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We use the theory of spectral submanifolds (SSMs) to develop a low-dimensional reduced-
order model for plane Couette flow restricted to the shift–reflect invariant subspace in
the permanently chaotic regime at Re = 187.8 studied by Kreilos & Eckhardt (2012,
Chaos: Interdisciplinary J. Nonlinear Sci., vol. 22, 047505). Our three-dimensional
model is obtained by restricting the dynamics to the slowest mixed-mode SSM of the
edge state. We show that this results in a nonlinear model that accurately reconstructs
individual trajectories, representing the entire chaotic attractor and the laminar dynamics
simultaneously. In addition, we derive a two-dimensional Poincaré map that enables the
rapid computation of the periodic orbits embedded in the chaotic attractor.
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1. Introduction
Certain shear flows, such as pipe flow (Avila, Barkley & Hof 2023) and plane Couette flow
(Eckhardt 2018), exhibit subcritical transition to turbulence, which results in a coexistence
of an extended turbulent state with a stable laminar state. The boundary between the
turbulent and laminar behaviours is often called the edge of chaos (Skufca, Yorke &
Eckhardt 2006). For Couette flow in small periodic domains, this edge of chaos is the
stable manifold of an unstable exact coherent state (ECS) (Waleffe 2001), called the edge
state (Wang, Gibson & Waleffe 2007).

It is known that ECSs play an important role in the turbulent dynamics. The simplest
solutions are fixed points that were calculated by Nagata (1990) and Gibson, Halcrow &
Cvitanović (2009) in plane Couette flow. Travelling waves were discovered in pipe flow
by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004), and in plane Couette flow
by Gibson et al. (2009). Periodic orbits and relative periodic orbits found by Viswanath
(2007), Willis, Cvitanović & Avila (2013) and others have been demonstrated to be
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embedded in the turbulent state (Budanur et al. 2017). Furthermore, complex behaviour
tends to develop through bifurcations of simpler ECSs. In particular, a period doubling
cascade (Moore et al. 1983), or the bifurcation of invariant tori (Ruelle & Takens 1971;
Gollub & Swinney 1975) or intermittent behaviour (Pomeau & Manneville 1980) precedes
the appearance of chaos (Eckmann 1981).

For these reasons, great effort has been directed towards identifying unstable ECSs in
direct numerical simulations (DNS) (Kawahara & Kida 2001; Graham & Floryan 2021;
Page et al. 2024) and in experiments (Suri et al. 2019).

Developing predictive dynamical models is even more challenging. A frequently used,
equation-driven method of model reduction employs Galerkin projection to a low-
dimensional linear subspace. However, the optimal selection of modes spanning that
subspace is often non-trivial, hence a large number of modes might be necessary to
represent the turbulent statistics with sufficient accuracy (Cavalieri & Nogueira 2022).
In addition, correspondence between trajectories of the full and reduced models is not
guaranteed, since the low-dimensional subspace is generally not invariant.

Among data-driven approaches, linear methods such as dynamic mode decomposition
(Schmid 2010) are necessarily inapplicable due to the nonlinearisable nature of turbulent
flows, as shown by Page & Kerswell (2019). Recently, advances in machine learning
have yielded a promising alternative. Specifically, the deep-learning-based DManD method
(Linot & Graham 2020) captures turbulent statistics and can also represent ECSs not
enforced in their training (Linot & Graham 2023). However, deep learning methods
generally suffer from a need for large amounts of training data, a time-consuming training
process, and an a priori unclear choice of hyperparameters.

In addition to neural ordinary differential equation (ODE) based methods such as DManD,
alternative machine learning approaches have been developed to model the dynamics in a
latent space. A notable example is reservoir computing, and echo state networks (ESNs),
in particular. These networks are universal approximators (Jaeger 2001; Ahmed, Tennie &
Magri 2025), and the associated optimisation problem is quadratic and requires no iterative
training. Reservoir computing has shown success in modelling spatio-temporal chaotic
systems (Pathak et al. 2017, 2018). Recently, it has also been coupled with dimension
reduction by Racca, Doan & Magri (2023), who introduced the convolutional autoencoder-
echo state network (CAE-ESN). Their approach has successfully modelled Kolmogorov
flow, the flow in a minimal channel, and other chaotic partial differential equations (PDEs),
accurately reproducing statistical quantities and Lyapunov spectra (Margazoglou & Magri
2023; Özalp & Magri 2025).

In contrast, reducing a shear flow to a low-dimensional, attracting and structurally stable
invariant manifold in its phase space offers a mathematically exact and robust construction
of a reduced-order model. The recently introduced theory of spectral submanifolds (SSMs)
(Haller 2025) targets low-dimensional attracting invariant manifolds emanating from
stationary states, such as ECSs. Specifically, primary SSMs are defined as the smoothest
invariant manifolds tangent to a selected spectral subspace of the linearised dynamics at
the stationary state. Under mild non-resonance conditions, the existence and uniqueness
of primary SSMs for attracting fixed points can be established (Haller 2025).

