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Abstract We characterize microlocal regularity, in the G∞-sense, of Colombeau generalized functions
by an appropriate extension of the classical notion of micro-ellipticity to pseudodifferential operators
with slow-scale generalized symbols. Thus we obtain an alternative, yet equivalent, way of determining
generalized wavefront sets that is analogous to the original definition of the wavefront set of distribu-
tions via intersections over characteristic sets. The new methods are then applied to regularity theory of
generalized solutions of (pseudo)differential equations, where we extend the general non-characteristic
regularity result for distributional solutions and consider propagation of G∞-singularities for homoge-
neous first-order hyperbolic equations.
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1. Introduction

Microlocal analysis in Colombeau algebras of generalized functions, which was initiated
(in published form) in [4, 19], is a compatible extension of its distribution-theoretic
analogue to the realm of an unrestricted differential-algebraic context. The main emphasis
in recent research on the subject has been on microlocal properties of basic nonlinear
operations as well as on regularity theory for generalized solutions to partial differential
and pseudodifferential equations (cf. [6,7,12–14,16,18]).

For Schwartz distributions the so-called elementary characterization of microlocal reg-
ularity is a corollary to its original definition via characteristic sets under pseudodifferen-
tial actions (see [9]), whereas the intuitively appealing function-like aspect of Colombeau
generalized functions seems to have fostered a ‘generalized elementary’ approach as being
a natural definition there. This may be for two reasons. Firstly, the new microlocal reg-
ularity notion is based on G∞-regularity, which coincides with C∞-regularity in case
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of embedded distributions, and was introduced in [20] in direct analytical terms in
form of asymptotic estimates of the derivatives. Secondly, as soon as one puts oneself
into the much wider setting of Colombeau spaces—with the possibility of allowing for
highly singular symbols of (pseudo)differential operators—the question of good choices
for appropriate generalized notions of the characteristic set or (micro-)ellipticity turns
into a considerable and crucial part of the research issue (cf. [7,13,15,16]).

In the present paper, we succeed in proving characterizations of the generalized wave-
front set of a Colombeau generalized function in terms of intersections over certain
non-ellipticity domains corresponding to pseudodifferential operators yielding G∞-regular
images. Thus we obtain direct analogues of Hörmander’s definition of the distributional
wavefront set given in [9]. Moreover, as the first test applications of the new results, we
discuss a generalization of the non-characteristic regularity theorem for pseudodifferential
equations and propagation of G∞-singularities (or rather, generalized wavefront sets) for
generalized solutions of first-order hyperbolic differential equations with C∞-coefficients.

In the remainder of the introductory section we fix some notation and review basic
notions from Colombeau theory. Section 2 provides the technical background on the
generalized symbol classes used later on and introduces an appropriate micro-ellipticity
notion. The theoretical core of the paper is § 3, where the main results on micro-locality,
microsupport and the wavefront set characterizations are proven. Section 4 discusses
applications to regularity theory of generalized solutions of (pseudo)differential equations.
Since by now several variants of pseudodifferential operator approaches in Colombeau
algebras and generalized symbol calculi occur in the literature [6,7,19], and we employ yet
a slightly different variant here, we sketch the basics of a general scheme of calculus in the
appendix, the skeleton of which is structurally close to the comprehensive treatment in [7].

We point out that [19] already includes a result on micro-locality (similar to our
Theorem 3.6) of actions of generalized pseudodifferential operators, whose definition is
based solely on regularizing nets of symbols, rather than Colombeau classes, and uses
Fourier integral representations with additional asymptotic cut-offs. The definitions of
the operator actions can thus be compared in a weak sense only.

1.1. Notation and basic notions from Colombeau theory

We use [2,3,8,20] as standard references for the foundations and various applications of
Colombeau theory. We will work with the so-called special Colombeau algebras, denoted
by Gs in [8], although here we will consistently drop the superscript ‘s’ to avoid notational
overload.

We briefly recall the basic construction. Throughout the paper Ω will denote an open
subset of Rn. Colombeau generalized functions on Ω are defined as equivalence classes u =
[(uε)ε] of nets of smooth functions uε ∈ C∞(Ω) (regularizations) subjected to asymptotic
norm conditions with respect to ε ∈ (0, 1] for their derivatives on compact sets. More
precisely, we have the following.

(i) Moderate nets EM (Ω): (uε)ε ∈ C∞(Ω)(0,1] such that, for all K � Ω and α ∈ Nn,
there exists p ∈ R such that

‖∂αuε‖L∞(K) = O(ε−p) (ε → 0). (1.1)
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(ii) Negligible nets N(Ω): (uε)ε ∈ EM (Ω) such that, for all K � Ω and for all q ∈ R,
an estimate ‖uε‖L∞(K) = O(εq) (ε → 0) holds.

(iii) EM (Ω) is a differential algebra with operations defined at fixed ε, N(Ω) is an ideal,
and G(Ω) := EM (Ω)/N(Ω) is the (special) Colombeau algebra.

(iv) There are embeddings, C∞(Ω) ↪→ G(Ω) as subalgebra and D′(Ω) ↪→ G(Ω) as linear
space, commuting with partial derivatives.

(v) Ω → G(Ω) is a fine sheaf and Gc(Ω) denotes the subalgebra of elements with
compact support; using a cut-off in a neighbourhood of the support, one can always
obtain representing nets with supports contained in a joint compact set.

The subalgebra G∞(Ω) of regular Colombeau, or G∞-regular, generalized functions
consists of those elements in G(Ω) possessing representatives such that estimate (1.1)
holds for a certain m uniformly over all α ∈ Nn. We will occasionally use the notation
E∞

M (Ω) for the set of such nets of regularizations. In a similar sense, we will denote by
E∞

S (Rn) the set of regularizations (vε)ε ∈ S(Rn)(0,1] with a uniform asymptotic power of
ε-growth for all S-seminorms of vε.

A Colombeau generalized function u = [(uε)ε] ∈ G(Ω) is said to be generalized microlo-
cally regular, or G∞-microlocally regular, at (x0, ξ0) ∈ T ∗(Ω)\0 = Ω × (Rn \{0}) (cotan-
gent bundle with the zero section removed) if there is φ ∈ C∞

c (Ω) with φ(x0) = 1 and
a conic neighbourhood Γ ⊆ Rn \ {0} of ξ0 such that F(φu) is (Colombeau) rapidly
decreasing in Γ (cf. [11]), i.e. there exists N such that, for all l, we have

sup
ξ∈Γ

〈ξ〉l|(̂φuε)(ξ)| = O(ε−N ), ε → 0, (1.2)

where we have used the standard notation 〈ξ〉 = (1 + |ξ|2)1/2. Note that, instead of
specifying the test function φ as above, one may equivalently require the existence of an
open neighbourhood U of x0 such that, for all φ ∈ C∞

c (U), the estimate (1.2) holds.
Finally, we will use the term proper cut-off function for any χ ∈ C∞(Ω × Ω) such that

supp(χ) is a proper subset of Ω × Ω (i.e. both projections are proper maps) and χ = 1
in a neighbourhood of the diagonal {(x, x) : x ∈ Ω} ⊂ Ω × Ω.

2. Slow-scale micro-ellipticity

The pseudodifferential operator techniques which we employ are based on a generalization
of the classical symbol spaces Sm(Ω × Rn) (cf. [9]). These spaces are Fréchet spaces
endowed with the seminorms

|a|(m)
K,α,β = sup

x∈K,ξ∈Rn

〈ξ〉−m+|α||∂α
ξ ∂β

xa(x, ξ)|, (2.1)

where K ranges over the compact subsets of Ω. Several types of Colombeau generalized
symbols are studied in [6,7,12,19], providing a pseudodifferential calculus and regularity
theory on the level of operators. In the current paper, we focus on the microlocal aspects.
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To this end we introduce a particularly flexible class of symbols with good stability prop-
erties with respect to lower-order perturbations. In the spirit of the earlier Colombeau
approaches, our symbols are defined via families (aε)ε ∈ Sm(Ω × Rn)(0,1] =: Sm[Ω × Rn]
of regularizations, subjected to asymptotic estimates of the above seminorms in terms
of ε. The particular new feature is a slow-scale growth, which proved to be essential
in regularity theory (cf. [7,15,16]). This property is measured by the elements of the
following set of strongly positive slow-scale nets:

Π sc := {(ωε)ε ∈ R(0,1] : ∃c > 0 ∀ε : c � ωε, ∀p � 0 ∃cp > 0 ∀ε : ωp
ε � cpε

−1}. (2.2)

Definition 2.1. Let m be a real number. The set of slow-scale nets of symbols of
order m is defined by

S̄m
sc(Ω × Rn) := {(aε)ε ∈ Sm[Ω × Rn] : ∀K � Ω ∃(ωε)ε ∈ Π sc,

∀α, β ∈ Nn ∃c > 0 ∀ε : |aε|(m)
K,α,β � cωε}, (2.3)

the negligible nets of symbols of order m are the elements of

N̄ m(Ω × Rn) := {(aε)ε ∈ Sm[Ω × Rn] : ∀K � Ω ∀α, β ∈ Nn,

∀q ∈ N, ∃c > 0 ∀ε : |aε|(m)
K,α,β � cεq}. (2.4)

The classes of the factor space

S̄̃m
sc(Ω × Rn) := S̄m

sc(Ω × Rn)/N̄ m(Ω × Rn)

are called slow-scale generalized symbols of order m.
Furthermore, let

N̄ −∞(Ω × Rn) :=
⋂
m

N̄ m(Ω × Rn)

be the negligible nets of order −∞. The slow-scale generalized symbols of refined order m

are given by
S̄̃m/−∞

sc (Ω × Rn) := S̄m
sc(Ω × Rn)/N̄ −∞(Ω × Rn).

