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The kinetic stability of collisionless, sloshing beam-ion (45◦ pitch angle) plasma is stud-
ied in a three-dimensional (3-D) simple magnetic mirror, mimicking the Wisconsin high-
temperature superconductor axisymmetric mirror experiment. The collisional Fokker–
Planck code CQL3D-m provides a slowing-down beam-ion distribution to initialize the
kinetic-ion/fluid-electron code Hybrid-VPIC, which then simulates free plasma decay
without external heating or fuelling. Over 1–10 μs, drift-cyclotron loss-cone (DCLC)
modes grow and saturate in amplitude. The DCLC scatters ions to a marginally stable
distribution with gas-dynamic rather than classical-mirror confinement. Sloshing ions can
trap cool (low-energy) ions in an electrostatic potential well to stabilize DCLC, but DCLC
itself does not scatter sloshing beam-ions into the said well. Instead, cool ions must come
from external sources such as charge-exchange collisions with a low-density neutral pop-
ulation. Manually adding cool ∼1 keV ions improves beam-ion confinement several-fold
in Hybrid-VPIC simulations, which qualitatively corroborates prior measurements from
real mirror devices with sloshing ions.

Keywords: Plasma Simulation, Plasma Instabilities, Plasma Devices

1. Introduction

The Wisconsin high-temperature superconductor axisymmetric mirror (WHAM)
is a new laboratory experiment that confines hot plasmas in a magnetic mirror
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with a maximum field of 17 T on axis, generated by high-temperature supercon-
ductors (HTS) (Endrizzi et al. 2023). For WHAM and future mirror devices
(Simonen et al. 2008; Bagryansky 2024; Forest et al. 2024) to succeed, both fluid
and kinetic plasma instabilities must be quelled.

A kinetic instability of particular concern is the drift-cyclotron loss-cone (DCLC)
instability (Post & Rosenbluth 1966; Baldwin 1977). The DCLC comprises a spec-
trum of ion Bernstein waves, coupled to a collisionless drift wave, which is excited
by a spatial density gradient ∇n and a loss-cone ion velocity distribution. In a mag-
netized plasma column, DCLC appears as an electrostatic wave that propagates
around the column’s azimuth in the ion diamagnetic drift direction, perpendicular
to both B and ∇n. The DCLC can be unstable solely due to ∇n when the gradient
length scale n/(∇n) is of the order of the ion Larmor radius ρi , even for distri-
butions without a loss cone (e.g. Maxwellians), in which case it may be called a
drift-cyclotron instability (Mikhailovskii & Timofeev 1963). In this manuscript, we
call both drift-cyclotron and drift-cyclotron loss-cone modes by the acronym ‘DCLC’
for simplicity.

Many mirror devices have measured electric and/or magnetic fluctuations at
discrete ion cyclotron harmonics having properties consistent with DCLC. These
devices include PR-6 (Bajborodov et al. 1971; Ioffe et al. 1975), PR-8 (Piterskǐı et al.
1995), 2XIIB (Coensgen et al. 1975), TMX and TMX-U (Drake et al. 1981; Simonen
et al. 1983; Berzins & Casper 1987), LAMEX (Ferron & Wong 1984), MIX-1
(Koepke et al. 1986a, b; McCarrick et al. 1987; Burkhart et al. 1989), GAMMA-
6A (Yamaguchi 1996) and the gas dynamic trap (GDT) (Prikhodko et al. 2018;
Shmigelsky et al. 2024). Experiments on these devices showed that DCLC may be
partly or wholly stabilized by filling the ions’ velocity-space loss cone via axial plasma
stream injection (Ioffe et al. 1975; Coensgen et al. 1975; Kanaev 1979; Correll et al.
1980; Drake et al. 1981; Simonen et al. 1983; Berzins & Casper 1987), filling the loss
cone via angled neutral beam injection, which creates a non-monotonic axial poten-
tial that traps cool ions (Kesner 1973, 1980; Fowler et al. 2017; Shmigelsky et al.
2024), decreasing ∇n with respect to the ion Larmor radius ρi (Ferron & Wong
1984) and bounce-resonant electron Landau damping (Koepke et al. 1986a). Other
effects theoretically calculated to modify and/or help stabilize DCLC include finite
plasma beta (Tang et al. 1972), radial ambipolar electric fields (Chaudhry 1983;
Sanuki & Ferraro 1986) and low-frequency external electric fields (Aamodt 1977;
Hasegawa 1978).

The WHAM plasma column is a few to several ion Larmor radii (ρi ) in width
and so may excite DCLC. How will DCLC appear in WHAM; i.e. what will be
its azimuthal mode number, oscillation frequency and amplitude? Sloshing ions,
injected at 45◦ pitch-angle, helped to suppress DCLC in TMX-U endplugs and
are also used on WHAM; to what extent can sloshing ions similarly suppress
DCLC in WHAM? In general, how should WHAM’s plasma properties be tuned to
suppress DCLC? These questions have been addressed to varying degrees, for pre-
vious devices, via linear theory (Post & Rosenbluth 1966; Tang et al. 1972; Gerver
1976; Lindgren et al. 1976; Baldwin 1977; Cohen et al. 1982, 1983; Ferraro et al.
1987; Kotelnikov et al. 2017; Kotelnikov & Chernoshtanov 2018), quasilinear the-
ory (Baldwin et al. 1976; Berk & Stewart 1977), nonlinear theory (Aamodt 1977;
Aamodt et al. 1977; Myer & Simon 1980) and one- and two-dimensional (2-D)
kinetic computer simulations (Cohen & Maron 1980; Aamodt et al. 1981; Cohen
et al. 1982, 1983, 1984; Rose et al. 2006).
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Here, we address the aforementioned questions using 3-D full-device computer
simulations of DCLC growth and saturation in a hybrid (kinetic ion, fluid elec-
tron) plasma model. Our simulation accounts for many physical effects relevant to
WHAM – magnetic geometry, beam-ion distributions, both radial and axial elec-
trostatic potentials and diamagnetic field response – to obtain a fuller and more
integrated kinetic model than was possible decades ago. We highlight that the ini-
tial beam-ion distributions are obtained from a Fokker–Planck collisional-transport
model of a WHAM shot’s full 20 ms duration. The Fokker–Planck modelling and
code-coupling methods are presented by a companion study, Frank et al. (2025)
within this journal issue.