More recently, Haller et al. (2023) pointed out the existence of entire families of
(secondary) SSMs having a lower degree of smoothness (fractional SSMs) or perturbing
from mixed-mode spectral subspaces containing both unstable and stable modes (mixed-
mode SSMs). Mixed-mode SSMs, in particular, can represent unstable but recurrent
dynamics, and have been shown to support chaotic dynamics (Liu, Axås & Haller 2024;
Xu et al. 2024), and to aid the parametrisation of the basin boundary (Kaszás & Haller
2024).
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Apart from providing verifiable mathematical conditions for its applicability, SSM-
based model reduction has the advantage over usual manifold learning approaches of
providing the dimension of the underlying SSM a priori. This is in contrast to e.g.
autoencoder-based methods that require careful optimisation of the latent dimension as
a hyperparameter.

These features enable SSM-based model reduction to capture even chaotic attractors
from data, as demonstrated by Liu et al. (2024). However, no data-driven reduced-order
models have been constructed for fluid flows with coexisting non-trivial attractors. In
this paper, we fill this gap in reduced flow modelling by constructing the slowest three-
dimensional (3-D) mixed-mode SSM of the edge state in the plane Couette flow studied
by Kreilos & Eckhardt (2012).

We show that this SSM-reduced model captures both the chaotic attractor and the
laminar state of the flow with the SSM acting as an inertial manifold (Foias, Sell & Temam
1988; Liu et al. 2024). Our approach, therefore, extends the results of Kaszás et al. (2022),
who obtained an SSM-reduced model for plane Couette flow with only periodic attractors,
and also justifies the empirical low-dimensional model of Kreilos & Eckhardt (2012).

2. Set-up
We focus on the chaotic dynamics observed in the plane Couette flow, which is the
incompressible flow in a channel between two infinite plates moving in opposite directions
with velocity ±U . The channel is defined as the domain Ω = {(x, y, z) ∈R

3 : [0, Lx ] ×
[−h, h] × [0, Lz]}, in which the velocity field u = [u, v, w](x, y, z, t) and the pressure p
satisfy the Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇ p + ν �u, ∇ · u = 0, (2.1)

where ν is the kinematic viscosity. The main parameter of the problem is the Reynolds
number, defined as Re = Uh/ν, where 2h is the distance between the moving walls. This
also sets the relevant time unit as h/U .

We work with a streamwise- and spanwise-periodic computational domain
corresponding to the minimal flow unit studied by Kreilos & Eckhardt (2012) and Kreilos,
Eckhardt & Schneider (2014), and fix h = 1, Lx = 2π and Lz = π . This domain is also
comparable to those used by Nagata (1990), Page & Kerswell (2019), Linot & Graham
(2023) and Kaszás et al. (2022).

We simulate the flow using the open source Channelflow library (Gibson et al. 2019),
which employs a pseudo-spectral discretisation using Fourier modes in the streamwise
and spanwise directions, and Chebyshev modes in the wall-normal direction. For a direct
comparison with earlier studies, we fix the number of streamwise and spanwise modes
as Nx = Nz = 32, and the number of wall-normal modes as Ny = 33. The boundary
and incompressibility conditions are enforced using the influence-matrix method and tau
correction (Kleiser & Schumann 1980). The time stepping algorithm implemented in
Channelflow uses semi-implicit backward differentiation (Gibson 2014; Gibson et al.
2019), and generates the forward time flow map of the discretised PDE (2.1). This time
evolution can be implicitly interpreted as a trajectory of a finite-dimensional dynamical
system (Gibson, Halcrow & Cvitanović 2008)

ẋ = f (x), x ∈R
N , f ∈ C∞, (2.2)

with x denoting the collection of velocity values in physical space returned by
Channelflow, and the total number of degrees of freedom is N ≈ O(105). The laminar
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flow, which is a stable fixed point of (2.2), is expressed as u = y, v = w = 0. In the
following, we focus on the dynamical system (2.2).

As shown by Kreilos & Eckhardt (2012) and Kreilos et al. (2014), in this computational
cell, the Nagata upper and lower branch fixed points (Nagata 1990; Gibson et al. 2009)
of (2.2) appear in a saddle-node bifurcation at Re = 163.8. For higher Reynolds numbers,
the upper branch fixed point (UB) undergoes a Hopf bifurcation, followed by a period
doubling cascade, eventually leading to chaotic dynamics.