Note that S̄̃m/−∞
sc (Ω × Rn) can be viewed as a finer partitioning of the classes in

S̄̃m
sc(Ω × Rn); in other words, if a is a slow-scale generalized symbol of order m, then

∀(bε)ε ∈ a:

κ((bε)ε) := (bε)ε + N̄ −∞(Ω × Rn) ⊆ (bε)ε + N̄ m(Ω × Rn) = a. (2.5)

Slow-scale generalized symbols enable us to design a particularly simple, yet sufficiently
strong, notion of micro-ellipticity.

Definition 2.2. Let a ∈ S̄̃m
sc(Ω × Rn) and (x0, ξ0) ∈ T ∗(Ω) \ 0. We say that a is slow-

scale micro-elliptic at (x0, ξ0) if it has a representative (aε)ε satisfying the following con-
dition: there is a relatively compact open neighbourhood U of x0, a conic neighbourhood
Γ of ξ0, and (rε)ε, (sε)ε ∈ Π sc such that

|aε(x, ξ)| � 1
sε

〈ξ〉m, (x, ξ) ∈ U × Γ, |ξ| � rε, ε ∈ (0, 1]. (2.6)
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We denote by Ellsc(a) the set of all (x0, ξ0) ∈ T ∗(Ω)\0 where a is slow-scale micro-elliptic.
If there exists (aε)ε ∈ a such that (2.6) holds at all points in T ∗(Ω) \ 0, then the

symbol a is called slow-scale elliptic.

Note that here the use of the attribute ‘slow scale’ refers to the appearance of the slow-
scale lower bound in (2.6). This is a crucial difference from more general definitions of
ellipticity given in [6,7,16], whereas a similar condition has already been used in [15, § 6]
in a special case. In fact, due to the overall slow-scale conditions in Definition 2.1, any
symbol which is slow-scale micro-elliptic at (x0, ξ0) fulfils the stronger hypoellipticity
estimates [7, Definition 6.1]; furthermore, (2.6) is stable under lower-order (slow-scale)
perturbations.

Proposition 2.3. Let (aε)ε ∈ S̄m
sc(Ω × Rn) satisfy (2.6) in U × Γ � (x0, ξ0). Then

(i) for all α, β ∈ Nn there exists (λε)ε ∈ Π sc such that

|∂α
ξ ∂β

xaε(x, ξ)| � λε|aε(x, ξ)|〈ξ〉−|α|, (x, ξ) ∈ U × Γ, |ξ| � rε, ε ∈ (0, 1];

(ii) for all (bε)ε ∈ S̄m′

sc (Ω × Rn), m′ < m, there exist (r′
ε)ε, (s′

ε)ε ∈ Π sc such that

|aε(x, ξ) + bε(x, ξ)| � 1
s′

ε

〈ξ〉m, (x, ξ) ∈ U × Γ, |ξ| � r′
ε, ε ∈ (0, 1].

Proof. Combining (2.6) with the seminorm estimates of (aε)ε ∈ S̄m
sc(Ω ×Rn), we find

that, for (x, ξ) ∈ U × Γ , |ξ| � rε, ε ∈ (0, 1],

|∂α
ξ ∂β

xaε(x, ξ)| � cωε〈ξ〉m−|α| � cωεsε|aε(x, ξ)|〈ξ〉−|α|,

so that assertion (i) holds with λε = cωεsε. To prove (ii), again by (2.6) for (aε)ε and
the seminorm estimates for (bε)ε we obtain

|aε(x, ξ) + bε(x, ξ)| � 1
sε

〈ξ〉m − cωε〈ξ〉m′
= 〈ξ〉m

(
1
sε

− cωε〈ξ〉m′−m

)
,

which is bounded from below by 〈ξ〉m/2sε whenever (x, ξ) ∈ U × Γ with

|ξ| � max(rε, (2cωεsε)1/(m−m′)).

�

Remark 2.4.

(i) In the case of classical symbols, the notion of slow-scale micro-ellipticity coincides
with the classical one, which equivalently is defined as the set of non-characteristic
points. Indeed, if a ∈ Sm(Ω × Rn) and (aε)ε is a representative of the class of a in
S̄̃m

sc(Ω × Rn) satisfying (2.6) then, for any q ∈ N,

|a(x, ξ)| � |aε(x, ξ)| − |(a − aε)(x, ξ)| � 〈ξ〉m

(
1
sε

− cεq

)
,

where we are free to fix ε small enough such that the last factor is bounded away
from 0. In particular, we find that Ellsc(a)c = Char(a(x, D)).
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(ii) The same Definition 2.2 can be applied to symbols of refined order. In that case,
by Proposition 2.3, (2.6) will hold for any representative once it is known to hold
for one. Moreover, if a ∈ S̄̃m/−∞

sc (Ω × Rn) and Ellsc(a)c = ∅, then a is slow-scale
elliptic.

Thanks to the previous proposition, the simple slow-scale ellipticity condition in Defini-
tion 2.2 already guarantees the existence of a parametrix. For the proof we refer to [7, § 6];
note that an inspection of the construction shows that the symbol of the parametrix has
uniform growth ε−1 over all compact sets. Regular symbols are introduced in Remark A 2.

Theorem 2.5. Let a be a slow-scale elliptic symbol of order m. Then there exists
a properly supported pseudodifferential operator with regular symbol p ∈ S̄̃−m

rg (Ω × Rn)
such that, for all u ∈ Gc(Ω),

a(x, D) ◦ p(x, D)u = u + Ru,

p(x, D) ◦ a(x, D)u = u + Su,

where R and S are operators with regular kernel.

Note that, if a(x, D) is properly supported, then the operators R and S are properly
supported too, and the previous equalities are valid for all u in G(Ω). In this situation,
combining the construction of a parametrix with the pseudolocality property (see the
appendix for details), we find that singsuppg(a(x, D)u) = singsuppg(u) for all u ∈ G(Ω).

In the following, prΨ
m
sc (Ω) denotes the set of all properly supported operators a(x, D),

where a belongs to S̄̃m
sc(Ω × Rn). We are now in a position to introduce a way to mea-

sure the regularity of Colombeau generalized functions mimicking the original definition
of the distributional wavefront set in [9] based on characteristic sets. As a matter of fact,
the set constructed below as the complement of the slow-scale micro-ellipticity regions
will turn out to be the generalized wavefront set in the sense of [4,11].

Definition 2.6. Let u ∈ G(Ω). We define

Wsc(u) :=
⋂

a(x,D)∈prΨ
0
sc(Ω)

a(x,D)u∈G∞(Ω)

Ellsc(a)c. (2.7)

Remark 2.7. Note that the standard procedure of lifting symbol orders with
(1 − ∆)m/2 easily shows that we may as well take the intersection over operators
a(x, D) ∈ prΨ

m
sc (Ω) in (2.7). The same holds for similar constructions introduced through-

out the paper.

Since Ellsc(a)c is a closed conic set, Wsc(u) is a closed conic subset of T ∗(Ω) \ 0
as well. Moreover, recalling that, given v ∈ G∞(Ω) and a(x, D) properly supported,
a(x, D)(u + v) ∈ G∞(Ω) if and only if a(x, D)u ∈ G∞(Ω), we have Wsc(u + v) = Wsc(u).

We present now our first alternative way of defining Wsc(u), which will be useful in
the course of our exposition. Denote by prΨ

m/−∞
sc (Ω) the set of all properly supported

https://doi.org/10.1017/S0013091504000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000148


Microlocal analysis of generalized functions 609

operators a(x, D), where a ∈ S̄̃m/−∞
sc (Ω × Rn); one can prove that

Wsc(u) =
⋂

a(x,D)∈prΨ
0/−∞
sc (Ω)

a(x,D)u∈G∞(Ω)

Ellsc(a)c. (2.8)

In fact, the crucial point is to observe that we do not change a pseudodifferential operator
with generalized symbol a by adding negligible nets of symbols of the same order or
of order −∞. To be more precise, if a(x, D) ∈ prΨ

0
sc(Ω), (x0, ξ0) ∈ Ellsc(a) with (aε)ε

satisfying (2.6), then
b(x, ξ) := (aε)ε + N̄ −∞(Ω × Rn)

is slow-scale micro-elliptic at (x0, ξ0), b(x, D) ∈ prΨ
0/−∞
sc (Ω), since b(x, D) ≡ a(x, D)

and consequently we have the inclusion ⊇ in (2.8). For the reverse inclusion if a(x, D) ∈
prΨ

0/−∞
sc (Ω) with (x0, ξ0) ∈ Ellsc(a), it is clear that b = (aε)ε + N̄ 0(Ω × Rn) is a well-

defined element of S̄̃0
sc(Ω × Rn) and slow-scale elliptic at (x0, ξ0). Arguing as before, we

obtain (2.8). From a technical point of view, the most interesting aspect of (2.8) is the
stability of micro-ellipticity estimates under variations of the representatives of a, valid
for symbols of refined order due to Proposition 2.3.

Proposition 2.8. Let π : T ∗(Ω) \ 0 → Ω : (x, ξ) → x. For any u ∈ G(Ω),

π(Wsc(u)) = singsuppg(u).

Proof. We first prove that Ω \ singsuppg(u) ⊆ Ω \ π(Wsc(u)). Let

x0 ∈ Ω \ singsuppg(u).

There exists φ ∈ C∞
c (Ω) such that φ(x0) = 1 and φu ∈ G∞(Ω). The multiplication oper-

ator φ(x, D) : Gc(Ω) → Gc(Ω) : u → φu is properly supported with symbol

φ ∈ S0(Ω × Rn) ⊆ S̄̃0
sc(Ω × Rn),

which is micro-elliptic (slow-scale micro-elliptic) at (x0, ξ0) for each ξ0 �= 0. Therefore,
for all ξ0 �= 0, we have that (x0, ξ0) ∈ Wsc(u)c, i.e. x0 ∈ Ω \ π(Wsc(u)).