In § 2 we describe our simulation methods and parameters. In §§ 3.1 to 3.3, we
characterize three fiducial simulations evolved to 6 μs that have reached a steady-
state decay. The main instability in all simulations is described and identified as
DCLC, with the aid of an approximate linear dispersion relation for electrostatic
waves in an inhomogeneous, low-β planar-slab plasma. In § 3.4, particle confine-
ment is shown to obey a ‘gas dynamic’ rather than ‘collisionless mirror’ scaling with
mirror ratio and device length. In §§ 4.1–4.3, we survey well-known ways to stabilize
DCLC that may be relevant to WHAM and next-step mirror devices. We particu-
larly focus on stabilization via trapped cool ions, and we show that adding cool ions
can improve beam-ion confinement several-fold in our simulations. In §§ 4.4 and 4.5
we briefly discuss how DCLC in WHAM fits into a broader landscape of other
instabilities and devices. Finally, § 5 concludes.

2. Methods
2.1. Simulation overview

We simulate freely decaying plasma in a three-dimensional (3-D) magnetic mirror
made of one central cell and two expanders (figure 1a,e,i). Three magnetic-field
configurations are used, labelled by the vacuum mirror ratio Rm = {20, 41, 64}, to
span WHAM’s operating range. The WHAM magnetic field is created by two HTS
coils at z = ±98 cm and two copper coils at z = ±20 cm (Endrizzi et al. 2023). When
both HTS and copper coils are fully powered, the magnetic field on axis varies
between B ≈ 17.3 T at the mirror throats to 0.86 T at the device’s centre (Rm = 20).
When the copper coils are partly powered, B on axis ranges between 17.2 to 0.414 T
(Rm = 41). When the copper coils are unpowered, B on axis ranges between 17.1 to
0.267 T (Rm = 64).

Our simulations are performed with the code Hybrid-VPIC
1

(Le et al. 2023;
Bowers et al. 2008), which models ion kinetics using the particle-in-cell (PIC) method
and models electrons as a neutralizing fluid. Ions are advanced using a Boris pusher
(Bowers et al. 2008). Electric and magnetic fields E, B are evolved on a rectilinear
Cartesian (x, y, z) mesh. Particle–mesh interpolation uses a quadratic-sum shape (Le
et al. 2023; Appendix B); no filtering of the deposited particle charge and currents
is applied. The magnetic field is advanced using Faraday’s Law, ∂B/∂t = −c∇ × E,
with a fourth-order Runge–Kutta scheme. The electric field is passively set by a
generalized Ohm’s law without electron inertia,

E = − V i × B
c

+ j × B
enec

− ∇ Pe

ene
+ η j − ηH∇2 j , (2.1)

1Publicly available at https://github.com/lanl/vpic-kokkos/tree/hybridVPIC.
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(a) (b) (c) (d)
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FIGURE 1. The 2-D images of ion density and electric field fluctuations at t ≈ 6τbounce ≈ 6μs,
for three simulations with varying vacuum mirror ratio (a–d) Rm = 20, (e–h) 41, (i–l) 64. (a)
Ion density ni in units of 1013 cm−3, 2-D slice at y = 0 in (x, y, z) coordinates. White lines
trace vacuum magnetic fields; dashed cyan lines trace hyper-resistive dampers and conducting
E = 0 regions (see text). (b) Like (a), but 2-D slice at the mirror’s midplane z = 0 showing
coherent flute-like fluctuations at the plasma edge. (c) Azimuthal electric field fluctuation δEθ
in kV cm−1; magenta dotted line traces radial conducting boundary. (d) Like (c), but radial
fluctuation δEr . Panels (e)–(h) and (i)–(l) are organized like panels (a)–(d). Aspect ratio is
distorted in panels (a), (e) and (i); aspect ratio is to scale in all other panels. The ion bounce
time τbounce is defined later in § 2.3.

assuming both j = c∇ × B/(4π) and ne = ni . We further take Pe = neTe, with Te

constant in time and space (isothermal). Here ni and ne are ion and electron number
densities, V i is bulk ion velocity, Pe is scalar electron pressure, j is current density,
η is resistivity, ηH is hyper-resistivity, c is the speed of light and e is the elementary
charge. Gaussian CGS units are used in this manuscript unless otherwise stated.

Coulomb collisions are neglected because the ion–ion deflection and ion–electron
drag time scales in the plasmas modeled here are of order O(ms), longer than our
simulation durations ∼1–10 μs.

The hybrid-PIC equations solved here are non-relativistic: the displacement current
∂E/∂t/(4π) is omitted from Ampére’s law, and no Lorentz factors are used in the
Boris push. The speed of light is effectively infinite. All code equations are solved in
a dimensionless form; the normalizations for converting code variables into physical
units are set by choosing reference values of density, magnetic field, and ion species’
mass and charge.

A density floor of ne � {15, 6, 1.5} × 1011 cm−3, for the Rm = {20, 41, 64} simula-
tions, respectively, is applied in the Hall and ambipolar (pressure gradient) terms
of (2.1) to prevent division-by-zero in vacuum and low-density regions surrounding
the plasma. The density floor is set low enough to obtain the electrostatic potential
drop from z = 0 out to the mirror throats at z = ±98 cm, but the remaining poten-
tial drop from throat into expanders is not captured. Lowering the density floor
increases compute cost, so we sacrifice physics in the expanders that is less-accurately
described by the hybrid-PIC model anyways.

The simulation time step 
t must be smaller than a Courant–Friedrichs–Lewy
(CFL) limit to resolve gridscale whistler waves: 
t ∝ n(
z)2/B for cell size 
z

https://doi.org/10.1017/S0022377825000480 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000480


Journal of Plasma Physics 5

less than the ion skin depth. The density floor in high-B vacuum regions thus
sets the overall simulation time step. The CFL-limited time step is well below the
ion-cyclotron period and other physical time scales of interest, so we subcycle the
magnetic-field update Nsub times within each particle push to reduce compute cost.
The CFL limit then applies to 
t/Nsub, and larger 
t can be used.