The lower branch fixed point remains an edge state for a wide range of Reynolds
numbers, and its codimension-one stable manifold forms the edge of chaos (Wang et al.
2007; Schneider et al. 2008). The chaotic attractor, which can be traced back to the
upper branch fixed point, undergoes a boundary crisis (Grebogi, Ott & Yorke 1983) and
disappears at Re = 188.51. After this point, the transient chaotic behaviour associated with
turbulence is generated by a chaotic saddle (Lai & Tél 2011) and hence has a finite lifetime
(Kreilos et al. 2014).

We focus on a Reynolds number value before the boundary crisis, Re = 187.8, where
a genuine chaotic attractor coexists with the stable laminar state. Furthermore, we also
restrict the flow to the symmetry invariant subspace of the Nagata equilibria by solving
(2.1) with the shift–reflect symmetries imposed.

2.1. Spectral submanifolds
We aim to construct a simple reduced model that faithfully represents the bistability of
(2.2). To this end, we seek a low-dimensional invariant manifold containing the edge state,
labelled xLB. The linearised dynamics around the edge state are governed by the Jacobian
D f (xLB), whose eigenvalues are λ1, . . . , λN ∈C.

Let us assume that the eigenvalues satisfy the non-resonance conditions

N∑

j=1

mjλj �= λi , mj ∈N, (2.3)

for i = 1, . . . , N and
∑N

j=1 mj ≥ 2. The conditions (2.3) guarantee the applicability of
the linearisation theorem of Sternberg (1958) for class C∞ dynamical systems, such as
(2.2). This theorem states the existence of a smooth transformation mapping (2.2) to its
linearisation around the edge state.

As shown by Haller et al. (2023), this implies the existence of a family of SSMs tangent
to any given spectral subspace of the linearised dynamics. Precisely one of these SSMs,
the primary SSM, is C∞ smooth, whereas all others have reduced differentiability. We
target the slowest family of SSMs, tangent to the slowest spectral subspace spanned by
eigenvectors of the linearisation with eigenvalues closest to the imaginary axis. This is a
normally attracting slow manifold if the remaining eigenvalues of D f (xLB) have negative
real parts.

The non-resonance conditions (2.3) are violated only if a resonance occurs among both
the real and imaginary parts of the eigenvalues, i.e. the frequencies and the decay rates, si-
multaneously. As discussed by Haller et al. (2023), such an exact resonance among generic
complex numbers is highly unlikely in a typical finite-dimensional system, such as (2.2). In
addition, 1 : 1 resonances appearing as repeated eigenvalues enforced by physical symme-
tries do not violate (2.3). Therefore, we expect that a unique, C∞, mixed-mode SSM of the
edge state exists. Alternatively, we can also invoke the results of Buza (2024), who showed
that a C1-smooth pseudo-unstable manifold exists for the Navier–Stokes equations (2.1).
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Figure 1. (a) Streamwise averaged velocity field of the edge state. The streamwise velocity is colour-coded,
and the spanwise and wall-normal velocities are indicated as streamlines. (b) The spectrum of the edge state,
computed by Channelflow. The eigenvalues associated with the spectral subspace E spanned by v1, Re v2 and
Im v2, to which the SSM W(E) is tangent, are marked by red crosses. (c) Same as (a) for the vectors v1, Re v2
and Im v2. This figure is also available as a Jupyter notebook (https://www.cambridge.org/S0022112025107957/
JFM-Notebooks/files/figure1/figure1.ipynb).

Liu et al. (2024) and Xu et al. (2024) showed that slow mixed-mode SSMs tangent to
both stable and unstable linear modes can contain the chaotic attractor of a dynamical
system. Therefore, they often serve as inertial manifolds (Foias et al. 1988).

Kreilos & Eckhardt (2012) constructed a one-dimensional (1-D) Poincaré map by
tracking the maxima of the kinetic energy signal on the chaotic attractor. Although such
a construction only decreases the dimension of the system (2.2) by one, this 1-D map
already reveals periodic orbits in the attractor. These findings indicate that the attractor is
likely low-dimensional.

3. Results
Figure 1(a,b) show the edge state with its spectrum. The unstable manifold is 1-D, and
is tangent to the eigenvector v1. The next slowest eigenvalues are stable and form a
complex conjugate pair, with the eigenvectors v2, v3 = v̄2. The linear span of the slowest
eigenvectors, corresponding to an unstable real eigenvalue and a pair of stable complex
eigenvalues, is the slowest mixed-mode spectral subspace E = span(v1, Re v2, Im v2).
These eigenvectors are shown in figure 1(c). The slow SSM, W(E), is therefore also 3-D
and is constructed as a graph over the subspace spanned by these eigenvectors.

