopt the Sachs hypothesis (Sachs, 1929) that the
microscopic stress field, t′, can be assumed homogeneous over
the polycrystal and equal to the bulk stress at the polycrystal
scale, t. Taken together, the bulk strain rate is therefore

ė = 〈ė′(t′)〉 = 〈ė′(t)〉. (6)

By specifying the individual grain stresses in this way, grain strain
compatibility (aligned shared grain boundaries) is not guaranteed,
and mechanical interactions between grains are not directly
accounted for.

The Sachs hypothesis can broadly be regarded as an end-
member case along a spectrum of homogenization schemes. At
the opposite end, the Taylor hypothesis (Taylor, 1938) assumes
a homogeneous strain rate over the polycrystal. The Taylor
hypothesis is, however, not well adapted for strongly anisotropic
fabrics: five independent slip systems are required to accommo-
date for an arbitrary bulk strain rate (ė possesses five independent
components), but basal planes provide only two (Castelnau and
others, 1996). Although the realized stress and strain-rate fields
inside polycrystals are somewhere between the two end-member
cases, observations and experiments (Azuma and Higashi, 1985;
Azuma, 1995) suggest that assuming a homogeneous stress field
is a better approximation of the two. For brevity, we refer the
reader to Thorsteinsson (2001), Castelnau and others (1996) or
Montagnat and others (2014) for details and more sophisticated
homogenization schemes.

Given a prescribed stress that all grains are subject to, equation
(6) reduces to an average over all grain orientations. Provided with
a (unnormalized) grain c-axis distribution n(u, f) defined over
orientation space S2, the average strain rate of grains becomes

〈ė′(t)〉n(u,f) =
1
N

∫
S2
ė′(t)n(u, f)dV, (7)

where dΩ = sinθdθdf is the infinitesimal solid angle, and

N =
∫
S2
n(u, f)dV (8)

is the total number of grains. Unless stated otherwise, 〈·〉 = 〈·〉n(u,f) is
hereafter assumed implicit.

Averaging the rheology (1)–(2) using (7), the bulk strain rate
(6) is

〈ė′(t)〉 = 〈h−1〉t− E′
cc − 1
2

(t ··〈h−1c2〉)I

+ 3(E′
cc − 1)− 4(E′

ca − 1)
2

t ··〈h−1c4〉

+ (E′
ca − 1)(t ·〈h−1c2〉 + 〈h−1c2〉· t),

(9)

where ck is the k-th outer (dyadic) product of c with itself.
In the linear case, n′ = 1, the averaged terms reduce to
〈h−1ck〉= 〈A′ck〉=A′〈ck〉, and determining 〈ė′〉 therefore requires
constructing the second- and fourth-order structure tensors, 〈c2〉
and 〈c4〉 (Advani and Tucker, 1987). Likewise, for the

Fig. 1. Left: Monocrystal lattice composed of hexagonal cells. Three crystallographic
planes are highlighted in gray, where the c-axis indicates the basal-plane normal dir-
ection. Right: Monocrystal modelled as a transversely isotropic material with sym-
metry axis c and longitudinal (E′cc) and shear (E′ca) enhancement factors w.r.t. c.
The transverse direction, a, lies in the plane of isotropy (a⊥c).

570 Nicholas M. Rathmann and others

https://doi.org/10.1017/jog.2020.117 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.117


orientation-independent fluidity (5), the averaged terms reduce to
〈h−1ck〉 = A′(t′·· t′)(n′−1)/2〈ck〉, and hence 〈ė′〉 depends on the
same structure tensors.

As noted, the rheology of monocrystals has been experimen-
tally found to follow a power law with an exponent of 2 to 3
(Duval and others, 1983). In the non-linear case of n′ = 3, the
averaged terms in (9) become (for any integer k)

〈h−1ck〉 = A′
(
(t ·· t)〈ck〉

+ 3(E′
cc − 1)− 4(E′

ca − 1)
2

t ··〈ck+4〉·· t

+ 2(E′
ca − 1)t2··〈ck+2〉

)
,

(10)

and determining 〈ė′〉 therefore requires constructing the
structure tensors 〈c2〉, 〈c4〉, 〈c6〉 and 〈c8〉. That is, adopting
the orientation-dependent fluidity (2) with n′ = 3 over the
orientation-independent fluidity (5) requires additionally specify-
ing the higher-order structure tensors 〈c6〉 and 〈c8〉.