To show the opposite inclusion, let x0 ∈ Ω \ π(Wsc(u)). Then for all ξ �= 0 there exists

a ∈ S̄̃0/−∞
sc (Ω × Rn)

slow-scale micro-elliptic at (x0, ξ) such that a(x, D) is properly supported and a(x, D)u ∈
G∞(Ω). Since Sx0 := {x0} × {ξ : |ξ| = 1} is a compact subset of Ω × Rn, there exist
a1, . . . , aN ∈ S̄̃0/−∞

sc (Ω × Rn), U a relatively compact open neighbourhood of x0 and Γi

conic neighbourhoods of ξi with |ξi| = 1 (i = 1, . . . , N), with the following properties: ai

is slow-scale micro-elliptic in U × Γi, Sx0 ⊆ U ×
⋃N

i=1 Γi, ai(x, D) is properly supported,
and ai(x, D)u ∈ G∞(Ω). Consider the properly supported pseudodifferential operator
A :=

∑N
i=1 ai(x, D)∗ai(x, D). By Theorem A 12 in the appendix we may write

A = σ(x, D) ∈ prΨ
0/−∞
sc (Ω),
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and combining assertions (ii) and (iii) of the same theorem, we have that

σ −
N∑

i=1

|ai|2 ∈ S̄̃−1/−∞
sc (Ω × Rn). (2.9)

Since ai(x, D)u ∈ G∞(Ω) and each ai(x, D)∗ maps G∞(Ω) into G∞(Ω), we conclude that
σ(x, D)u ∈ G∞(Ω).

It is clear that
∑N

i=1 |ai|2 is slow-scale elliptic in U . In fact, every ξ �= 0 belongs
to some Γi and, given (si,ε)ε, (ri,ε)ε satisfying (2.6) for (ai,ε)ε, sε := maxi(s2

i,ε), rε :=
max(ri,ε), we get

N∑
i=1

|ai,ε(x, ξ)|2 � 1
sε

x ∈ U, |ξ| � rε, ε ∈ (0, 1].

Let U ′ ⊂ U ′′ ⊂ U be open neighbourhoods of x0, U ′ ⊂ U ′′, U ′′ ⊂ U and φ ∈ C∞(Ω),
0 � φ � 1 such that φ = 0 on U ′ and φ = 1 on Ω \ U ′′. By construction

b(x, ξ) := φ(x) + σ(x, ξ) ∈ S̄̃0/−∞
sc (Ω × Rn), b(x, D) ∈ prΨ

0/−∞
sc (Ω)

and

b(x, D)u|U ′ = φu|U ′ + σ(x, D)u|U ′ = σ(x, D)u|U ′ ∈ G∞(U ′).

Since
∑N

i=1 |ai|2 is slow-scale elliptic in U , with a positive real-valued representative,
and φ is identically 1 outside U ′′, we have that φ +

∑N
i=1 |ai|2 is slow-scale elliptic in Ω.

By (2.9), and application of Proposition 2.3(ii), b itself is slow-scale elliptic in Ω. Then,
by using a parametrix for b(x, D) we conclude that singsuppg(b(x, D)u) = singsuppg(u)
and consequently U ′ ∩ singsuppg(u) = ∅, which completes the proof. �

3. Pseudodifferential characterization of the generalized wavefront set

This section is devoted to the proof that Wsc(u) coincides with the generalized wavefront
set of u. Our approach will follow the lines of reasoning in [5, Chapter 8] and [10, § 18.1].
The main tool will be a generalization of the micro-support of a regular generalized
symbol of order m or refined order m.

Definition 3.1. Let a ∈ S̄̃m
rg(Ω × Rn) and (x0, ξ0) ∈ T ∗(Ω) \ 0. The symbol a is

G∞-smoothing at (x0, ξ0) if there exist a representative (aε)ε of a, a relatively compact
open neighbourhood U of x0, a conic neighbourhood Γ of ξ0, and a natural number N

such that

∀m ∈ R ∀α, β ∈ Nn ∃c > 0 ∀(x, ξ) ∈ U × Γ ∀ε ∈ (0, 1] : |∂α
ξ ∂β

xaε(x, ξ)| � c〈ξ〉mε−N .

(3.1)
We define the generalized microsupport of a, denoted by µ suppg(a), as the complement
of the set of points (x0, ξ0) where a is G∞-smoothing.

If a ∈ S̄̃m/−∞
rg (Ω × Rn), then we denote by µg(a) the complement of the set points

(x0, ξ0) ∈ T ∗(Ω) \ 0, where (3.1) holds for some representative of a.
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Remark 3.2.

(i) Any a ∈ S̄̃−∞
rg (Ω × Rn), i.e. a regular generalized symbol of order −∞, has empty

generalized microsupport.

(ii) In the case of a ∈ S̄̃m/−∞
rg (Ω×Rn), every representative is of the form (aε)ε+(nε)ε,

where (aε)ε ∈ S̄m
rg(Ω × Rn) and (nε)ε ∈ N̄ −∞(Ω × Rn), and (3.1) holds for any

representative once it is known to hold for one. As a consequence, if a is a classical
symbol of order m considered as an element of S̄̃m/−∞

rg (Ω×Rn), then its generalized
microsupport µg(a) equals the classical one.

(iii) If a ∈ S̄̃m/−∞
rg (Ω×Rn and µg(a) = ∅, then a ∈ S̄̃−∞

rg (Ω×Rn). In fact, having chosen
any (aε)ε ∈ a, for all x0 ∈ Ω, the compact set Sx0 can be covered by U ×

⋃N
i=1Γi,

with U and Γi such that (3.1) is valid. Hence, there exists N ∈ N such that for all
orders m ∈ R and, for all α and β,

|∂α
ξ ∂β

xaε(x, ξ)| � c〈ξ〉m−|α|ε−N , (x, ξ) ∈ U × Rn, ε ∈ (0, 1].

(iv) If a ∈ S̄̃m
rg(Ω × Rn) and κ is the quotient map S̄m

rg(Ω × Rn) onto S̄̃m/−∞
rg (Ω × Rn),

then
µ suppg(a) =

⋂
(aε)ε∈a

µg(κ((aε)ε)). (3.2)

Observe first that, for all (aε)ε ∈ a, we have µ suppg(a) ⊆ µg(κ((aε)ε)). On the
other hand, if (x0, ξ0) �∈ µ suppg(a), then (x0, ξ0) �∈ µg(κ((aε)ε)) for some (aε)ε ∈ a.

Similarly, as in the previous section, we introduce the notation

prΨ
m
rg(Ω) and prΨ

m/−∞
rg (Ω)

for the sets of all properly supported operators a(x, D) with a symbol in

S̄̃m
rg(Ω × Rn) and S̄̃m/−∞

rg (Ω × Rn),

respectively.

Proposition 3.3. Let

a(x, D) ∈ prΨ
m/−∞
rg (Ω) and b(x, D) ∈ prΨ

m′/−∞
rg (Ω).

Then, there exists a symbol a � b ∈ S̄̃m+m′/−∞
rg (Ω × Rn) such that a(x, D) ◦ b(x, D) =

a � b(x, D) ∈ prΨ
m+m′/−∞
rg (Ω) and

µg(a � b) ⊆ µg(a) ∩ µg(b). (3.3)

In the same situation, without regarding refined orders, we find that

µ suppg(a � b) ⊆ µ suppg(a) ∩ µ suppg(b). (3.4)
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Proof. Theorem A 12 provides the existence of a � b ∈ S̄̃m+m′/−∞
rg (Ω × Rn) such that

a(x, D) ◦ b(x, D) = a � b(x, D) ∈ prΨ
m+m′/−∞
rg (Ω)

with asymptotic expansion a � b ∼
∑

γ ∂γ
ξ aDγ

xb/γ!. Assume that (x0, ξ0) �∈ µg(a). By (3.1)
and the symbol properties of (bε)ε ∈ b, we obtain the following estimate, valid on some
neighbourhood U × Γ of (x0, ξ0):

∃N ∈ N ∀m ∈ R, ∀α, β ∈ Nn, |∂α
ξ ∂β

x (∂γ
ξ aεD

γ
xbε)(x, ξ)| � c〈ξ〉mε−N . (3.5)

Since a � b ∼
∑

γ ∂γ
ξ aDγ

xb/γ!, we find that, for any (dε)ε ∈ a � b and h � 1, the difference

(
dε −

∑
|γ|�h−1

1
γ!

∂γ
ξ aεD

γ
xbε

)
ε

is an element of S̄m+m′−h
rg (Ω × Rn) and of growth type ε−M on Ū , for some M ∈ N

independent of h. This, together with (3.5), implies that (x0, ξ0) does not belong to
µg(a � b). The proof of relation (3.4) is similar. �

We recall a technical lemma proved in [5, Proposition (8.52)] which will be useful
below.

Lemma 3.4. Suppose (x0, ξ0) ∈ T ∗(Ω) \ 0, U is a relatively compact open neighbour-
hood of x0, Γ is a conic neighbourhood of ξ0. There exists p ∈ S0(Ω × Rn) such that
0 � p � 1, supp(p) ⊆ U ×Γ and p(x, ξ) = 1 if (x, ξ) ∈ U ′ ×Γ ′ and |ξ| � 1, where U ′ ×Γ ′

is a smaller conic neighbourhood of (x0, ξ0). In particular, p is micro-elliptic at (x0, ξ0)
and µ supp(p) ⊆ U × Γ .

Remark 3.5. The proof of the above lemma shows that, for each conic neighbourhood
Γ of ξ0, there exists τ(ξ) ∈ S0(Ω × Rn) such that 0 � τ � 1, supp(τ) ⊆ Γ and τ(ξ) = 1
in some conic neighbourhood Γ ′ of ξ0 when |ξ| � 1.