We follow the SSMLearn algorithm of Cenedese et al. (2022) to approximate the mixed-
mode SSM, W(E), from data. Our training trajectories are initialised near the edge state,
and are first attracted to the slow SSM before converging to either the laminar state
or the chaotic attractor. The DNS solver Channelflow also computes the eigenvectors
v1,2,3 using the Arnoldi method, which we use to enforce the exact tangency between
E and W(E), i.e. we parametrise the SSM over the subspace spanned by v1, Re v2 and
Im v2.

The coordinate chart returning the reduced coordinates η is a projection to the
eigenmodes

η = V Tx, (3.1)

where V is the matrix containing v1, Re v2 and Im v2. In addition, the eigenvectors allow
us to ensure that the training trajectories lie close to the SSM. Specifically, close to the
fixed point, the SSM W(E) is well approximated by the spectral subspace E . We initialise
the trajectories as small perturbations of the edge state along the spectral subspace, which
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Figure 2. (a) The average kinetic energy along training trajectories. (b) Correlation dimension estimation based
on (3.3), in the full phase space and the reduced phase space. The corresponding power-law fits are shown in
blue and orange, respectively. (c) The reduced coordinates of the same trajectories as they converge to the
chaotic attractor. The inset shows the laminarising trajectories as well. This figure is also available as a Jupyter
notebook (https://www.cambridge.org/S0022112025107957/JFM-Notebooks/files/figure2/figure2.ipynb).

results in initial velocity fields of the form

x = xLB + α1v1 + α2 Re v2 + α3 Im v2, (3.2)

with small coefficients α1,2,3. The sign of α1 decides on which side of the edge of chaos
the initial condition lies. Since we prepare initial conditions to lie close to the SSM, and we
consider that the tangent space of the SSM is known a priori, our approach is not strictly
data-driven, but data-assisted, using the terminology of Cenedese et al. (2025).

We advect 12 initial conditions (3.2) using Channelflow up to time Tmax = 2000,
sampling the trajectories at integer multiples of the dimensionless time unit �t = 1. For
comparison, we note that the characteristic time scale of the instability of the edge state is
approximately 1/λ1 = 21, as seen in figure 1(c). In total, this results in Nd = 24 000 data
points in the training set. The kinetic energy E = (1/2) ‖u‖2 of these trajectories, averaged
over the domain Ω , is shown in figure 2(a). The reduced coordinates of the training
trajectories, given by (3.1), are shown in figure 2(c). On the chaotic side of the edge, we
see saddle-spiral type dynamics, reminiscent of a Rössler-type attractor (Rössler 1976),
while on the other side, the dynamics are essentially 1-D, leading to rapid laminarisation.

To find further evidence of the low-dimensionality of the chaotic attractor, we estimate
its correlation dimension using the training trajectories. As defined by Grassberger &
Procaccia (1983), the correlation dimension is the scaling exponent γ in the relation

C(ε) ∼ εγ as ε → 0, (3.3)

where C(ε) is the correlation sum, i.e. the number of pairs of points in the attractor that
are separated by a distance less than ε > 0.

We computed the correlation sum C(ε) in the full, N -dimensional phase space and
in the reduced, 3-D phase space. The results are shown in figure 2(b). A linear fit on a
logarithmic scale returns a correlation dimension of approximately γ = 1.8 in both cases.
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Therefore, the chaotic attractor is indeed low-dimensional, and no topological information
is lost by restricting the dynamics to the SSM.

We note that in principle, the chaotic attractor might not be smoothly embedded in
three dimensions. This would be manifested by self-intersections of the trajectories in the
reduced space. In this case, however, we could embed it in an SSM of the same edge
state that is higher than 2γ -dimensional, as required by the Whitney (1944) embedding
theorem. The reduced trajectories in figure 2(c) show no self-intersection, therefore we
restrict the dynamics to the lowest dimensional slow SSM, W(E).

More generally, the SSM W(E) may develop a fold over its tangent space E , hence the
parametrisation, constructed as a graph over E , may become singular. This would also be
signalled by self-intersections of trajectories in the reduced space. Such examples are not
common, but a notable one is discussed by Cenedese et al. (2022), who showed that the
two-dimensional (2-D) SSM in the flow behind a cylinder folded over its tangent space.
As in that case, reparametrising the manifold over a different set of observables generally
solves this issue.

3.1. The geometry of the SSM
Having defined the coordinate chart (3.1), we proceed by defining the parametrisation of
the SSM. We first shift the coordinates to place the edge state xLB at the origin. We then
seek the parametrisation in the polynomial form

x = W(η) = Vη +
Mp∑

n=2

∑

i+ j+k=n

Wi jk ηi
1η

j
2ηk

3, (3.4)

where Wi jk are the coefficients of the monomial terms. In the expression for the
parametrisation W(η), we explicitly distinguish the linear part as DW(0) = Vη. We use
SSMLearn to determine the higher-order coefficients by minimising the error between the
training data and (3.4). Specifically, we minimise the reconstruction error between x and
W(η) = W(V Tx) defined as

Er =
Nd∑

j=1

∥∥x j − W
(
V Tx j )∥∥2

, (3.5)

where x j denotes the j th snapshot in the training set. Since we have prescribed the tangent
space of the SSM, the minimisation problem is equivalent to linear regression and can be
solved in closed form.