We set the resistivity η= 0 and the hyper-resistivity ηH = 2.75 × 10−14 s cm2.
Hyper-resistivity is used solely to damp high-frequency whistler noise at the grid
scale k ∼ π/
z; ηH does not represent any subgrid physics of interest to us. The
hyper-resistive E is included in the ion push, since it is not used to model electron–
ion friction.

2
Hyper-resistivity is the only explicit form of numerical dissipation in

our simulations

2.2. Simulation geometry
The simulation domain for the Rm = 20 case is a rectangular box with extent Lx =

L y = 39.2 cm and Lz = 294 cm. The box is decomposed into a 962 × 384 Cartesian
(x, y, z) mesh with cell dimensions 
x =
y = 0.41 cm and 
z = 0.77 cm. For anal-
ysis and discussion, we project data into usual cylindrical coordinates (r, θ, z). For
the Rm = 41 and 64 cases, the domain is enlarged to Lx = L y = 58.8 and 78.4 cm
respectively while preserving the mesh cell shape, so the number of mesh points is
1442 × 384 and 1922 × 384, respectively. The domain extent truncates the expanders
at z = ±147 cm, unlike the real experiment, wherein a set of staggered biasable rings
collects escaping plasma at z ∼ 190–210 cm (Endrizzi et al. 2023; Qian et al. 2023).

The overall simulation time step 
t = 7.3 × 10−11 s. The magnetic-field advance
is subcycled Nsub = {100, 250, 1000} times within 
t , for Rm = {20, 41, 64}, respec-
tively.

Hyper-resistivity ηH acts like smoothing and removes gridscale numerical noise
on the whistler-wave dispersion branch, which would otherwise be undamped in the
absence of resistivity or hyper-resistivity. The value of ηH must be kept small enough
to not artificially smooth real physical phenomena. The hyper-resistive diffusion time
scale estimated as

[
ηH c2/(4πL4)

]−1
for an arbitrary length scale L is 1.4 × 10−8 s for

the transverse grid scale L ∼
x ; it is 600 μs for the ion skin depth L ∼ c/ωpi ∼ 6 cm
with n ∼ 3 × 1013 cm−3. We cannot make ηH much larger because the scale separa-
tion between grid noise and physical phenomena is small; high-m kinetic modes lie
below the ion skin depth. In Appendix A, we present density fluctuation properties
from a three-point scan of ηH ; some details (e.g. spectral bandwidth) are altered, but
the main conclusions regarding DCLC are not too sensitive to our chosen value of
ηH .

Particle and field boundary conditions are imposed as follows. A conducting radial
sidewall is placed at r = 0.47Lx , which is in physical units {18.4, 27.6, 36.8} cm
for Rm = {20, 41, 64}, respectively. A conducting axial sidewall is placed at z =
0.485Lz = ±143 cm. The HTS coils are also surrounded by both conducting and
hyper-resistive wrapper layers (figure 1a,e,i, dashed cyan curves). Within the wrap-
per layer (between nested dashed cyan curves), the grid-local value of ηH used in
Ohm’s law (2.1) is increased 30× to help suppress numerical noise in high-field,
low-density regions. The ‘conducting’ boundary is enforced by setting E = 0 on the

2If hyper-resistivity were used to model electron–ion friction, and no explicit collision operator for ions is used,
only the frictionless E should be used in the ion push (Stanier et al. 2019, Appendix A).
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(a) (b)

(c) (d)

FIGURE 2. Axial profiles of ni , B, φ measured at t = 6τbounce ≈ 6μs. (a) Ion density ni on axis
(r = 0). Dashes mark density floor for Ohm’s law, (2.1). (b) Like (a), but measured along off-
axis flux surfaces. (c) Magnetic-field strength B on axis. Ions with 45◦ pitch angle turn where
the local mirror ratio Rm(z)= 2 (triangles). (d) Electrostatic potential eφ in units of electron
temperature Te, measured on-axis (thick curves) and off-axis (thin curves). Potentials truncate
at z ∼ 100 cm, corresponding to density floors marked in (a) and (b). In all panels: blue, orange,
green curves are simulations with vacuum Rm = {20, 41, 64}, respectively; small triangles mark
on-axis turning points Rm(z)= 2 (coloured) and mirror throat (black).

mesh, which disables B field evolution. Bound charge and image currents within con-
ducting surfaces are not explicitly modelled. Particles crossing the Cartesian domain
boundaries (x = ±Lx/2, y = ±L y/2, z = ±Lz/2) are removed from the simulation.
Boundary conditions are applied to E at cell centres in a nearest-gridpoint manner,
which may contribute to mesh imprinting; boundaries might be improved with a
cut-cell algorithm or simply higher grid resolution in future work.

2.3. Plasma parameters
We model a fully ionized deuteron–electron plasma (mi = 3.34 × 10−24 g) with

typical ion density ni ∼ 1012 to 1013 cm−3 and temperature Ti ∼ 5 to 13 keV in the
mirror’s central cell. The ion velocity distribution is a beam slowing-down distri-
bution with pitch angle cos−1(v‖/v)∼ 45◦ at the mirror midplane (z = 0) to mimic
WHAM’s angled neutral beam injection (NBI). The beam path is centred on axis
(r = 0).

The ions’ spatial and velocity distributions are obtained from the bounce-averaged,
zero-orbit-width, collisional Fokker–Planck code CQL3D-m (Petrov & Harvey 2016;
Forest et al. 2024). We initialize the CQL3D-m simulations with a 1.5 × 1013 cm−3

plasma at low temperature Ti = Te = 250 eV, mimicking the initial electron-cyclotron
heating (ECH) breakdown of a gas puff in WHAM.