Note that, after multiplying p(x, ξ) in Lemma 3.4 by a proper cut-off function, we
obtain a properly supported operator q(x, D) ∈ Ψ0(Ω), whose symbol is micro-elliptic at
(x0, ξ0) and µ supp(q) = µ supp(p).

Theorem 3.6. For any a(x, D) ∈ prΨ
m
rg(Ω) and u ∈ G(Ω),

Wsc(a(x, D)u) ⊆ Wsc(u) ∩ µ suppg(a). (3.6)

Similarly, if a(x, D) ∈ prΨ
m/−∞
rg (Ω), then

Wsc(a(x, D)u) ⊆ Wsc(u) ∩ µg(a). (3.7)

Proof. We first prove the assertion (3.7) in two steps.

Step 1. Wsc(a(x, D)u) ⊆ µg(a).
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If (x0, ξ0) �∈ µg(a), then (3.1) holds on some U × Γ , and by Lemma 3.4 we find
q ∈ S0(Ω × Rn) ⊆ S̄̃0/−∞

rg (Ω × Rn), which is micro-elliptic at (x0, ξ0) with µ supp(q) ⊆
U × Γ . Applying Proposition 3.3, we obtain

q(x, D)a(x, D) = q � a(x, D) ∈ prΨ
m/−∞
rg (Ω)

and

µg(q � a) ⊆ µg(q) ∩ µg(a) ⊆ (U × Γ ) ∩ µg(a) = ∅.

Remark 3.2 (iii) shows that q � a ∈ S̄̃−∞
rg (Ω × Rn) and therefore q(x, D)a(x, D) is a

properly supported pseudodifferential operator with regular kernel. This implies that
q(x, D)(a(x, D)u) ∈ G∞(Ω) and hence (x0, ξ0) �∈ Wsc(a(x, D)u).

Step 2. Wsc(a(x, D)u) ⊆ Wsc(u).

Let (x0, ξ0) �∈ Wsc(u). Then, by (2.8), there exists p(x, D) ∈ prΨ
0/−∞
sc (Ω) such that p

is slow-scale micro-elliptic at (x0, ξ0) and p(x, D)u ∈ G∞(Ω).

Claim. There exists
r(x, D) ∈ prΨ

0/−∞
sc (Ω)

such that r is micro-elliptic at (x0, ξ0), and there exists s(x, D) ∈ prΨ
m/−∞
rg (Ω) such that

r(x, D)a(x, D)u − s(x, D)p(x, D)∗p(x, D)u belongs to G∞(Ω).

Assuming for the moment that the claim is proved, we show that it completes the proof
of the theorem. The operators s(x, D) and p(x, D)∗ map G∞(Ω) into itself; hence, we find
that s(x, D)p(x, D)∗p(x, D)u ∈ G∞(Ω). The claim implies that r(x, D)a(x, D)u ∈ G∞(Ω)
and (x0, ξ0) �∈ Wsc(a(x, D)u), since r is micro-elliptic at (x0, ξ0).

Proof of Claim. To prove the claim, we construct a slow-scale elliptic symbol based
on p. Let (pε)ε be a representative of p satisfying (2.6) in a conic neighbourhood U × Γ

of (x0, ξ0). By Lemma 3.4 there is ψ ∈ S0(Ω × Rn), 0 � ψ � 1, with supp(ψ) ⊆ U × Γ

and identically 1 in a smaller conic neighbourhood U ′ × Γ ′ of (x0, ξ0) if |ξ| � 1. The net
(1 + |pε|2 − ψ)ε belongs to S̄0

sc(Ω × Rn) and, by construction of ψ, satisfies (2.6) at all
points in T ∗(Ω) \ 0. The pseudodifferential calculus for slow-scale generalized symbols of
refined order guarantees the existence of σ ∈ S̄̃0/−∞

sc (Ω × Rn) such that

p(x, D)∗p(x, D) = σ(x, D) ∈ prΨ
0/−∞
sc (Ω) and σ − |p|2 ∈ S̄̃−1/−∞

sc (Ω × Rn).

Application of Proposition 2.3(ii) to this situation yields the fact that the symbol

1 + σ − ψ ∈ S̄̃0/−∞
sc (Ω × Rn)

is slow-scale elliptic and coincides with σ in a conic neighbourhood U ′ × Γ ′ of (x0, ξ0)
for |ξ| � 1.

Take a proper cut-off function χ and define a pseudodifferential operator via the slow-
scale amplitude χ(x, y)(1 + σ(x, ξ) − ψ(x, ξ)). By Theorem A 12, this can be written in
the form b(x, D) ∈ prΨ

0/−∞
sc (Ω), where b − (1 + σ − ψ) ∈ S̄̃−∞

sc (Ω × Rn). In other words,
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b itself is slow-scale elliptic and µg(b) = µg(1 + σ − ψ). In particular, since σ and 1 +
σ − ψ coincide on U ′ × Γ ′, |ξ| � 1, we find that µg(b − σ) ∩ (U ′ × Γ ′) = ∅. Theorem 2.5
gives a parametrix t(x, D) ∈ prΨ

0/−∞
rg (Ω) for b(x, D), i.e. the operators b(x, D)t(x, D)−I

and t(x, D)b(x, D) − I have a regular kernel. Let r(x, D) ∈ prΨ
0/−∞
sc (Ω) be an operator

constructed as in Lemma 3.4, with classical symbol r, micro-elliptic at (x0, ξ0), and
µ supp(r) ⊆ U ′ × Γ ′.

We show that r(x, D) and

s(x, D) := r � (a � t)(x, D) = r(x, D)a(x, D)t(x, D) ∈ prΨ
m/−∞
rg (Ω)

satisfy the assertions of the claim. We rewrite the difference

r(x, D)a(x, D)u − s(x, D)p(x, D)∗p(x, D)u

as

r(x, D)a(x, D)(u − t(x, D)b(x, D)u) + r(x, D)a(x, D)t(x, D)(b(x, D) − σ(x, D))u.

Here, the first summand is in G∞(Ω) due to the fact that t(x, D) is a parametrix for
b(x, D) and the mapping properties of r(x, D)a(x, D). An iterated application of Propo-
sition 3.3 to the second summand shows that it can be written with a regular symbol of
refined order m, having generalized micro-support contained in the region

µ supp(r) ∩ µg(b − σ) ⊆ (U ′ × Γ ′) ∩ µg(b − σ) = ∅.

Hence, it has smoothing generalized symbol and therefore the claim is proven. �

Finally, we prove the assertion (3.6). Let (aε)ε ∈ a ∈ S̄̃m
rg(Ω × Rn) and consider the

corresponding symbol

κ((aε)ε) = (aε)ε + N̄ −∞(Ω × Rn) ∈ S̄̃m/−∞
rg (Ω × Rn).

Then κ((aε)ε)(x, D) ∈ prΨ
m/−∞
rg (Ω) and κ((aε))(x, D) = a(x, D). Theorem 3.6, applied

to all (aε)ε ∈ a, yields⋂
(aε)ε∈a

Wsc(κ((aε)ε)(x, D)u) ⊆ Wsc(u) ∩
⋂

(aε)ε∈a

µg(κ((aε)ε)),

i.e.

Wsc(a(x, D)u) ⊆ Wsc(u) ∩
⋂

(aε)ε∈a

µg(κ((aε)ε)),

which completes the proof by Remark 3.2 (iv). �

Corollary 3.7. Let a(x, D) ∈ prΨ
m
sc (Ω), where a is a slow-scale elliptic symbol. Then

for any u ∈ G(Ω)
Wsc(a(x, D)u) = Wsc(u). (3.8)
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Proof. Since
a ∈ S̄̃m

sc(Ω × Rn) ⊆ S̄̃m
rg(Ω × Rn),

Theorem 3.6 implies that Wsc(a(x, D)u) ⊆ Wsc(u). Let p(x, D) be a parametrix for
a(x, D) as in Theorem 2.5. Then u = p(x, D)a(x, D)u + v, where v ∈ G∞(Ω). Therefore,
Wsc(u) = Wsc(p(x, D)a(x, D)u) and Theorem 3.6, applied to p(x, D) ∈ prΨ

−m
rg (Ω), gives

Wsc(u) ⊆ Wsc(a(x, D)u). �

The statements of the above theorem and corollary are valid for pseudodifferential
operators that are not necessarily properly supported, if we consider instead compactly
supported generalized functions.

As in the classical theory (cf. [5]), we introduce a notion of microsupport for oper-
ators. However, in the case of generalized pseudodifferential operators we are cautious
to distinguish the corresponding notions for symbols and operators by a slight change
in notation, thereby taking into account the non-injectivity when mapping symbols to
operators (see [7]).

Definition 3.8. Let A be any properly supported pseudodifferential operator with
regular symbol. We define the generalized microsupport of A by

µ suppg(A) :=
⋂

a(x,D)∈prΨ
m
rg(Ω),

a(x,D)=A

µ suppg(a). (3.9)

Now we have all the technical tools at hand which enable us to identify Wsc(u) as the
generalized wavefront set WFg(u).

Theorem 3.9. For all u ∈ G(Ω),

Wsc(u) = WFg(u).