We mention in passing that while considering the Taylor
hypothesis, too, would provide a more complete treatment
of the problem, averaging the inverse rheology, 〈t′(ė)〉 (see
Supplementary A), for n′ > 1 involves inverse fractional integrands
that are hard to rewrite in terms of even-ordered structure tensors
in analogy to (10).

With increasing order, structure tensors quantify the structure
of n(u,f) at an increasingly finer scale on S2. It is, however, not
clear over which regimes of fabric strength that (5) is a good
approximation to (2). In what follows, we address this question
by calculating bulk enhancement factors both assuming (5) and
while relaxing this assumption.

Bulk directional enhancement factors

The rheology of an anisotropic polycrystal can be characterized by
its bulk enhancement factors for compression/extension and
shear w.r.t. the fabric principal directions. Given 〈ė′(t)〉,
Thorsteinsson (2001) suggested defining the bulk enhancement
of the v–w component of ė as (v and w being arbitrary vectors)

Evw(t) = 〈ė′(t)〉 ·· vw
〈ė′(t)〉const.·· vw

, (11)

where 〈ė′(t)〉const. is the average strain-rate tensor of an isotropic
polycrystal (n(u, f) = const.).

It is important to note that Evw does not depend on A′ or the
stress magnitude because they are orientation independent
and therefore cancel by virtue of the division in (11). Likewise, if
h−1 is approximated by (5) (orientation independent), then Evw
does not depend on h−1 either. As a consequence, Evw derived
from the linear rheology (n′ = 1) is identical to that derived from
any non-linear rheology (n′ > 1) with (5). It therefore suffices to

compare the bulk enhancements resulting from the linear (n′ = 1)
and non-linear (n′ = 3) realizations of the rheology (1)–(2).

For the sake of simplicity, we restrict ourselves to consider axi-
symmetric fabrics, which includes single-maximum and girdle fab-
rics, and denote the fabric symmetry axis m (Fig. 2).
Complementary to m, let t denote any transverse direction to m,
and let p and q denote the ± 45° directions to m:
p = (m+ t)/

��
2

√
and q = (m− t)/

��
2

√
. Mechanical deformation

tests have found that shearing parallel to the basal planes is about
ten times easier for a polycrystal with aligned c-axes compared to
isotropic ice (Pimienta and others, 1987), and that shearing of poly-
crystals with a preferred-direction fabric can be up to 103–104 times
softer along the plane with normal m (i.e. m–t shear) compared to
the hardest direction, oriented at ≃ 45° to m (i.e. p–q shear) (Shoji
and Langway, 1985, 1988). Translated into enhancement factors, the
two observations suggest that Emt≃ 10 and Emt/Epq ≃ 103–104.
We shall therefore be interested in determining Emt and Epq for axi-
symmetric polycrystals, and, in addition, the compression/exten-
sional enhancement factor Emm. By definition, Emm and Emt are
the bulk enhancements of a polycrystal when subject to bulk
pure- and simple-shear stresses w.r.t. m and t:

Emm = Emm(t0[I/3−mm]), (12)

Emt = Emt(t0[mt+ tm]), (13)

where t0 is an arbitrary stress magnitude. Likewise,

E pq = E pq(t0[pq+ qp]). (14)

A summary of the enhancement factors and defined directions is
provided in Figure 2.

At this stage, an important caveat regarding the bulk strain rate
(9) is warranted: as pointed out by Meyssonnier and Philip
(1996), the mechanical environment of grains in a polycrystal is
very different from that of isolated grains (monocrystals) for
which (1)–(2) is assumed. Adopting values of E′

cc and E′
ca deter-

mined from mechanical tests on monocrystals can not necessarily
be expected to produce the observed bulk enhancement factors;
grain interactions can result in non-preferred slip systems being
activated in proportions that are inconsistent with the values E′

cc
and E′

ca derived from monocrystal mechanical tests. We shall
therefore suppose that E′

cc and E′
ca are unknown. For a fair com-

parison between the linear and non-linear rheology (and hence
(5) and (2)), E′

cc and E′
ca must be selected for both rheologies

such that Emt and Emt/Epq match observations in the end-member
case of a maximally strong fabric (aligned c-axes). Only after tun-
ing against this end-member case can the bulk directional
enhancement factors that result from linear and non-linear
grain rheologies be compared for intermediate fabric strengths
and the approximation (5) assessed.