Evaluating the error (3.5) on a validation trajectory, we determine that the polynomial
order Mp = 5 results in the optimal reconstruction error. For more information, we refer to
the JFM Notebook accompanying figure 3.

3.2. The reduced dynamics on the SSM
After identifying the geometry of the SSM, W(E), we approximate the reduced dynamics.
We model it as a discrete dynamical system given by the 3-D iterated map

ηn+1 = F(ηn), F :R3 −→R
3, (3.6)

where ηn is the reduced state at time step n.
Although the flow of (2.2) is fundamentally continuous in time, we use a sampling time

�t = 1 to obtain the reduced map (3.6).

1023 A1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
79

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10795


B. Kaszás and G. Haller

0 500 1000 1500 2000

0.2

0

–0.2

–0.4

0.4

0.2

–0.2

0.2
0

–0.2
–0.4

–0.60

Time

0

0.02

0.04

0.06

K
in

et
ic

 e
n
er

g
y

DNS

SSM-based
prediction

0 0.02 0.04 0.06 0.08

Frequency

10−2

10−1

100

101

102

A
m

p
li

tu
d
e

DNS

SSM-based
prediction

η3

η2

η1

(a) (c)

(b)
Basin boundary

Figure 3. (a) Model predictions of test trajectories. (b) Power spectral densities computed from a chaotic
kinetic energy signal in the full model and the SSM-reduced model. (c) A subset of the edge of chaos,
constructed as the boundary of the basins of attraction in the reduced model, shown with the training
trajectories. Trajectories initialised on either side of the edge of chaos are also indicated as black lines. This fig-
ure is also available as a Jupyter notebook (https://www.cambridge.org/S0022112025107957/JFM-Notebooks/
files/figure3/figure3.ipynb).

A polynomial approximation of the reduced dynamics is insufficient for capturing
the chaotic dynamics, as reported by Liu et al. (2024) and Xu et al. (2024). Instead,
we use the SSMLearn algorithm with an alternative interpolation method. In particular,
we approximate the dynamics as a linear combination of radial basis functions (RBFs)
(Buhmann 2003). Interpolation using RBFs is a standard function approximation method,
often used to interpolate unstructured data. In addition, computing the interpolants does
not require iterative training.

The map (3.6) is approximated in the form

F(η) =
Nd∑

i=1

ci k(‖ηi − η‖), (3.7)

where ηi , i = 1, . . . , Nd , are the training data points, and k :R≥0 −→R is a radial
function, where R≥0 denotes the non-negative reals. The coefficients ci ∈R

3 are
determined by linear regression, minimising the squared error, analogously to (3.5),
between the training data and the RBF approximation. We use the multiquadric kernel
k(r) = √

r2 + ε2, which is a popular choice for RBF approximation (Fasshauer 2007); it
is also a default option in the implementation that we follow, available from the scipy
library (Virtanen et al. 2020). We select the scale parameter as ε = 10−8.

Since the RBF approximation interpolates the training trajectories, we need to use
the reduced dynamics (3.7) to predict the time evolution of previously unseen initial
conditions, i.e. test trajectories, to show that we avoid overfitting. We show two such
predictions in figure 3(a). The initial conditions are close to the edge state, but on opposite
sides of the edge of chaos. The laminarising trajectory is accurately predicted over the
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whole time interval. As expected, predictions of the chaotic trajectory are accurate only on
shorter time scales. This is due to the sensitivity of chaotic trajectories to initial conditions.

We can also compute relevant statistics on the chaotic attractor. In figure 3(b), we show
the broad power spectral density obtained from the Fourier transform of the kinetic energy
signal, characteristic of chaotic dynamics. A comparable time series of the full model
yields a similar spectrum, with inaccuracies visible only towards high frequencies.

We further investigate the chaotic dynamics on the SSM by constructing the basins
of the two coexisting attractors. We fill the domain of the reduced phase space shown
in figure 3(c) with a total of 106 initial conditions, and iterate them forwards under the
reduced dynamics (3.7) for T = 1000 steps. We then record the initial conditions of the
laminarising trajectories. This yields a characteristic function of the basin of attraction of
the laminar state, with the basin of the chaotic attractor obtained as its complement.

Instead of visualising the characteristic function directly in the reduced phase space, we
construct the boundary between the two basins. We define this basin boundary as the level
set of the characteristic function at value 0.5. The largest connected component of this
level set, approximating the stable manifold of the edge state, is shown in figure 3(c). This
set is a 2-D intersection of the edge of chaos with the SSM W(E).