Proof. By definition of WFg(u) the assertion which we are going to prove is the
following: (x0, ξ0) �∈ Wsc(u) if and only if there exists a representative (uε)ε of u, a cut-
off function φ ∈ C∞

c (Ω) with φ(x0) = 1, a conic neighbourhood Γ of ξ0 and a number N

such that, for all l ∈ R,

sup
ξ∈Γ

〈ξ〉l|φ̂uε(ξ)| = O(ε−N ) as ε → 0. (3.10)

We first show sufficiency, that is if (x0, ξ0) ∈ T ∗(Ω) \ 0 satisfies (3.10), then it does
not belong to Wsc(u). As noted in Remark 3.5, there exists p(ξ) ∈ S0(Ω × Rn) with
supp(p) ⊆ Γ , which is identically 1 in a conical neighbourhood Γ ′ of ξ0 when |ξ| � 1.
We recall that on taking a typical proper cut-off χ, by Theorem A 11, we can write
the properly supported pseudodifferential operator with amplitude χ(x, y)p(ξ)φ(y) in
the form σ(x, D) ∈ prΨ

0/−∞
sc (Ω), where σ(x, ξ) − p(ξ)φ(x) ∈ S−1(Ω × Rn); in particular,

σ(x, D)v−p(D)(φv) ∈ G∞(Ω) for all v ∈ G(Ω). By assumption, p(ξ)φ(x) is micro-elliptic
at (x0, ξ0), the symbol σ is micro-elliptic there, and from (3.10) we find that

p(D)φ(x, D)u =
[(∫

Rn

eixξp(ξ)φ̂uε(ξ) –dξ

)
ε

]
∈ G∞(Ω).
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Since σ(x, D)u − p(D)(φu) ∈ G∞(Ω), we find that σ(x, D)u ∈ G∞(Ω) and, hence,
(x0, ξ0) �∈ Wsc(u).

Conversely, suppose (x0, ξ0) �∈ Wsc(u). There is an open neighbourhood U of x0 such
that (x, ξ0) ∈ Wsc(u)c for all x ∈ U . Choose φ ∈ C∞

c (U) with φ(x0) = 1 and define

Σ := {ξ ∈ Rn \ 0 : ∃x ∈ Ω(x, ξ) ∈ Wsc(φu)}.

From Theorem 3.6 we have that Wsc(φu) ⊆ Wsc(u) ∩ (supp(φ) × Rn \ 0) and therefore
ξ0 /∈ Σ. Moreover, since Wsc(φu) is closed and conic, the Σ itself is a closed conic
subset of Rn \ 0. Again, by Remark 3.5 there is a symbol p(ξ) ∈ S0(Ω × Rn) such that
0 � p � 1, p(ξ) = 1 in a conic neighbourhood Γ of ξ0 when |ξ| � 1, and p(ξ) = 0 in a conic
neighbourhood Σ0 of Σ. By construction µ supp(p)∩(Ω×Σ0) = ∅ and Wsc(φu) ⊆ Ω×Σ.
Therefore,

Wsc(p(D)φu) ⊆ Wsc(φu) ∩ µ supp(p) = ∅

and by Proposition 2.8 we conclude that p(D)φu ∈ G∞(Ω). In terms of representatives
(uε)ε ∈ u, this means that(∫

Rn

eixξp(ξ)φ̂uε(ξ) –dξ = (φuε ∗ p∨)
)
ε

∈ E∞
M . (3.11)

Note that p∨ is a Schwartz function outside the origin, i.e. we find, for all δ > 0 and
α, β ∈ Nn, that sup|x|>δ |xα∂βp∨(x)| < ∞ [5, Theorem (8.8a)]. If dist(x, supp(φ)) > δ,
this yields

∂α(φuε ∗ p∨)(x) =
∫

|y|>δ

φuε(x − y)∂αp∨(y) dy

and, for all l > 0, the estimate

〈x〉l|∂α(φuε ∗ p∨)(x)| � c1

∫
|y|>δ

|φuε(x − y)|〈x − y〉l〈y〉l|∂αp∨(y)| dy

� c2 sup
z∈supp(φ)

|uε(z)|, (3.12)

uniformly for such x. When δ is chosen to be small enough, the set of points x with
dist(x, supp(φ)) � δ is compact in Ω, and from (3.11) we find that there exists M ∈ N

such that for all l ∈ R,

sup〈x〉l|∂α(φuε ∗ p∨)(x)| = O(ε−M ) as ε → 0,

where the supremum is taken over {x : dist(x, supp(φ)) � δ}. Hence, we have shown that
(φuε ∗ p∨)ε ∈ E∞

S (Rn). The Fourier transform maps E∞
S (Rn) into E∞

S (Rn), which implies
that

(p(ξ)(̂φuε)(ξ))ε ∈ E∞
S (Rn).

Since p(ξ) = 1 in a conic neighbourhood of ξ0, the proof is complete. �

On combing Theorem 3.6 with Theorem 3.9, the following corollary is immediate from
Definition 3.8.
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Corollary 3.10. For any properly supported operator A with generalized regular
symbol and u ∈ G(Ω) we have

WFg(Au) ⊆ WFg(u) ∩ µ suppg(A). (3.13)

While the purpose of the foregoing discussion was to prepare for applications to
G∞-regularity theory for pseudodifferential equations with generalized symbols, one may,
as an intermediate step, investigate the propagation of G∞-singularities in case of dif-
ferential equations with smooth coefficients. Having this special situation in mind, it is
natural to consider the following set, defined for any u ∈ G(Ω) by

Wcl(u) :=
⋂

Char(A), (3.14)

where the intersection is taken over all classical properly supported operators A ∈ Ψ0(Ω)
such that Au ∈ G∞(Ω). A careful inspection of the proof of Theorem 3.9 suggests that
Wcl(u) can be used in place of Wsc(u). Indeed, it gives an alternative characterization of
WFg(u).

Theorem 3.11. For all u ∈ G(Ω),

Wcl(u) = Wsc(u) = WFg(u). (3.15)

Proof. The inclusion Wsc(u) ⊆ Wcl(u) is obvious. Conversely, if (x0, ξ0) �∈ WFg(u),
as in the proof of Theorem 3.9, one can find a properly supported operator P ∈ Ψ0(Ω)
such that (x0, ξ0) /∈ Char(P ) and Pu ∈ G∞(Ω). �

4. Non-characteristic G∞-regularity and propagation of singularities

As a first application of Theorem 3.9 we prove an extension of the classical result on
non-characteristic regularity for distributional solutions of arbitrary pseudodifferential
equations (with smooth symbols). A generalization of this result for partial differential
operators with Colombeau coefficients was achieved in [16]; here we present a version for
pseudodifferential operators with slow-scale generalized symbols.

Theorem 4.1. If P = p(x, D) is a properly supported pseudodifferential operator
with slow-scale symbol and u ∈ G(Ω), then

WFg(Pu) ⊆ WFg(u) ⊆ WFg(Pu) ∪ Ellsc(p)c. (4.1)

Proof. The first inclusion relation is obvious from Theorem 3.6.
Assume that (x0, ξ0) �∈ WFg(Pu) but that p is micro-elliptic there. Thanks to The-

orem 3.9 we can find a(x, D) ∈ prΨ
0
sc(Ω) such that a(x, D)Pu ∈ G∞(Ω) and (x0, ξ0) ∈

Ellsc(a). By the (slow-scale) symbol calculus and Proposition 2.3 (ii), a(x, D)p(x, D) has
a slow-scale symbol, which is micro-elliptic at (x0, ξ0). Hence, another application of
Theorem 3.9 yields that (x0, ξ0) �∈ WFg(u). �
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Remark 4.2. As can be seen from various examples in [15], relation (4.1) does not
hold in general for regular symbols p which satisfy estimate (2.6). In this sense, the overall
slow-scale properties of the symbol are crucial in the above statement and are not just
technical convenience. In fact, adapting the reasoning in [15, Example 4.6] to the symbol
pε(x, ξ) = 1 + cεx

2, cε � 0, we find that pε(x, ξ) � 1, whereas the unique solution u

of pu = 1 is G∞ if and only if (cε)ε is a slow-scale net.

In the remainder of this section we show how Theorem 3.11 enables us to extend a
basic result on propagation of singularities presented in [10, § 23.1], where we now allow
for Colombeau generalized functions as solutions and initial values in first-order strictly
hyperbolic partial differential equations with smooth coefficients. Hyperbolicity will be
assumed with respect to time direction and we will occasionally employ pseudodifferential
operators whose symbols depend smoothly on the real parameter t. This means that we
have symbols from the space C∞(R, Sm(Ω × Rn)): these are of the form a(t, x, ξ) with
a ∈ C∞(R × Ω × Rn) such that for each t and h ∈ N one has

dh

dth
a(t, · , ·) ∈ Sm(Ω × Rn),

where all symbol seminorm estimates are uniform when t varies in a compact subset
of R. Defined on representatives in the obvious way, a properly supported operator
a(t, x,Dx) maps G(Ω) into G(Ω). Moreover, if we assume that a(t, x,Dx) is uniformly
properly supported with respect to t, that is there exists a proper closed set L such that
supp ka(t,x,Dx) ⊆ L for all t, then if u ∈ G(Ω × R), a(t, x,Dx)(u(t, ·)) ∈ G(Ω × R).

Proposition 4.3. Let P (t, x,Dx) be a first-order partial differential operator with
real principal symbol P1 and coefficients in C∞(R ×Ω), which are constant outside some
compact subset of Ω. Assume that u ∈ G(Ω × R) satisfies the homogeneous Cauchy
problem

∂tu + iP (t, x,Dx)u = 0, (4.2)

u(· , 0) = g ∈ G(Ω). (4.3)

If Φt denotes the Hamilton flow corresponding to P1(t, · , ·) on T ∗(Ω), then we find, for
all t ∈ R, that

WFg(u(· , t)) = Φt(WFg(g)). (4.4)

Proof. We adapt the symbol constructions presented in [10, pp. 388, 389]. Observe
that one can carry out all steps of that classical procedure in Ω ⊆ Rn and with all
operators uniformly properly supported. To be more precise, let

(x0, ξ0) ∈ (T ∗(Ω) \ 0) \ WFg(g)

and choose q ∈ S0(Ω×Rn) to be polyhomogeneous, i.e. having homogeneous terms in the
asymptotic expansion, such that q is micro-elliptic at (x0, ξ0), µ supp(q) ∩ WFg(g) = ∅,
and q(x, D) is properly supported. By Corollary 3.10, we deduce that WFg(q(x, D)g) ⊆
WFg(g) ∩ µ supp(q) = ∅; therefore q(x, D)g ∈ G∞(Ω).