Fig. 2. Axisymmetric polycrystal with longitu-
dinal (Emm), shear (Emt) and 45°-shear (Epq)
bulk enhancement factors w.r.t. the symmetry
axis m. The transverse direction, t, lies in the
plane of isotropy (t⊥m), while p is oriented at
45° to m and p⊥q.
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Unidirectional fabric

In a maximally strong fabric, c-axes are aligned with the symmetry
axis, c =m, and hence n(u, f) = d(r̂−m), where d(r̂) is the Dirac
delta function and r̂ = [sin(u) cos(f), sin(u) sin(f), cos(u)] is the
radial unit vector. For this distribution, the numerator in (11) is
easily determined from (9)–(10) by noting that 〈ck〉d(r̂−m) = mk.
Calculating the denominator in (11) is more tedious but nonethe-
less possible by rewriting ck in terms of spherical harmonics,
Ym
l (u, f), and using the contraction rule (writing the product of

any two spherical harmonics in terms of a new spherical harmonics
series). In order to stay focused on the physics, we refer the reader
to Supplementary B for details.

In Figure 3, Emt (blue-filled contours), Emt/Epq (solid contours)
and Emm (dashed contours) are shown as a function of E′

cc and E′
ca

in the case of the linear (Fig. 3a) and non-linear (Fig. 3b) grain
rheology. With increasing E′

ca and decreasing E′
cc, the soft-to-hard

shear-enhancement ratio, Emt/Epq, is generally found to increase,
Emm is found to decrease, while Emt monotonically approaches
a maximum value (dark blue). Overall, the orientation-dependent
fluidity (n′ = 3), compared to the orientation-independent case
(n′ = 1, or assuming (5)), yields stronger enhancement factors
(increased sensitivity to fabric strength). While it is possible to
carefully select E′

cc and E′
ca for both n′ = 1 and n′ = 3 such that

Emt/Epq≃ 103–104 according to Shoji and Langway (1985, 1988),
the value of Emt is limited to Emt≤ 2.5 for n′ = 1 and Emt≤
4.375 for n′ = 3, the latter value being approximately a factor of
2 smaller than experimentally determined values (Pimienta and
others, 1987).

Evolving single-maximum and girdle fabrics

Putting aside the upper bounds on Emt (treated in the discussion),
the question remains whether (5) can provide a good approxima-
tion to fluidity (2) (in the grain-averaged rheology) if they are
both tuned to reproduce Emt/Epq≃ 103–104 for a unidirectional
fabric. For this reason, let us consider a single-maximum and gir-
dle fabric which evolve from isotropy, a situation that is common
in polar ice masses.

During vertical pure shear, grains in a polycrystal (ice parcel)
tend to rotate towards the compressive axis (ẑ) and away from the
extensional axis (Azuma and Higashi, 1985; van der Veen and
Whillans, 1994), the former coinciding with the symmetry axis,
m. The preferred direction (single maximum) therefore strength-
ens with increasing parcel strain (decreasing ice-parcel height) in
the absence of other recrystallization processes (Alley, 1992;
Thorsteinsson, 2002). This corresponds to the situation found

at ice-sheet domes (Haefeli, 1963; Nye, 1963; Alley and others,
1995) where the vertical strain-rate, t−1

e , is taken to be approxi-
mately uniform, i.e. ∇u = t−1

e diag(1/2, 1/2, − 1). For girdle
fabrics, c-axes are distributed along the preferred plane with nor-
mal m, which is the result of extension along m and compression
in the transverse (preferred) plane in the absence of other recrys-
tallization processes (Alley, 1992). The corresponding velocity
gradient is the time-reversed of what forms a preferred-direction
fabric, i.e. te→−te. The girdle therefore strengthens with increas-
ing ice-parcel height.