We note, however, that since all our training trajectories have been initialised near the
edge state, the basin boundary that we obtain is necessarily only a local approximation.
Indeed, as shown by Kreilos & Eckhardt (2012), the basin of attraction of the chaotic
attractor has a bubble-like shape, encircling the attractor. To accurately capture this in our
reduced model, trajectories distributed along the entire basin boundary, also on both sides
of the upper edge of chaos (Budanur et al. 2020), would need to be included in the training.
This would increase the size of the required training set, and since our aim is not to map
out the global shape of the basin boundary, we do not pursue this feature further.

The reduced dynamics (3.7) can also be used to compute the Lyapunov exponents
(Oseledets 1968) of the chaotic attractor. The Lyapunov exponents are defined as the
average exponential growth rates of perturbations along the chaotic attractor. Here, we
compute the leading exponent, i.e. the most positive Lyapunov exponent, by tracking the
average growth rate of perturbations in an ensemble of trajectories initialised close to an
arbitrary point on the attractor (Cvitanović et al. 2016). Denoting the distance between two
initially close trajectories as δ(t), the distance grows exponentially as δ(t) ∼ eΛt , where Λ

is the leading Lyapunov exponent.
This computation can be carried out for the full system (Nastac et al. 2017), as well as for

the SSM-reduced dynamics. Figure 4(a) shows the ensemble-averaged divergence of tra-
jectories. By fitting a line to its initial, exponential trend, we find that the largest Lyapunov
exponent is ΛSSM = 0.0150 ± 0.0002. This overestimates the leading Lyapunov exponent
of the full system, which is ΛDNS = 0.0090 ± 0.0001. As a possible cause of this discrep-
ancy, we note that our training set contains substantial data near the unstable edge state,
whose eigenvalue λ1 = 0.047 (see figure 1b) is considerably larger than ΛDNS. In principle,
this bias could be reduced by including more data from trajectories on the attractor.

We have also employed the recent neural ODE-based data-driven modelling method
of Linot & Graham (2023) with our training data. The DManD algorithm reduces the
dynamics to an inertial manifold by an initial linear projection to 500 proper orthogonal
decomposition (POD) modes, followed by the application of an autoencoder. This maps
the data to a latent space of dimension dh , parametrising the inertial manifold. The reduced
dynamics is then modelled as a neural ODE trained on the dynamics of the latent variables.
We used the code published by Linot & Graham (2023) to train DManD models with
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Figure 4. (a) Average rate of separation between nearby trajectories in the SSM-based model and in the
DNS. (b) Relative reconstruction error of the autoencoders of the DManD models for various latent space
dimensions dh . (c,d) Average rates of separation of nearby trajectories in the best and worst DManD models,
as defined in the text. This figure is also available as a Jupyter notebook (https://www.cambridge.org/
S0022112025107957/JFM-Notebooks/files/figure4/figure4.ipynb).

dh = 3, . . . , 13. Due to the stochastic nature of the training algorithm, we repeated the
training ten times for each latent dimension, as described by Linot & Graham (2020).

Figure 4(b) shows the autoencoder reconstruction error, which saturates at
approximately dh = 5. Depending on the training process, there can be a considerable
difference in the performance of models with otherwise identical hyperparameters. We
compute the reconstruction error of all ten neural ODE models on a validation trajectory
for each dh . Based on this metric, we select the best and worst performing models.

To compare the DManD models to our SSM-based models, we first show dh = 3, which
matches the dimension of our SSM. As figure 4(c) shows, many of the models that we
trained produce non-chaotic behaviour, and the best model underestimates the Lyapunov
exponent. On the other hand, models with a higher-dimensional latent space achieve a
very good representation of the chaotic dynamics on the attractor. We show the estimated
leading Lyapunov exponent for dh = 13 in figure 4(d).

We also observed that even if they perform well on chaotic trajectories, higher-
dimensional DManD models tend to mispredict trajectories converging to the laminar
attractor. This suggests that the DManD models have difficulties representing the two
coexisting attractors of our system, which is to be expected since the method was originally
proposed to model systems with a single global chaotic attractor. Addressing these issues
will require more training data to resolve the basin boundary accurately, or adjustments to
the network architecture. We have included further details of the training and evaluation
of the DManD models in the JFM Notebook accompanying figure 4.
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3.3. Poincaré map
Once the reduced dynamics (3.7) is obtained, we can reduce the model dimension even
further by defining a Poincaré map (Guckenheimer & Holmes 1983). Since the sampling
time �t = 1 is small compared to other relevant time scales, we formally treat the
trajectories of (3.6) as if they were continuous in time by linearly interpolating between
successive discrete time steps. This allows us to compute the Poincaré map, which is
defined for continuous-time dynamical systems.