3
The plasma is simulated

3The 250 eV temperature is higher than in experiments so that we can use coarser velocity-space grid resolution.
The final evolved solution varies little with initial temperature.
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by CQL3D-m on 32 flux surfaces spanning normalized square root poloidal flux,√
ψn = 0.01–0.9, as it is fuelled and heated with a realistic 25 keV neutral beam

operating at the experimental parameters. No heating or fuelling sources other
than the neutral beam are included. The velocity-space grid has 300 points in total
momentum-per-rest-mass p/(mc), and either 256 or 300 points in pitch angle. The
total-momentum grid is not linearly spaced, but instead geometrically scaled at low
energies to cover the ion distribution function. The pitch-angle grid is uniformly
spaced. The solver CQL3D-m uses a time step of 0.0625 ms, advancing ions and
electrons simultaneously. The neutral beam deposition profile is updated after each
time step using the CQL3D-m internal FREYA neutral-beam Monte Carlo solver.
To include the diamagnetic B-field response to the plasma pressure, the CQL3D-
m solver is iterated with the MHD equilibrium solver Pleiades

4
(Peterson 2019),

with improvements to treat pressure-anisotropic equilibria (Frank et al. 2025). The
CQL3D-m and Pleiades solvers are coupled using a customized version of the inte-
grated plasma simulator framework (Elwasif et al. 2010). The diamagnetic field is
updated in CQL3D-m every 1 ms.

We perform separate CQL3D-m runs for each of the Rm = {20, 41, 64} cases.
In each case, the NBI power is adjusted in 100 kW increments, until the 1 MW
maximum input power of the experiment is reached or a mirror instability driven
β limit occurs (Kotelnikov 2025). The Rm = {20, 41, 64} cases operate with NBI
power {200, 400, 1000} kW, respectively. The CQL3D-m/Pleiades loop is run for
the duration of a laboratory shot, to 20 ms (which is t = 0 for Hybrid-VPIC). At the
end of the CQL3D-m run, all three cases have plasma β ∼ 0.60. The low Rm = 20
(high B-field) case achieves the highest plasma density 1–3 × 1013 cm−3 on axis in
the central cell (figure 2a). The ions have Ti = {13, 11, 11} keV at the origin (r, z)=
(0, 0) in the Rm = {20, 41, 64} cases, respectively. Of note, the Rm = 64 case has a
cooler ion plasma temperature Ti ∼ 5 keV at the plasma’s radial edge, whereas the
lower Rm (higher field) CQL3D-m simulations maintain Ti ∼ 10 keV from the axis
r = 0 to the edge. This is a result of the larger cool thermal ion population that is
trapped by the sloshing-ion distribution in the Rm = 64 case.

The CQL3D-m bounce-averaged distribution function at the mirror’s midplane
(z = 0) is mapped on Liouville characteristics to all (r, z) and read into Hybrid-
VPIC as an initial condition for both real- and velocity-space ion distributions. The
CQL3D-m ion radial density profile n is extrapolated from

√
ψn = 0.9 to 1 as

n(ψn)= cos2

[
π

2

(
ψn − 0.81
1 − 0.81

)]
, (2.2)

where ψn =ψ/ψlimiter, ψ = ∫
2πBrdr and ψlimiter = 2.32 × 106 G cm2. This sets the

plasma’s initial extent. No limiter boundary condition is implemented in the Hybrid-
VPIC simulation.

Electron velocity distributions and the electrostatic potential φ are also solved in
CQL3D-m via an iterative technique (Frank et al., 2025) but neither are directly
input to Hybrid-VPIC’s more-approximate fluid electron model. Instead, we set the
Hybrid-VPIC electron temperature Te = {1.25, 1.5, 1.0} keV in the Rm = {20, 41, 64}
cases, respectively, with Te values taken from the CQL3D-m simulation at

4https://github.com/eepeterson/pleiades
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Core Ti Edge Edge Ti‖
at 0 μs Ti⊥ at at 6 μs

Rm Lp B(z = 0) fci0 vti0 ρi0 Te 6 μs
20 98 cm 0.86 T 6.5 MHz 980 km s−1 2.37 cm 1.25 keV 13 keV 8.4 keV 17.1 keV
41 · · · 0.41 3.1 · · · 4.94 1.5 11 6.5 13.1
64 · · · 0.27 2.0 · · · 7.64 1.0 11 6.4 8.0

TABLE 1. Physical parameters for fiducial simulations, labelled by vacuum mirror ratio Rm .
The ion cyclotron frequency fci0 =�i0/(2π) and ion Larmor radius ρi0 = vti0/�i0. Ions are

deuterons. Core Ti at 0 μs is measured at the origin (r, z)= (0, 0).

(r, z)= (0, 0). All simulations use an isothermal equation of state, so Te is constant
in space and time. To support our use of a fluid approximation, we note that the
electron–electron collision time is much shorter than a WHAM shot duration, so
the CQL3D-m electron distributions are Maxwellians with empty loss-cones beyond
v‖ ∼ √

eφ/me (since the axial ambipolar potential confines ‘core’ thermal electrons).
The overall Te varies by less than 2× in both axial and radial directions, within
sloshing ion turning points, in the Rm = 20 case.

We use Nppc = 8000 ion macroparticles per cell, pinned to a reference density
3 × 1013 cm−3, so the initial number of particles is highest at the beam-ion turning
points and lower elsewhere; all particles have equal weight in the PIC algorithm.

We initialize particles on their gyro-orbits with random gyrophase; this spatially
smooths the initial radial distribution of plasma density and pressure, as compared
with the CQL3D-m density distribution which places particles at their gyrocentres.
The initial plasma in Hybrid-VPIC thus has non-zero initial azimuthal diamagnetic
drift and hence net angular momentum. We also initialize the diamagnetic field
from Pleiades in the Hybrid-VPIC simulation, but our initial plasma and magnetic
pressures are not in equilibrium due to the Larmor radius offsets from particle
gyrocentres. Thus, the Hybrid-VPIC simulation evolves towards a new pressure
equilibrium as the plasma settles into steady state.

Finally, the initial electric field E(t = 0) in Hybrid-VPIC is given by (2.1) com-
bined with the initial ion distributions from CQL3D-m, our chosen values of Te, and
the summed vacuum and diamagnetic B fields from Pleiades.