In the absence of other microstructural processes, grain rota-
tion can be modelled as a (conservative) convection process on
S2 involving n(u, f) (Gödert and Hutter, 1998):

ṅ(u, f) = −∇·(n(u, f)ċ(u, f)), (15)

where ċ(u, f) is the c-axis velocity field on S2, and the divergence
operator acts on S2. Let us consider the simplest case where
grains rotate in response to the macroscopic stretching,
ė = (∇u+ (∇u)T)/2, and spin, v = (∇u− (∇u)T)/2, which
allows the detailed microscopic stress and strain-rate fields to be
neglected and hence interactions between neighbouring grains
to be disregarded. By moreover neglecting higher-order depend-
encies on the velocity gradient, and requiring that basal planes
preserve their orientation when subject to simple shear (like a
deck of cards), it has previously been proposed that (Svendsen
and Hutter, 1996; Gödert and Hutter, 1998)

ċ(u, f) = v·c− ė·c− cc·ė·c( ), (16)

for an arbitrary c-axis c = c(u,f) = [sin(u) cos(f), sin(u) sin(f),
cos(u)].

Notice that (15)–(16) represents a separate kinematic deform-
ation experiment which, given ∇u, provides an idealized time-
evolution of n(u, f) (and hence 〈ck〉) as input for 〈ė′(t)〉; that
is, ṅ(u, f) does not depend on the grain rheology. When dynam-
ically modelling ice flow, the two should be coupled, but for the
present purpose it suffices to consider the bulk enhancement fac-
tors resulting from a given orientation fabric distribution, n(u, f).

In order to determine Evw for any fabric, the distribution
n(u, f) must be able to represent structure that is fine enough to
account for all the rheology-required structure tensors. For this rea-
son, we expand n(u, f) in terms of a spherical harmonic series

n(u, f) =
∑L
l=0

∑l

m=−l

nml Y
m
l (u, f), (17)

Fig. 3. Bulk enhancement factors Emt (blue-filled contours), Emm (dashed contours) and Emt/Epq (solid contours) for a unidirectional orientation fabric, c =m, as a
function of the grain enhancement factors E′cc and E′ca in the case of the (a) linear and (b) non-linear grain rheology. Crosses indicate the grain parameters used to
model the bulk enhancement factors of an evolving fabric (Fig. 4).
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where Ym
l (u, f) are the spherical harmonic expansion functions,

and nml are time-dependent expansion coefficients. Because
Ym
l (u, f) form a complete orthonormal basis on S2, any distribu-

tion shape is in principal representable insofar as the expansion
series is not truncated (L→∞). In this sense, n(u, f) is non-
parametric since no distribution parameters exist constraining the
possible range of distribution shapes. While the expansion (17)
provides a more general approach for representing n(u, f) com-
pared to previous representations based on parametric distribution
functions or low-order structure tensors (see Gagliardini and others
(2009) and the discussion herein), it is first and foremost a
mathematically convenient method that allows for higher-order
structure tensors to easily be calculated: the entries of 〈ck〉 are linear
combinations of nml for l≤ k (see Supplementary B).

Let us consider an initially isotropic fabric and truncate the
expansion at L = 40 in order to reduce the influence of regulariza-
tion on the higher-order structure tensors (see Supplementary B).
Figure 4d shows the modelled fabric eigenvalues a1, a2 and a3 of
〈c2〉 as a function of the cumulative parcel strain ezz = h/h0−1,
where h and h0 are the instantaneous and initial parcel heights,
respectively. Here, we assume the usual ordering a1≥ a2≥ a3,
which implies a1 = a2 = a3 = 1/3 for isotropic fabrics, 1 > a1 > 1/3
> a2 = a3≥ 0 for axisymmetric preferred-direction fabrics, and
1 > a1 = a2 > 1/3 > a3≥ 0 for axisymmetric preferred-plane (girdle)
fabrics (Woodcock, 1977). For reference, Figures 4a to 4c show
the specific parcel geometries and normalized n(u, f) at ezz = 1,
ezz = 0 and ezz =−0.75, respectively.