The Poincaré (or first-return) map P(η) is then defined by successive intersections of
the trajectory with a plane in the reduced phase space. We select the plane to be η2 = 0,
and record intersections with (η2)n+1 > 0 > (η2)n . Figure 4(a) shows the intersection of
the chaotic attractor with η2 = 0.

Using the reduced dynamics, the map P can be evaluated arbitrarily many times to
obtain a high-resolution representation of the chaotic attractor. This is shown in figure 4(b),
which features a total of 106 intersection points generated by P , revealing a much richer
structure than the limited number of sample points obtained from the training trajectories.
In particular, the SSM-reduced model revealed the small-scale fractal structure of the
attractor in the inset of figure 5(b). Visually, the attractor resembles the attractor of the
Hénon map, as remarked also by Kreilos & Eckhardt (2012).

The Poincaré section of the SSM, W(E), denoted W(E)|η2=0, can be computed by
simply setting η2 = 0 in the parametrisation (3.4). In figure 5(c), we visualise the attractor
of the Poincaré map on the SSM, by computing the kinetic energy of the flow fields.

We can also use the low-dimensional Poincaré map on the SSM to extract previously
unobserved features of the chaotic dynamics. In particular, since the chaotic attractor is
the closure of infinitely many unstable periodic orbits (Guckenheimer & Holmes 1983),
we can use the Poincaré map to find some of these underlying orbits.

Computing periodic orbits by approximating the Poincaré map sampled using simulated
trajectories has previously been applied to chaotic systems with low-dimensional
attractors. Christiansen, Cvitanovic & Putkaradze (1997) computed periodic orbits of the
Kuramoto–Shivashinsky equations (KSE) using a 1-D Poincaré map. A similar approach
was used by Kreilos & Eckhardt (2012), who defined a Poincaré map by interpolation,
using empirically computed successive maxima of the kinetic energy signal. More
recently, Wang et al. (2025) used the cylinder torques measured in Taylor–Couette flow
to define a 1-D map and prove its chaoticity. Also recently, Abadie et al. (2025) defined a
Poincaré map in a low-dimensional subspace spanned by the leading POD modes and in
the latent space of an autoencoder to find periodic orbits of the KSE.

With our SSM-reduced model, the Poincaré map is not approximated directly from full
system simulations. Instead, it is a prediction of the reduced model, derived from the
formally continuous time dynamics (3.6). As figure 5(b) shows, the training data used to
obtain the continuous time reduced model (3.6) contain a much lower number of observed
intersections with the Poincaré section. Although they do not define a Poincaré map,
Linot & Graham (2023) also use the low-dimensional model to find periodic orbits of
the full system.

The Poincaré map P bypasses the problem of finding an appropriate period, because
periodic orbits appear as fixed points of iterates of P . We therefore search for solutions
of the equation Pn(η) − η = 0, while systematically increasing n. We use a Newton–
Raphson-like method to find these roots.

We initialise the root-finding method with n = 1, . . . , 5 from random initial conditions
distributed along the attractor. Upon successful identification of a periodic orbit, the initial
condition is then provided as an initial guess to Channelflow’s Newton–Krylov solver
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Figure 5. (a) Black dots indicate the Poincaré section of the chaotic attractor with the η2 = 0 plane
(grey). (b) Black dots indicate intersections computed based on the training trajectories. Red dots are
iterations of the SSM-reduced Poincaré map. (c) Poincaré section of the SSM W(E), containing the chaotic
attractor (black) and periodic orbits (red). A period-3 orbit is highlighted in white, with the flow fields
shown in (d–f ) using the same visualisation as in figure 1. The kinetic energy of this orbit is shown in
(g). This figure is also available as a Jupyter notebook (https://www.cambridge.org/S0022112025107957/
JFM-Notebooks/files/figure5/figure5.ipynb).

(Viswanath 2007). Although we did not include any periodic orbits in the training data,
we successfully found eight periodic ECSs of the full system using the initial guesses from
the reduced model. One of these orbits is shown in figure 5(d–g).

We emphasise that our goal was not to compile an extensive library of periodic orbits of
this particular system, but to demonstrate that an SSM-based reduced model already cap-
tures the essential chaotic dynamics. Indeed, the reduced dynamics enables the efficient
sampling of the natural measure of the chaotic attractor to compute the probability distri-
bution of quantities of interest, such as the spectrum of the kinetic energy in figure 3(b).

4. Conclusions and discussion
We have applied the theory of spectral submanifolds (SSMs) to plane Couette flow in
the parameter regime supporting a chaotic attractor. We restricted the flow to the slowest
3-D mixed-mode SSM of the edge state, which functions as an inertial manifold. Our
very-low-dimensional reduced model is given by an iterated map interpolated using radial
basis functions. Although contemporary machine learning methods, such as neural ODEs
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(Linot & Graham 2020), could also be implemented to model the dynamics, we found that
simpler interpolation methods already deliver excellent accuracy.