We can find a symbol Q(t, x, ξ), which is polyhomogeneous of order 0, smoothly
depending on the parameter t ∈ R, and which has the following properties:
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(i) the operators Q(t, x,Dx) are uniformly properly supported for t ∈ R;

(ii) [∂t + iP (t, x,Dx), Q(t, x,Dx)] = R(t, x,Dx) is a t-parametrized operator of order
−∞ and uniformly properly supported;

(iii) Q0(t, x, ξ) = q0(Φ−1
t (x, ξ)) for the principal symbols and Q(0, x, ξ) − q(x, ξ) ∈

S−∞(Ω × Rn).

From the properties of Q and (4.2) we have

(∂t + iP (t, x,Dx))Q(t, x,Dx)u = Q(t, x,Dx)(∂tu + iP (t, x,Dx)u) + [∂t + iP, Q]u

= R(t, x,Dx)u,

and
Q(0, x,Dx)u(· , 0) = q(x, D)g + R0(x, D)g,

where R0 is of order −∞. Observe that R(t, x,Dx)u(· , t) ∈ G∞(Ω) and R0(x, D)g ∈
G∞(Ω), which implies that Q(0, x,Dx)u(· , 0) ∈ G∞(Ω). Setting v = Qu ∈ G(Ω × R), we
obtain ∂tv + iP (t, x,Dx)v ∈ G(Ω × R) and

∂tv(· , t) + iP (t, x,Dx)v(· , t) ∈ G∞(Ω) ∀t ∈ R, v(· , 0) ∈ G∞(Ω),

which we interpret as a Cauchy problem with G∞-data with respect to the space vari-
able x. From an inspection of the energy estimates discussed in [17] one can infer directly
that v(· , t) ∈ G∞(Ω) for all t ∈ R (note that the coefficients are independent of ε).
Therefore, at a fixed value of t we find that Q(t, x,Dx)u(· , t) ∈ G∞(Ω) and the non-
characteristic regularity relation (4.1) yields

WFg(u(· , t)) ⊆ Char(Q(t, x,Dx))

= {(x, ξ) : Q0(t, · , ·) = q0(Φ−1
t (· , ·)) is not micro-elliptic at (x, ξ)}. (4.5)

But q0 ◦ Φ−1
t is micro-elliptic at (x, ξ) = Φt(x0, ξ0), which implies that (x, ξ) �∈

WFg(u(· , t)), and therefore we have shown that

WFg(u(· , t)) ⊆ Φt(WFg(g)).

The opposite inclusion is proved by time reversal. �

Remark 4.4. The same result can be proven when P is a pseudodifferential operator
(with parameter t and global symbol estimates), but in this case with g and u in the
G2,2-spaces as introduced in [1] and using a basic regularity result from [12]. However,
formally this requires us first to adapt the notion of micro-ellipticity to that context,
which will be left to future presentations.

While Proposition 4.3 determines the wavefront set of u(· , t) for fixed t, we are aiming
for a complete description of WFg(u) in the cotangent bundle over Ω × R. The crucial
new ingredient needed in extending the analogous discussion in [10, p. 390] to Colombeau
generalized functions is a result on microlocal regularity of the restriction operator G(Ω×
R) → G(Ω).
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Lemma 4.5. Let I ⊆ R be an open interval, t0 ∈ I, and u ∈ G(Ω × I) such that

WFg(u) ∩ (Ω × {t0} × {(0, τ) : τ ∈ R}) = ∅. (4.6)

Then the wavefront set of the restriction of u to Ω × {t0} satisfies the following relation:

WFg(u |t=t0) ⊆ {(x, ξ) ∈ T ∗(Ω) \ 0 : ∃τ ∈ R : (x, t0; ξ, τ) ∈ WFg(u)}. (4.7)

Remark 4.6. Note that, unlike with distributions, the restriction u|t=t0 is always
well defined for Colombeau functions on Ω × I, regardless of the microlocal intersection
condition (4.6) in the above lemma. However, an obvious adaption of the counter example
in [14, Example 5.1] shows that, in general, (4.6) cannot be dropped without losing the
relation (4.7).

Proof. We are proving a microlocal statement, so we may assume that t0 = 0 and
that u has compact support near {t = 0}; in particular, we may then pick a representative
(uε)ε of u with supp(uε) contained in a fixed compact set uniformly for all ε ∈ (0, 1].

The aim of the proof is to show the following: if (x0, ξ0) ∈ T ∗(Ω) \ 0 is in the com-
plement of the right-hand side of relation (4.7) and φ ∈ C∞

c (Ω) is supported near
x0, then (φ(·)uε(· , 0))̂ (ξ) is (Colombeau-type) rapidly decreasing, i.e. with uniform ε-
asymptotics (see [11, Definition 17]), in some conic neighbourhood Γ (ξ0) of ξ0. As a
preliminary observation, note that if ψ ∈ C∞

c (I) with ψ(0) = 1, then we may write

(φ(·)uε(· , 0))̂ (ξ) = ((φ ⊗ ψ)(· , 0)uε(· , 0))̂ (ξ)

=
∫

Fn+1((φ ⊗ ψ)uε)(ξ, τ) –dτ, (4.8)

where Fn+1 denotes (n + 1)-dimensional Fourier transform. We will find rapid decrease
estimates of the integrand upon an appropriate splitting of the integral depending on the
parameter ξ.

First, the hypothesis (4.6) yields that, for each y ∈ Ω, we find an open neighbour-
hood V (y, 0) and open cones Γ±

y � (0,±1) such that for all f ∈ C∞
c (V (y, 0)) the function

(̂fuε)(ξ, τ) is Colombeau-rapidly decreasing in Γy := Γ−
y ∪ Γ+

y . By compactness the set
supp(u) ∩ (Ω × {0}) is covered by finitely many neighbourhoods V (y1, 0), . . . , V (yM , 0).
Again by compactness, we may assume that there exists U1 ⊆ Ω open and η1 > 0 such
that

supp(u) ∩ (Ω × {0}) ⊆ U1 × (−η1, η1) ⊆
M⋃

j=1

V (yj , 0).

Furthermore,
⋂M

j=1 Γyj is an open cone around (0,−1) and (0, 1) and there exists c1 > 0
such that it still contains the conic neighbourhood Γ1 := {(ξ, τ) : |τ | � c1|ξ|}. Using a
finite partition of unity subordinated to (V (yj , 0))1�j�M , we obtain the following state-
ment: for any φ ∈ C∞

c (U1) and ψ ∈ C∞
c ((−η1, η1)) there exists N � 0 with the property

that ∀l ∈ N ∃Cl > 0 ∃ε0 > 0 which guarantees the rapid decrease estimate

|Fn+1((φ ⊗ ψ)uε)(ξ, τ)| � Clε
−N 〈(ξ, τ)〉−l (ξ, τ) ∈ Γ1, 0 < ε < ε0. (4.9)
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This will provide corresponding upper bounds for the integrand in (4.8) whenever |τ | �
c1|ξ|, for ξ arbitrary.

Second, it follows from the assumption on (x0, ξ0) that ({(x0, 0)}×{ξ0}×R)∩WFg(u) =
∅. Hence for all σ ∈ R there is an open set Vσ � (x0, 0) and an open conic neighbour-
hood Γ (ξ0, σ) such that, for all f ∈ C∞

c (Vσ), the function (̂fuε)(ξ, τ) is Colombeau-
rapidly decreasing in Γσ. By a conic compactness argument (via projections to the unit
sphere), we deduce that finitely many cones Γσj

(j = 1, . . . , M) suffice to cover the two-
dimensional sector {(λξ0, τ) : λ > 0, |τ | � c1λ|ξ0|}. Let πn : Rn+1 → Rn be the projection
πn(ξ, τ) = ξ and define

Γ (ξ0) :=
⋂

j=1,...,M

πn(Γσj
),

which is an open conic neighbourhood of ξ0 in Rn \ 0. Furthermore,
⋂M

j=1 Vσj � (x0, 0) is
open and contains still some neighbourhood of product form, say U0 × (−η0, η0). There-
fore, for any φ ∈ C∞

c (U0) and ψ ∈ C∞
c ((−η0, η0)) there exists N � 0 with the following

property: ∀l ∈ N ∃Cl > 0 ∃ε0 > 0 we have an estimate

|Fn+1((φ ⊗ ψ)uε)(ξ, τ)| � Clε
−N 〈(ξ, τ)〉−l ξ ∈ Γ (ξ0), |τ | � c1|ξ|, (4.10)

when 0 < ε < ε0. So if ξ ∈ Γ (ξ0), we also obtain corresponding upper bounds in (4.8)
over the remaining integration domain |τ | � c1|ξ|.