In Figure 4e, the corresponding Emt (dotted), Emm (dashed)
and Emt/Epq (full) are plotted for (n′, E′

cc, E′
ca) = (1, 1, 104) in

black lines and (n′, E′
cc, E′

ca) = (3, 1, 102) in red lines (crosses
in Figs 3a, 3b). Choosing E′

cc = 1 implies grains are equally hard
to compress along c and a, which is a reasonable assumption
(Gillet-Chaulet and others, 2005), and E′

ca was subsequently
picked to reproduce Emt/Epq = 104 for a unidirectional fabric (the
ideal limit of ezz =−1). For parcel strains of −0.4 , ezz , 0.1,
the linear (n′ = 1, or assuming (5)) and non-linear (n′ = 3) solu-
tions are found to agree, while for stronger fabrics (larger absolute
strains), the non-linear rheology produces bulk enhancements
that scale faster with fabric strength compared to the linear
rheology. Although Emt (dotted lines) approaches the upper limits
found for a unidirectional fabric as ezz � −1, the ratios Emt/Epq
(full lines) remain far from 104. This discrepancy is the result of
n(u, f) never becoming d(r̂ −m) due to non-negligible

regularization for ezz ,− 0.8 (see Supplementary B). In the
limit L→∞, no regularization is required, and we expect that
n(u, f) � d(r̂ −m) as ezz � −1. Nonetheless, for the
intermediate-to-strong fabrics that we are able to represent, we
find that the bulk enhancement factors produced by a linear
grain rheology (and therefore also (5)) scales more slowly with
fabric strength compared to n′ = 3. Specifically, we find that the
non-linear-to-linear ratios of Emt/Epq and Emm can be at least
10 and 0.1, respectively.

Discussion

A shortcoming of our study is our one-sided focus on the Sachs
(homogeneous stress) assumption, which does not allow for
Emt≃ 10 in accordance with Pimienta and others (1987).
Although calculating bulk enhancement factors for both the
Sachs and Taylor end-member cases would allow for a more com-
plete assessment of the approximation (5), we note that the Sachs
assumption is arguably the better of the two simple homogeniza-
tion schemes (see above). Modelling efforts (Pettit and others,
2007; Martín and others, 2009; Martín and Gudmundsson,
2012; Hruby and others, 2020) that take the Sachs grain-averaged
rheology (9) with (5) as the bulk rheology might therefore under-
or overestimate bulk strain-rate enhancements by at least an order
of magnitude for intermediate-to-strong fabrics.

Other studies have adopted the orthotropic flow law proposed
by Gillet-Chaulet and others (2005), which relies on the viscoplas-
tic self-consistent (VPSC) homogenization scheme (Meyssonnier
and Philip, 1996) to infer the bulk directional enhancement fac-
tors of the orthotropic rheology. The VPSC approach represents
a compromise between the Sachs and Taylor assumptions and
does not necessarily restrict Emt, but requires an iterative numer-
ical procedure to determine (11). Insofar as the VPSC approach is
based on the grain rheology (1) with (5), such as proposed by
Gillet-Chaulet and others (2005) and adopted in several model-
ling studies (Gillet-Chaulet and others, 2006; Durand and others,
2007; Ma and others, 2010), our above caveats apply, too,
although to what extent is less clear. Castelnau and others
(1998) showed that the VPSC approach based on a basal slip
(Schmid) grain rheology with an orientation-dependent fluidity
can reproduce observed strain-rate enhancements derived from
mechanical tests on the GRIP ice core (single-maximum fabrics).