Compared to these machine learning methods, the classical function approximation used
here has the advantage that it does not require any iterative training. This makes the models
less data-hungry and faster to compute, and their performance is more predictable. This
is due to the exact mathematical background supporting the existence and smoothness
properties of the underlying SSMs. In addition, we found that the state-of-the-art neural-
network-based model DManD (Linot & Graham 2023) may have difficulties modelling the
dynamics due to the coexisting chaotic and laminar attractors. In order for the neural ODE
model to produce chaotic dynamics consistently, larger-dimensional inertial manifolds
were required.

We have also defined a 2-D Poincaré map associated with the SSM-reduced model to
extract previously unseen characteristics of the dynamics. In particular, the Poincaré map
revealed the fractal structure of the chaotic attractor, and facilitated the search for periodic
orbits. Although Kreilos & Eckhardt (2012) inferred a similar 1-D map based on simulated
time histories of the kinetic energy to find periodic orbits, our approach makes a rigorous
connection between the dynamics in the full phase space and a 2-D Poincaré section in the
reduced phase space.

Our SSM-reduced model has been proven to generalise effectively and represent the
chaotic attractor accurately. Therefore, we believe that constructing SSM models, attached
to known ECSs, is a promising method for modelling other flows, too. In particular,
they allow efficient sampling of the probability distributions of physical variables without
relying on periodic orbit theory (Cvitanović et al. 2016).

Here, we have focused on plane Couette flow in a minimal flow unit at a relatively
low Reynolds number. This allowed us to conclude the existence of an SSM serving
as an inertial manifold, since a hyperbolic ECS close to the chaotic attractor, with
an slow attracting mixed-mode SSM, was available. As a result, although the system
exhibits temporal chaos, the observed spatial flow structures remain simple. Nevertheless,
successful modelling of such simple, but physically relevant systems is an important step
towards modelling flows with a higher degree of spatial complexity.

A logical future direction will be to pursue a similar model reduction approach in the
same system at a higher Reynolds number, after the boundary crisis (Kreilos et al. 2014).
For example, another popular parameter choice is Re = 400, where the lower branch fixed
point persists with a 1-D unstable manifold. The flow is more complex at this Reynolds
number, and the dimension of its chaotic set likely increases but stays below 18, according
to Linot & Graham (2023). The main difficulty in that case comes from the transient nature
of the chaotic dynamics. Since this dynamics is supported on a chaotic saddle, trajectories
may need to be carefully initialised near its stable manifold in order to explore its dynamics
for sufficiently long times.

We finally note that systems exhibiting a supercritical transition to chaos and turbulence
may also be reduced to a low-dimensional SSM. In that case, the model needs to
be anchored to the unstable laminar state, which is often available in closed form.
The appropriate slowest mixed-mode SSM of sufficiently high dimension can then be
constructed in a way similar to that presented here. We expect an SSM-reduced model
to be successful in those cases as well, at least for moderately chaotic flows. This is also
supported by the recent results of Wang et al. (2025), who constructed an empirical 1-D
Poincaré map for a low Reynolds number Taylor–Couette flow and found unstable periodic
orbits embedded in the attractor.
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Supplementary material. Computational Notebook files are available as supplementary material at
https://doi.org/10.1017/jfm.2025.107954 and online at https://www.cambridge.org/S0022112025107957/
JFM-Notebooks.
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orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274–301.

BUHMANN, M.D. 2003 Radial Basis Functions: Theory and Implementations. Cambridge University Press.
BUZA, G. 2024 Spectral submanifolds of the Navier–Stokes equations. SIAM J. Appl. Dyn. Syst. 22 (2), 1052–

1089.
CAVALIERI, A.V.G. & NOGUEIRA, P.A.S. 2022 Reduced-order Galerkin models of plane Couette flow. Phys.

Rev. Fluids 7, L102601.
CENEDESE, M., AXÅS, J., BÄUERLEIN, B., AVILA, K. & HALLER, G. 2022 Data-driven modeling and

prediction of non-linearizable dynamics via spectral submanifolds. Nat. Commun. 13 (1), 872.
CENEDESE, M., MARCONI, J., HALLER, G. & JAIN, S. 2025 Data-assisted non-intrusive model reduction for

forced nonlinear finite elements models. Nonlinear Dyn. 113 (7), 6465–6489.
CHRISTIANSEN, F., CVITANOVIC, P. & PUTKARADZE, V. 1997 Spatiotemporal chaos in terms of unstable

recurrent patterns. Nonlinearity 10 (1), 55.
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