Let us define thermal length and time normalizations. The angular ion cyclotron
frequency �i0 = eB(z = 0)/(mi c) at the mirror midplane. The ion bounce (or,
axial-crossing) time τbounce = Lp/vti0 ≈ 1 μs using the mirror’s half-length Lp = 98 cm
and a reference ion thermal velocity vti0 = √

Ti0/mi = 0.00327c = 9.8 × 107 cm s−1,
with Ti0 = 20 keV and c the speed of light. Though the CQL3D-m initialized
ions have Ti ∼ 10 keV, our chosen vti0 approximates miv

2
ti0/2 ∼ miv

2
⊥/2 ∼ miv

2
‖/2 ∼

(25 keV)/2 for the beam-ion distribution’s primary and secondary peaks. We also
define a reference ion Larmor radius ρi0 = vti0/�i0 at the mirror midplane.
Tables 1 and 2 summarize physical and numerical parameters, respectively, for our
three fiducial simulations.
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Rm Lx Lz 
x 
z 
t Nsub η ηH

20 39.2 cm 294 cm 0.41 cm 0.77 cm 7.3 × 10−11 s 100 0 s 2.75 × 10−14 s cm2

41 58.8 · · · · · · · · · · · · 250 · · · · · ·
64 78.4 · · · · · · · · · · · · 1000 · · · · · ·

TABLE 2. Numerical parameters for fiducial simulations, labelled by vacuum mirror ratio Rm .

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 3. (a–e) Initial and (f–j) relaxed ion velocity distributions at the plasma edge, in three
simulations. Edge ion distributions smooth and flatten in v⊥ as the simulation evolves, with
a stronger effect for edge plasma as compared with core plasma. The loss cone is filled, and
the distribution varies little across the loss-cone boundary. (a) Reduced distribution F(v⊥) for
simulations with vacuum Rm = 20 (blue), 41 (orange) and 64 (green). Distribution is normalized
so that

∫
F(v⊥)2πv⊥dv⊥ = 1. (b)–(d) The 2-D distributions f (v⊥, v‖) for each of the three

simulations shown in (a), normalized so that
∫

f 2πv⊥dv⊥dv‖ = 1. Red curves plot loss-cone
boundary, with the effect of electrostatic trapping approximated using the on-axis potential well
depth of 0.4 to 1.9 keV. (e) Like (a), but a ‘core’ distribution centred on r = 0 for comparison
with the ‘edge’. (f )–(j) Like (a–e), but at later time t = 6μs in the simulation. In all panels,
velocities v⊥, v‖ are normalized to the speed of light c.

3. Results
3.1. Space, velocity structure of steady-state decay

At the start of each simulation, the plasma relaxes from its initial state over ∼1–
3τbounce; the diamagnetic field response is changed, short-wavelength electrostatic
fluctuations occur at the plasma edge and plasma escapes from the central cell
into the expanders. The plasma reaches a steady-state decay by t = 6τbounce for all
Rm simulations. At this time: (i) the particle loss time τp = n/(dn/dt) is roughly
constant and exceeds the ion bounce time (τp 
 τbounce); (ii) the plasma beta βi =
8π Pi/B2 ∼ 0.1 to within a factor of two at the origin (r, z)= (0, 0), with Pi the
total ion pressure; (iii) the combined vacuum and diamagnetic fields attain a mirror
ratio Rm = {21, 45, 69} somewhat higher than the respective vacuum values Rm =
{20, 41, 64}.
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Figure 1 shows the plasma’s overall structure at t = 6τbounce for each of the vac-
uum Rm = 20, 41, 64 simulations. Flute-like, electrostatic fluctuations at the plasma’s
radial edge are visible in z = 0 slices of ion density and electric fields, with the
strongest and most coherent fluctuations for the Rm = 20 case. In figure 1(a,e,i),
the axial outflow at |z|� 70 cm is split about r = 0, so more plasma escapes from
the radial edge r > 0 than the core r ∼ 0. In figure 1(d,h,l), the radial electric field
fluctuation δEr = Er − 〈Er〉θ , where 〈· · · 〉θ represents an average over the azimuthal
coordinate to subtract the plasma’s net radial potential. The azimuthal fluctuation
δEθ in figure 1(c,g,k) is defined similarly. The transverse magnetic fluctuations δBr

and δBθ have small amplitudes � 10−3 B(z = 0), whereas the electric fluctuations δEr

and δEθ are of order 0.1vti0 B(z = 0)/c, corresponding to motional flows at thermal
speeds. We therefore neglect electromagnetic fluctuations and focus solely on the
azimuthal, electrostatic mode visible in figure 1.

Figure 2(a,b) shows ion density profiles along z both on- and off-axis, with hori-
zontal dashes marking the density floor imposed in Ohm’s law, (2.1). The off-axis
density is measured along flux surfaces hosting the strong electric fluctuations seen
in figure 1. Specifically, we pick surfaces at r = {9, 18, 22} cm and z = 0 that have
an approximate (azimuth-averaged, paraxial) flux coordinate ψ ≈ ∫

2π〈Bz〉θrdr =
{2.1, 3.8, 3.7} × 106 G cm2 for the Rm = {20, 41, 64} simulations, respectively. The
plotted density ni is also azimuth averaged.

The density profiles peak near the turning points of 45◦ pitch-angle ions, defined
as the z locations where the local mirror ratio Rm(z)= 2 on axis; i.e. {57, 44, 36} cm
(figure 2c). Comparing on- and off-axis density peaks, the off-axis peak is wider
and decreases more slowly towards the mirror throat and expander. This can be
explained by the plasma edge’s stronger loss-cone outflow and broader pitch-angle
distribution between 0◦ and 45◦, compared with the plasma core at r = 0 (figure 3).