Fig. 4. Vertical pure shear experiment. (a)–(c) Parcel geometries and orientation distributions n(u, f) at vertical parcel strains of ezz = 1, ezz = 0 and ezz =−0.75.
(d) Modelled fabric eigenvalues (a1, a2, a3) using the spectral grain rotation model. (e) Bulk directional enhancement factors given the modelled orientation dis-
tribution n(u, f) for special cases of E′cc and E′ca (see main text).
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The strongest GRIP fabric occurs at a depth of approximately
2500 m where a1≃ 0.95. For this fabric, the VPSC approach
gave Emm≃ 0.03 and E†

mt = 12, compared to Emm = 0.03 and
E†
mt = 65 determined from mechanical tests, where

E†
mt = Emt(t0[I/3− pp]) is the m–t shear enhancement under

uniaxial compression along p. In comparison, for n′ = 3 we find
Emm = 0.05 and E†

mt = 3 (latter not shown) given n(u, f) corre-
sponding to a1≃ 0.95, although the enhancement-factor defin-
ition used by Castelnau and others (1998) is different from ours
which might partly explain the discrepancy.

Given a unidirectional fabric and the Sachs assumption,
Gödert and Hutter (1998) and Gagliardini and Meyssonnier
(1999) previously reported Emt≤ 2.5 using a linear grain rheology
akin to the present. Thorsteinsson (2001) considered the same
configuration and reported that a basal slip (Schmid) model pro-
duces Emt≤ 4.375 for an orientation-dependent fluidity with a
power-law exponent of three. For non-unidirectional fabrics,
however, we emphasize that the rheology (1)–(2) and a Schmid
model will generally not produce the same bulk directional
enhancement factors (Thorsteinsson, 2001): in the limit of incom-
pressibility along c (i.e. E′

cc = 0), longitudinal straining in the crys-
tal basal plane is still possible with (1)–(2) (Supplementary A),
unlike a Schmid model where only basal-plane shear is permitted.

We end with an outlook on the possibility of including our
work in large-scale ice-flow models; i.e. by using (9)–(10) as is,
or to determine bulk directional enhancement factors for another
bulk rheology (e.g. the orthotropic flow law). The main obstacle is
that n(u, f)must be able to represent structure that is fine enough
to account for all the rheology-required structure tensors. A popu-
lar fabric model is to represent n(u, f) as a series expansion in
terms of structure tensors (Gödert, 2003; Gillet-Chaulet and
others, 2005) by noting that any n(u, f) can be expressed as a lin-
ear combination of even-ordered structure tensors (Advani and
Tucker, 1987). In such models, calculating the time-evolution of
n(u, f) requires specifying d〈ck〉/dt, but for closure reasons
〈ck〉 for k≥ 4 tend to be parameterized in terms of lower-order
structure tensors. Unless 〈ck〉 for k≤ 8 are allowed to freely evolve
(not parameterized), calculated bulk enhancement factors may
not agree with ours. Implementing our spectral grain rotation
model could therefore provide a useful path forward. To that
end, we note that truncating n(u, f) at e.g. L = 8, 16, or 32 implies
solving a 45-, 153- or 561-dimensional linear advection–reaction–
diffusion problem per grid point, respectively.

Conclusion

We investigated how the orientation-dependent non-linear fluid-
ity of a transversely isotropic grain rheology can influence the dir-
ectional enhancement factors of a polycrystal by assuming a
homogeneous stress field over the polycrystal scale (Sachs hypoth-
esis). For polycrystals with intermediate-to-strong orientation
fabrics, we find that the soft-to-hard shear-enhancement ratio,
Emt/Epq, of axisymmetric polycrystals can be at least ten times lar-
ger compared to if the fluidity is orientation independent, while
the compressional/extensional enhancement along the fabric
symmetry direction, Emm, can be at least ten times smaller. Care
should therefore be exercised in large-scale ice-flow modelling
efforts that either (i) identify the (Sachs) grain-averaged trans-
versely isotropic rheology as the bulk rheology, or (ii) rely on it
to derive bulk directional enhancement factors for another aniso-
tropic bulk rheology. Our results thus extend previous work on
grain-averaged rheologies with orientation-dependent fluidities
(Thorsteinsson (2001) and Pettit and others (2007), among
others) to the transversely isotropic grain rheology, which has
implications for large-scale anisotropic ice-flow modelling.
Finally, because the orientation-dependent fluidity causes the

grain-averaged rheology to depend on higher-order fabric struc-
ture tensors, we proposed a new non-parametric spectral fabric
model that allows for higher-order structure tensors to easily be
calculated for arbitrary orientation fabrics.
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