To summarize: when ξ ∈ Γ (ξ0) we may combine (4.9) and (4.10) by taking U := U0∩U1,
φ ∈ C∞

c (U), and η := min(η0, η1), ψ ∈ C∞
c ((−η, η)), ψ(0) = 1. Upon applying this to (4.8)

we arrive at

|(φ(·)uε(· , 0))̂ (ξ)| � ε−NCl

∫ –dτ

(1 + |ξ|2 + τ2)l/2 = ε−NCl〈ξ〉1−l

∫
R

〈r〉−l –dr,

for some N independent of l � 2 and ε sufficiently small. �

Theorem 4.7. Let u be the (unique) solution of the homogeneous Cauchy prob-
lem (4.2), (4.3) and denote by γ(x0, ξ0) the maximal bicharacteristic curve passing
through the characteristic point (x0, 0; ξ0,−P1(0, x0, ξ0)) ∈ T ∗(Ω × R) \ 0. Then the
generalized wavefront of u is given by

WFg(u) =
⋃

(x0,ξ0)∈WFg(g)

γ(x0, ξ0). (4.11)

Proof. We refer to the discussion in [10, p. 390], which we can adapt to our case with
only a few changes. First, ∂t + iP (t, x,Dx) is already a partial differential operator and
hence we obtain WFg(u) ⊆ Char(∂t +iP1) �� (x, t; 0, τ) due to (4.1); therefore, combining
this with Lemma 4.5, we immediately obtain the inclusion

WFg(u(· , t)) ⊆ {(x, ξ) ∈ T ∗(Ω) \ 0 : (x, t; ξ,−P1(t, x, ξ)) ∈ WFg(u)}.

On the other hand, based on the inclusion relation (4.5), we can carry out the
following construction. Let (x1, t1, ξ1, τ1) ∈ T ∗(Ω × R) \ 0, such that ξ1 �= 0 and
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(x1, ξ1) �∈ WFg(u(· , t1)), and let Q0 be as in the proof of Proposition 4.3, which is
micro-elliptic at (x1, ξ1). We claim that (x1, t1, ξ1, τ1) �∈ WFg(u). Indeed, one may use
cut-off functions of the product form φ(x)ψ(t) with small supports near x1, t1 and write

((φ ⊗ ψ)uε)̂ (ξ, τ) =
∫

e−itτψ(t)(φuε(· , t))̂ (ξ) dt.

We have Colombeau rapid decrease estimates in (ξ, τ) for those ξ-directions where
Q(t, x, ξ) stays micro-elliptic for all (x, t) ∈ supp(φ ⊗ ψ). Together with the observa-
tion at the beginning of the proof and (4.4), this implies the equality

Φt(WFg(g)) = WFg(u(· , t))
= {(x, ξ) ∈ T ∗(Ω) \ 0 : (x, t; ξ,−P1(t, x, ξ)) ∈ WFg(u)},

which yields the asserted statement. �

Appendix A. Pseudodifferential calculus with general scales

We provide some background to the required pseudodifferential tools for a sufficiently
large class of generalized symbols.

Definition A 1. Let A be the set of all nets (ωε)ε ∈ R(0,1] such that c0 � ωε � c1ε
−p

for some c0, c1, p > 0 and for all ε. Let B be any subset of A closed with respect to
pointwise product and maximum. For m ∈ R and Ω an open subset of RN , we define the
spaces of B-nets of symbols:

S̄m
B(Ω × Rn) := {(aε)ε ∈ Sm[Ω × Rn] : ∀K � Ω ∃(ωε)ε ∈ B,

∀α, β ∈ Nn ∃c > 0 ∀ε : |aε|(m)
K,α,β � cωε},

S̄−∞
B

(Ω × Rn) := {(aε)ε ∈ Sm[Ω × Rn] : ∀K � Ω ∃(ωε)ε ∈ B∀m ∈ R,

∀α, β ∈ Nn ∃c > 0∀ε : |aε|(m)
K,α,β � cωε}

and the factor spaces

S̄̃m
B(Ω × Rn) := S̄m

B(Ω × Rn)/N̄ m(Ω × Rn),

S̄̃m,−∞
B

(Ω × Rn) := S̄m
B(Ω × Rn)/N̄ −∞(Ω × Rn),

S̄̃−∞
B

(Ω × Rn) := S̄−∞
B

(Ω × Rn)/N̄ −∞(Ω × Rn).

If Ω is an open subset of Rn, then the elements of S̄m
B(Ω × Rn), S̄̃m

B(Ω × Rn),
and S̄̃m,−∞

B
(Ω × Rn) are called B-nets of symbols of order m, B-generalized sym-

bols of order m, and B-generalized symbols of refined order m, respectively. The sets
S̄−∞

B
(Ω × Rn) and S̄̃−∞

B
(Ω × Rn) constitute the B-nets of smoothing symbols and the

B-generalized smoothing symbols, respectively. Finally, if instead of Ω we have Ω × Ω,
then we use the notion of amplitude rather than of symbol.
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As mentioned in [7], if we require the above symbol estimates to hold only for small
values of ε, then this results in larger spaces of nets of symbols as well as somewhat
larger quotient spaces. Even though it is then possible to define pseudodifferential oper-
ators with B-generalized symbols equally well, we prefer to consider here the spaces
S̄̃m

B(Ω × Rn) defined above, since a complete pseudodifferential calculus can be devel-
oped.

Remark A 2. Note that, as special cases of B-generalized symbols, we obtain for
B = Π sc the slow-scale generalized symbols, and for B = {(ε−N )ε : N ∈ N} the regular
generalized symbols S̄̃m

rg(Ω × Rn) introduced in earlier work [7], to which we refer for
further details and notations concerning regular symbols and amplitudes.

In the following we say that (aε)ε ∈ S̄m
B(Ω × Rn) is of growth type (ωε)ε ∈ B on

K � Ω if ωε is an upper bound for each seminorm |aε|(m)
K,α,β . We list the basic steps in

establishing a calculus with asymptotic expansions.

Definition A 3. Let {mj}j be a decreasing sequence of real numbers tending to −∞
and let {(aj,ε)ε}j be a sequence of B-nets of symbols (aj,ε)ε ∈ S̄mj

B
(Ω × Rn) such that

∀K � Ω ∃(ωε)ε ∈ B ∀j ∈ N : (aj,ε)ε is of growth type (ωε)ε on K. (A 1)

We say that
∑

j(aε)ε is the asymptotic expansion of (aε)ε ∈ E [Ω × Rn], (aε)ε ∼
∑

j(aj,ε)ε

for short, if and only if, for all K � Ω, there exists (ωε)ε ∈ B such that, for all r � 1,
the difference (

aε −
r−1∑
j=0

aj,ε

)
ε

belongs to S̄mr

B
(Ω × Rn) and is of growth type (ωε)ε on K.

Theorem A 4. For any sequence of B-nets of symbols (aj,ε)ε ∈ S̄mj

B
(Ω × Rn) as in

Definition A 3, there exists (aε)ε ∈ S̄m0
B

(Ω × Rn) such that (aε)ε ∼
∑

j(aj,ε)ε. Moreover,
if (a′

ε)ε ∼
∑

j(aj,ε)ε, then (aε − a′
ε) ∈ S̄−∞

B
(Ω × Rn).

This result is easily obtained from the proof of [7, Theorem 5.3], and noting that
we do not have powers of ε depending on x-derivatives and replacing ε−N by (ωε)ε ∈
B. The following proposition concerning negligible nets of symbols is a consequence
of [7, Theorem 5.4].

Proposition A 5. Let {mj}j be a decreasing sequence of real numbers tending to
−∞ and let (aj,ε)ε ∈ N̄ mj (Ω × Rn) for all j. Then there exists (aε)ε ∈ N̄ m0(Ω × Rn)
such that, for all r � 1, we have

(
aε −

r−1∑
j=0

aj,ε

)
ε

∈ N̄ mr (Ω × Rn).

Definition A 6. Let {mj}j be a decreasing sequence of real numbers tending to −∞.
Let {aj}j be a sequence of B-generalized symbols aj ∈ S̄̃mj

B
(Ω × Rn) such that there

exists a choice of representatives (aj,ε)ε of aj satisfying (A 1). We say that
∑

j aj is
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the asymptotic expansion of a ∈ S̄̃m0
B

(Ω × Rn), a ∼
∑

j aj for short, if and only if there
exists a representative (aε)ε of a and for all j representatives (aj,ε)ε of aj , such that
(aε)ε ∼

∑
j(aj,ε)ε.

Proposition A 5 allows us to claim that a ∼
∑

j aj if and only if, for any choice of repre-
sentatives (aj,ε)ε of aj , there exists a representative (aε)ε of a such that (aε)ε ∼

∑
(aj,ε)ε.

This observation, combined with Theorem A 4, is crucial for the proof of Theorem A 7.

Theorem A 7. For any sequence of B-generalized symbols aj ∈ S̄̃mj

B
(Ω × Rn) as

in Definition A 6, there exists a ∈ S̄̃m0
B

(Ω × Rn) such that a ∼
∑

j aj . Moreover, if
b ∈ S̄̃m0

B
(Ω × Rn) has asymptotic expansion

∑
j aj , then there exists a representative

(aε)ε of a and a representative (bε)ε of b such that

(aε − bε)ε ∈ S̄−∞
B

(Ω × Rn).

Remark A 8. Definition A 6 can be stated for B-generalized symbols of refined order.
More precisely, if {mj}j is a sequence as above,

a ∈ S̄̃m0,−∞
B

(Ω × Rn), aj ∈ S̄̃mj ,−∞
B

(Ω × Rn) for all j

and (aε)ε and (aj,ε)ε denote representatives of a and aj , respectively, the following asser-
tions are equivalent:

(1) a ∼
∑

j aj ,

(2) ∃(aε)ε ∃{(aj,ε)ε}j : (aε)ε ∼
∑

j(aj,ε)ε,

(3) ∀{(aj,ε)ε}j ∃(aε)ε : (aε)ε ∼
∑

j(aj,ε)ε,

(4) ∀{(aj,ε)ε}j ∀(aε)ε : (aε)ε ∼
∑

j(aj,ε)ε.

We briefly recall the main definitions and results concerning pseudodifferential opera-
tors with B-generalized symbols. As already observed after Theorem A 4, the proofs are
obtained from the corresponding ones in [7], with the slight difference of having a net
(ωε)ε in B instead of a power ε−N .