Figure 2(d) shows on- and off-axis electrostatic potential profiles eφ(z)/Te. The
off-axis profiles φ(s(z))= − ∫

E‖(s)ds, with arclength s in the (r, z) plane, are inte-
grated along the same flux surfaces used in figure 2(b). We notice that the z = 0
potential well has similar depth both on- and off-axis. The density floor truncates
the axial electrostatic potential at z ≈ 100 to 110 cm, so the full potential drop from
the mirror throat to the domain’s z boundary is not captured in our simulation.
In any case, plasma outflow in the expanders is not well modelled by our electron
closure, as the outflow is far from thermal equilibrium (e.g. Wetherton et al. 2021).
We will restrict our attention to central-cell plasma behaviour that we suppose to be
unaffected by the expanders.

Figure 3 shows initial ion velocity distributions, as imported into Hybrid-VPIC
from CQL3D-m, at the centre of the mirror cell: z ∈ (−5.9, 5.9) cm for all simula-
tions. Figure 3(a–d) sample ions from the plasma’s radial edge: r ∈ [5.9, 11.8) cm
for Rm = 20; r ∈ [11.8, 23.5) cm for Rm = 41; r ∈ [14.7, 29.4) cm for Rm = 64.
Figure 3(e) samples ions from the plasma’s core: r ∈ [0, 2.9) cm for Rm = 20; r ∈
[0, 5.9) cm for Rm = 41; r ∈ [0, 7.4) cm for Rm = 64. Figure 3(f –j) shows ion dis-
tributions, selected from the same axial and radial regions as figure 3(a–e), after
the simulation has reached t = 6τbounce ≈ 6 μs. Ions diffuse mostly in v⊥; their dis-
tribution is continuous and nearly flat across the velocity-space loss-cone boundary.
The reduced distribution F(v⊥)=

∫
f dv‖ has relaxed to a monotonically decreasing

shape, dF/dv⊥ < 0, at the plasma edge (figure 3f ); however, the core plasma main-
tains dF/dv⊥ > 0 at low v⊥ (figure 3j). Some distribution function moments will
be used in later discussion. We define B-perpendicular and parallel temperatures
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FIGURE 4. The 3-D rendering of ion density in Rm = 20 simulation at t = 6 μs; colourmap is
ion density in units of cm−3. An animated movie is available in the online journal.

Ti⊥ ≡ (1/2)
∫

miv
2
⊥ f dv and Ti‖ ≡ ∫

miv
2
‖ f dv so that Ti = (2Ti⊥ + Ti‖)/3; tempera-

ture values for the edge ion distributions at t = 6 τbounce (figure 3f–i) are given in
table 1.

Figure 4 shows a 3-D render of ion density in the Rm = 20 simulation at t = 6 μs.
The flute-like (k‖ ∼ 0) nature of the edge fluctuations is apparent. An accompanying
movie of the full time evolution from t = 0 to 6 μs is available in the online journal.

To summarize, figures 1–4 show that at the plasma’s radial edge: (i) flute-like
electrostatic fluctuations appear; (ii) axial outflow and hence losses are enhanced
relative to the plasma’s core at r ∼ 0; and (iii) ions diffuse in v⊥ to drive dF/dv⊥ < 0.
It is already natural to suspect that the electrostatic fluctuations diffuse ions into the
loss cone and hence cause plasma to escape the mirror.

3.2. Drift cyclotron mode identification
To establish the electrostatic mode’s nature, we need to know plasma properties

at the radial edge and the mode’s wavenumber and frequency spectrum.
Figure 5(a–c,f–h,k–l) presents the radial structure of the ion density ni , and the

electrostatic fluctuation energy δE2
θ = 〈E2

θ 〉θ − 〈Eθ〉2
θ , at the mirror midplane z = 0.

Figure 5(d,e,i,j,n,o) also presents Fourier spectra of density ñi(m, r) and electric
component Ẽθ (m, r) as a function of azimuthal mode number m and radius r .
Beware that Fourier spectrum normalization is arbitrary here and in all figures;
Fourier amplitudes may be compared between panels within one figure, but not
across distinct figures.

The density gradient ε ≡ (dni/dr)/ni , in units of inverse ion Larmor radius ρ−1
i0 , is

of order unity and increases with Rm (figure 5b,g,l); equivalently, the plasma column
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIGURE 5. Radial structure of plasma at midplane z = 0 and at t = 6 τbounce ≈ 6 μs, for sim-
ulations with vacuum (a–e) Rm = 20, (f–j) 41, (k–o) 64. Panels (a–c), (f–h) and (k–l) show
azimuth-averaged radial profiles of (a) ion density ni , (b) ion density gradient ερi0, (c) azimuthal
electrostatic fluctuation energy δE2

θ . Horizontal shaded bars contain the ‘edge’ ion distributions
from figure 3. Vertical dashes in (a), (f ) and (k) mark density floor for (2.1). Panels (d), (e),
(i), (j), and (n), (o) show azimuthal Fourier spectra of density ñi (r,m) and azimuthal electric
field Ẽθ (r,m); Fourier transform maps θ → m, but radius r is not transformed. White rays mark
azimuthal wavenumber kρi0 = 2, 4, 6, 8, 10, 12, with k = m/r . Dashed pink ray is the maxi-
mum k = π/
r resolved by the spatial grid, taking 
r = √

2
x . Panels (f )–(j) and (k)–(o) are
organized similarly.

radius is smaller in units of ρi0 for larger Rm , despite the column’s larger physical
extent.

The mode spectra of ñ and Ẽθ suggest a partial decoupling of density and elec-
tric fluctuations (figure 5, d, e, i, j, n, o). In all simulations, low m ∼ 2–4 density
fluctuations are not accompanied by a strong Eθ signal (figure 5d, e, i, j, n, o). The
Rm = 20 simulation shows a strong mode in both density and Eθ fluctuations at
m ≈ 9–10 and equivalent angular wavenumber kρi0 ≈ 2–4 (figure 5d,e). We identify
this Fourier signal with phase-coherent fluting at the same m visible to the eye in
figure 1(b,c). In contrast, the Rm = 41, 64 simulations show a decoupling of density
and Eθ fluctuations. The strongest density fluctuations reside at r ∼ 1–2ρi0, m ∼ 7–8
and kρi0 ≈ 2–6 (figure 5i,n), whereas the electrostatic fluctuations reside at larger
r ∼ 2–4ρi0, m ∼ 15–30 and kρi0 ∼ 4–12 (figure 5j,o).

The fluctuations have k‖ � k⊥ and are thus flute-like, which we checked by plotting
E in approximate flux-surface coordinates (not shown). Electric-field fluctuations
terminate at the mirror throats and do not extend into the expanders; fluctuations
may be artificially truncated by the density floor in (2.1).

Joint time-frequency and azimuthal-mode spectra of density and electric field fluc-
tuations, ñ(ω,m) and Ẽθ (ω,m), are presented in figure 6(a–f ). Fluctuations are
sampled at radii r = {3.34, 2.98, 2.69}ρi0, respectively, over t = 3 to 6 τbounce; ω is
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

FIGURE 6. Time-azimuth Fourier spectra of density ñ(ω,m)2 (a–c) and electric field Ẽθ (ω,m)2

(d–f ) for simulations with Rm = {20, 41, 64} (left to right). Panels (g)–(l) show corresponding
(ω, k) of unstable DCLC modes predicted by (3.4) for edge F(v⊥) at t ≈ 6 μs (g–i) or t =
0 (j–l). In panels (a)–(f ), the full ω range within Nyquist-sampling limits is shown; signals
with ω� 2�i0 alias in frequency. White dotted lines plot ion diamagnetic drift velocity ω/k =
vDi. Shaded vertical bar in (a), (d) marks grid resolution limit k >π/
r with 
r = √

2
x . In
(g)–(l), we plot both stable- and unstable-mode frequencies Re(ω) (black, blue), and also the
corresponding unstable-mode growth rates Im(ω) (green). In (l) only, red curves plot Im(ω) for
higher-ω/k modes with Re(ω) ∈ [4�i0, 14�i0] beyond the plot extent. Black dotted lines plot
ω/k = vDi.

angular frequency. Positive ω/k corresponds to the ion diamagnetic drift direction.
We interpret Fourier power at ω< 0 as high-ω signal that is aliased in frequency
space and would otherwise be contiguous in physical (ω, k). Assuming so, both ñ
and Ẽθ show a mode spectrum with a phase speed ω/k > 0 comparable to the ion
diamagnetic drift speed vDi (white dotted lines, figure 6a–f ). We compute

vDi ≈ Ti⊥/mi

�i0

(
− 1

ni

dni

dr

)
= vti0

Ti⊥
Ti0

|ε|ρi0 (3.1)
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using ερi0 = {−1,−1,−1.5} and Ti⊥ measured at t = 6τbounce (values reported in
§ 3.1). The spectra align with ω/k = vDi within a factor of 2.

A fundamental mode appears at ω ∈ [�i0, 2�i0] in all simulations. Fluctuation
power extends to ω� 3�i0 in all simulations, perhaps up to ω� 7�i0 in the Rm = 64
simulation, but by eye we do not discern discrete harmonics above 2�i0. A low-
frequency ω��i0 mode with non-zero m appears chiefly in ñ and weakly in Ẽθ ; we
identify this slower motion as fluid interchange and discuss it further in § 4.4.

To help interpret figure 6(a–f ), we compute the linearly unstable (ω, k) for DCLC
in a planar-slab plasma with a spatial density gradient ε and uniform background
magnetic field (∇ B = 0). In such a plasma, a dispersion relation for exactly perpen-
dicular electrostatic waves can be obtained by integrating over unperturbed orbits
and Taylor expanding f in particle guiding-centre coordinate, following Stix (1992,
§ 14–3, (9)). The dispersion relation is then

D = 1 +
∑

s

χs = 0, (3.2)

where the perpendicular (k = k⊥) susceptibility of species s reads

χs =
(
ωps

�s

)2 [ (
1 − εω

k

) 1
k2

∞∑
n=−∞

n

ω− n

∫
d3v

(
1
v⊥

∂ f

∂v⊥

)
J 2

n

−ε
k

∞∑
n=−∞

1
ω− n

∫
d3v f J 2

n

]
. (3.3)

In (3.3), variables are written in a species-specific dimensionless form: ω/�s →ω,
kρs → k, ερs → ε and v⊥/vts → v⊥, where �s is signed (i.e. �e < 0) and ρs ≡ vts/�s.
The decision of how to define vts (with or without

√
2) is given to the user. The

plasma frequency ωps = √
4πnsq2

s /ms for each species. The Bessel functions Jn =
Jn(k⊥v⊥) as usual, with k⊥ = k. Equations (3.2)–(3.3) simplify for cold fluid electrons
to yield

D = 1 + χi + ω2
pe

�2
e

+ ω2
pe

|�e|
ε

kω
= 0, (3.4)

where the variables k, ε and ω are now in dimensional units. Equation (3.4) is the
slab DCLC dispersion relation also used by Lindgren et al. (1976, (2)), Ferraro et al.
(1987, (19)), and Kotelnikov et al. (2017, (17) and (A14)). In our sign convention,
ε < 0 obtains DCLC with ω/k > 0 in the ion diamagnetic drift direction. Equation
(3.4) also hosts normal modes with k < 0 and high phase velocity in the electron
diamagnetic drift direction (Lindgren et al. 1976, § 2.A.1.b), which do not appear in
our simulations and so are omitted from our discussion.

The unstable- and normal-mode solutions to (3.4), presented in figure 6(g–l),
are computed as follows. First, we take �i0, ρi0 and vti0 as defined in § 2.3 to
normalize all variables in (3.4). Plasma parameters used for the Rm = {20, 41, 64}
simulations, respectively, are ερi0 = {−1,−1,−1.5}; ni = {4, 1.2, 0.5} × 1012 cm−3;
B = {8.6, 4.1, 2.7} × 103 G. Both ε and ni describe the plasma edge at the midplane
z = 0 (figure 5). We take B at (r, z)= (0, 0) to match the variable normalization
throughout this manuscript; B at the plasma edge differs by � 10 %. Reduced ion
distributions F(v⊥)=

∫
f dv‖ are measured directly from the plasma edge (figure 3).