Definition A 9. Let a ∈ S̄̃m
B(Ω × Rn). The pseudodifferential operator with B-

generalized symbol a is the map a(x, D) : Gc(Ω) → G(Ω) given by the formula

a(x, D)u(x) :=
∫

Rn

eixξa(x, ξ)û(ξ) –dξ :=
[(∫

Rn

eixξaε(x, ξ)ûε(ξ) –dξ

)
ε

]
.

Proposition 4.7 in [7] guarantees the well-definedness of a(x, D) as well as the additional
mapping property a(x, D) : G∞

c (Ω) → G∞(Ω).
In the following, we make occasional use of some basic properties of the space

L(Gc(Ω), C̃) of C̃-linear maps from Gc(Ω) to C̃. In particular, we recall that G(Ω) is
linearly embedded into L(Gc(Ω), C̃) via generalized integration and L(Gc(Ω), C̃) is a
sheaf with respect to Ω. This and further results are discussed in detail in [7, § 2].
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Definition A 10. Let a ∈ S̄̃m
B(Ω × Rn). The kernel of a(x, D) is the C̃-linear map

k : Gc(Ω × Ω) → C̃ defined by

k(u) :=
∫

Ω

a(x, D)(u(x, ·))(x) dx. (A 2)

To see that formula (A 2) makes sense for k as an element of L(Gc(Ω × Ω), C̃), we may
reason as in [7, Proposition 3.10 and Remark 3.11] that we have a(x, D)(u(x, ·)) ∈ Gc(Ω).
Moreover, for all u, v ∈ Gc(Ω),

k(v ⊗ u) =
∫

Ω

a(x, D)u(x)v(x) dx =
∫

Ω

u(x)Ta(x, D)v(x) dx,

where v ⊗ u := [(vε(x)uε(y))ε] ∈ Gc(Ω × Ω); as a consequence, since G(Ω) is embedded
into L(Gc(Ω), C̃), pseudodifferential operators having the same kernel are identical.

We say that a pseudodifferential operator with a B-generalized symbol is properly
supported if the support of its kernel is a proper set of Ω × Ω. As shown in [7, Proposi-
tion 4.17], we find that any properly supported pseudodifferential operator a(x, D) maps
Gc(Ω) into Gc(Ω), G∞

c (Ω) into G∞
c (Ω) and can be extended uniquely to a linear map

from G(Ω) into G(Ω) such that, for all u ∈ G(Ω) and v ∈ Gc(Ω),∫
Ω

a(x, D)u(x)v(x) dx =
∫

Ω

u(x)Ta(x, D)v(x) dx.

This extension maps G∞(Ω) into G∞(Ω). By the same reasoning as in [7, Proposi-
tion 4.11], we prove that each pseudodifferential operator a(x, D) with B-generalized
symbol has the pseudolocality property, i.e.

singsuppg(a(x, D)u) ⊆ singsuppg(u)

for all u ∈ Gc(Ω), and that this result is valid for all u in G(Ω) if a(x, D) is properly
supported.

Pseudodifferential operators can also be defined by B-generalized amplitudes. This
means that b ∈ S̄̃m

B(Ω × Ω × Rn) defines the action of the corresponding operator on
u ∈ Gc(Ω) via the oscillatory integral

Bu(x) :=
∫

Ω×Rn

ei(x−y)ξb(x, y, ξ)u(y) dy –dξ,

which gives a Colombeau function in G(Ω) [7, § 3]. It is clear that the same constructions
concerning kernel and properly supported pseudodifferential operators are still valid. For
the sake of completeness we recall that any integral operator R with regular kernel, i.e. any
operator of the form

Ru(x) =
∫

Ω

k(x, y)u(y) dy, u ∈ Gc(Ω),

where k ∈ G∞(Ω × Ω) can be written as a pseudodifferential operator with regular ampli-
tude in S̃−∞

rg (Ω × Ω × Rn) and vice versa if B is a pseudodifferential operator with
amplitude in

S̄̃−∞
B

(Ω × Ω × Rn),
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then its kernel is a regular generalized function. Finally, an operator with regular kernel
is regularizing, i.e. it maps Gc(Ω) into G∞(Ω).

Consider a ∈ S̄̃m
B(Ω × Rn), where k is the kernel of a(x, D) and let χ ∈ C∞(Ω × Ω) be

a proper function identically 1 in a neighbourhood of supp k. We may write a(x, D) =
a0(x, D) + a1(x, D), where

a0(x, D)u(x) :=
∫

Ω×Rn

ei(x−y)ξa(x, ξ)χ(x, y)u(y) dy –dξ (A 3)

is a properly supported pseudodifferential operator with generalized amplitude

a(x, ξ)χ(x, y) ∈ S̄̃m
B(Ω × Ω × Rn)

and

a1(x, D)u(x) :=
∫

Ω×Rn

ei(x−y)ξa(x, ξ)(1 − χ(x, y))u(y) dy –dξ (A 4)

is an operator with regular kernel in G∞(Ω × Ω). The following theorem shows that every
properly supported pseudodifferential operator defined via an amplitude can be written
in the form of Definition A 9. This is the main tool in the proof of Theorem A 12.

Theorem A 11. For any properly supported pseudodifferential operator A with ampli-
tude a ∈ S̄̃m

B(Ω × Ω × Rn), there exists σ ∈ S̄̃m
B(Ω × Rn) such that A ≡ σ(x, D) on Gc(Ω)

and

σ ∼
∑

γ

1
γ!

∂γ
ξ Dγ

ya(x, y, ξ)|x=y.

Theorem A 12. Let a ∈ S̄̃m
B(Ω × Rn) and b ∈ S̄̃m′

B (Ω × Rn) be B-generalized sym-
bols. If the corresponding pseudodifferential operators are properly supported, then

(i) there exists a′ ∈ S̄̃m
B(Ω × Rn) such that Ta(x, D) ≡ a′(x, D) on Gc(Ω) and

a′ ∼
∑

γ

(−1)|γ|

γ!
∂γ

ξ Dγ
xa(x,−ξ);

(ii) there exists a∗ ∈ S̄̃m
B(Ω × Rn) such that a(x, D)∗ ≡ a∗(x, D) on Gc(Ω) and

a∗ ∼
∑

γ

1
γ!

∂γ
ξ Dγ

x ā;

(iii) there exists a � b ∈ S̄̃m+m′

B
(Ω × Rn) such that a(x, D) ◦ b(x, D) ≡ a � b(x, D) on

Gc(Ω) and

a � b ∼
∑

γ

1
γ!

∂γ
ξ aDγ

xb.
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Proof. We briefly sketch the proof of assertion (ii). For the details concerning the
transposed operator and the product we refer to [7]. By definition of the formal adjoint,
〈a(x, D)v, ū〉 = 〈v, a(x, D)∗u〉 for all u, v ∈ Gc(Ω). This means

〈v, a(x, D)∗u〉 =
∫

Ω

∫
Ω×Rn

ei(x−y)ξā(y, ξ)u(y) dy –dξ v(x) dx,

which, from the embedding of G(Ω) into L(Gc(Ω), C̃), leads us to

a(x, D)∗u =
∫

Ω×Rn

ei(x−y)ξā(y, ξ)u(y) dy –dξ.

Now, a(x, D)∗ is a properly supported pseudodifferential operator with amplitude
ā(y, ξ) ∈ S̄̃m

B(Ω × Ω × Rn), and an application of Theorem A 11 completes the proof. �

Along the lines of [7, Proposition 5.17] we easily prove that the composition of a
properly supported pseudodifferential operator with B-generalized symbol and an oper-
ator with regular kernel is an operator with regular kernel. Therefore, combining (A 3)
and (A 4) with Theorem A 12, we find that, for arbitrary pseudodifferential operators with
B-generalized symbol, the equalities (i) and (ii) on Gc(Ω) are valid modulo some operator
with regular kernel. Furthermore, the composition a(x, D)◦b(x, D), where at least one of
the operators is properly supported, is a pseudodifferential operator a � b(x, D) modulo
some operator with regular kernel.

Remark A 13.

(i) It is clear from the structure of S̄̃m,−∞
B

(Ω × Rn) that all the definitions and results
of this appendix can be stated for symbols of refined order.

(ii) Let now Sm
ρ,δ[Ω × Rn] be the set of all nets (aε)ε ∈ Sm

ρ,δ(Ω × Rn)(0,1] with

|aε|(m)
K,α,β,ρ,δ := sup

x∈K,ξ∈Rn

|∂α
ξ ∂β

xaε(x, ξ)|〈ξ〉−m+ρ|α|−δ|β|

seminorm in Sm
ρ,δ(Ω × Rn). We define S̄m

B,ρ,δ(Ω × Rn) and N̄ m
ρ,δ(Ω × Rn) as the

subspaces of Sm
ρ,δ[Ω × Rn] obtained by requiring the same estimate of |aε|(m)

K,α,β,ρ,δ

as in S̄m
B(Ω × Rn) and N̄ m(Ω × Rn), respectively. In conclusion, under the assump-

tion 0 � δ < ρ � 1 it is possible to develop a pseudodifferential calculus for
generalized symbols in

S̄̃m
B,ρ,δ(Ω × Rn) := S̄m

B,ρ,δ(Ω × Rn)/N̄ m
ρ,δ(Ω × Rn)

and

S̄̃m,−∞
B,ρ,δ (Ω × Rn) := S̄m

B,ρ,δ(Ω × Rn)/N̄ −∞(Ω × Rn),

as in the classical theory.

https://doi.org/10.1017/S0013091504000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000148


628 C. Garetto and G. Hörmann
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18. M. Nedeljkov and S. Pilipović, Hypoelliptic differential operators with generalized
constant coefficients, Proc. Edinb. Math. Soc. 41 (1998), 47–60.
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