Bessel function sums are computed using all terms with index |n|� 40. The waves
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and particles at hand have k⊥ρi0 � 20 and v⊥/vti0 � 2, so the Bessel function argu-
ment (k⊥ρi0)(v⊥/vti0)� 40. Terms with n > 40 contribute little to χi because the first
positive oscillation of Jn(ξ) peaks at ξ = j ′

n > n, where j ′
n is the smallest positive zero

of J ′
n (Watson 1922, §15.3), and Jn(ξ)→ 0 quickly as ξ → 0 for ξ � n.

We then compute D on a discrete mesh of (k,Re(ω), Im(ω)); for each k, we
identify normal modes (whether stable, damped or growing) by seeking local minima
of D with respect to the complex ω mesh. Our D ≈ 0 solutions are not exact. To
test our solution scheme, we refined our solutions to D = 0 by applying a manual
root-finder to each (k, ω) normal mode for one set of plasma parameters, and we
saw no significant difference.

Figure 6(g–i) uses F(v⊥) measured from the plasma edge at t = 6τbounce ≈ 6 μs,
showing DCLC modes at marginal instability (more precisely, drift-cyclotron modes
since the loss cone is filled).

Figure 6(j–l) uses F(v⊥) measured at t = 0 instead to show that initial distributions
with empty loss-cones and spatial gradient ερi0 ∼O(1) drive strongly unstable, broad-
band electrostatic modes with fastest growth towards high kρi0 
 1 and ω
�i0. The
Rm = 64 simulation (figure 6l) is an exception, because its CQL3D-m model predicts
a larger population of trapped cool ions that helps stabilize DCLC. Figure 6(l) also
reveals three branches of unstable modes, each with distinct ω/k, that we specu-
late may be drift waves associated with distinct hot and cool plasma populations
(figure 3a,d). The slowest branch is visible with Re(ω) between 2 to 4�i0; the corre-
sponding Im(ω) are plotted in green. The faster phase speed branches have unstable
Re(ω) > 4�i0 extending to at least 14�i0; the corresponding Im(ω) are plotted in
light red.

What is learned from comparing the simulation spectra versus linear theory in
figure 6? First, marginally stable DCLC mode growth may explain high kρi0 � 5
fluctuations residing in the device during steady-state decay. How do we explain
the fundamental mode between ω=�i0 and 2�i0 for simulations with Rm = 41, 64,
since that mode is predicted to be linearly stable at late times? It may be an initially
excited mode that did not damp and so persists to late times; this appears possible
for the Rm = 41 simulation, where the fundamental is unstable at t = 0. Or, it may
be excited by nonlinear flow of wave energy from unstable to stable modes; such an
explanation may be needed for the Rm = 64 simulation, in which cool plasma at the
radial edge should quench DCLC growth of the fundamental mode at both t = 0
and t = 6 μs. We have interpreted the t = 0 and t = 6 μs as most- and least-unstable
scenarios for DCLC growth, but the plasma may also transition through other states
that destabilize the fundamental mode.

3.3. Ion scattering
To establish a causal link between δE fluctuations and axial ion losses, we quantify

ion scattering in the Rm = 20 simulation as follows. We measure velocity jumps over
a short time interval δt ≡ t1 − t0 = 0.25�−1

i0 for O(107) PIC macroparticles sampled
from |z| ∈ [0, 5.9] cm. Our approach is similar to many other PIC simulation stud-
ies; see Yerger et al. (2025) for a recent discussion of nuances in constructing and
interpreting such velocity jump moments. Figure 7(a) shows the probability distri-
bution of the B-perpendicular and parallel velocity jumps, δv⊥ = v⊥(t1)− v⊥(t0) and
δv‖ = v‖(t1)− v‖(t0). The distributions are not Gaussian and have long tails. The per-
pendicular jumps δv⊥ are much larger than δv‖, as expected for flute-like (k⊥ 
 k‖)
electrostatic modes and as evident in figure 3.
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(a) (b)

(c) (d)

(e)

(g)

(f)

FIGURE 7. Ion scattering measured in Rm = 20 simulation, at midplane z ∈ [−5.9, 5.9] cm
unless said otherwise. All diffusion coefficients are normalized to v2

ti0�i0. (a) Probability dis-
tribution of ion velocity jumps, normalized to v⊥(t1) and v‖(t1), for particles at all radii. (b)
Radial profile of ion diffusion 〈δv⊥Eδv⊥E 〉/δt (solid black) compared with 〈δv⊥δv⊥〉/δt (dot-
ted blue). (c) Predicted radial profile of ion diffusion due to fluctuating fields δE2

θ (dotted blue),
δE2

r (thin solid blue), and δE2⊥ = δE2
θ + δE2

r (thick solid blue), compared with 〈δv⊥Eδv⊥E 〉/δt
(black). (d) Numerical convergence in particles per cell for radial profile of 〈δv⊥Eδv⊥E 〉/δt . (e)
Effect of measurement time δt upon radial profile of 〈δv⊥Eδv⊥E 〉/δt . (f ) Effect of measurement
time δt upon diffusion measured at the midplane (r, z)≈ (8.2, 0) cm (blue curve), and near the
beam-ion turning point at (r, z)≈ (6.8, 50) cm (orange curve). (g) The 2-D map of diffusion
〈δv⊥Eδv⊥E 〉/δt computed in discrete (r, z) bins (pixels); only bins with > 100 particles are
shown. Light blue and orange boxes mark measurement locations used in (f).
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Ion velocities may jump due to both adiabatic and non-adiabatic motion. To
separate these motions, introduce an energy E = miv

2/2 + e〈φ〉θ,t , where 〈· · · 〉θ,t
is an average over both azimuth angle θ and time from t0 to t1. We expect E
to be conserved by particles gyrating in slowly varying E and B fields, at low-
est order in a Larmor-radius expansion. Therefore, we attribute jumps in E to
a non-adiabatic kick in perpendicular velocity that we call δv⊥E . We use δE =
E(t1)− E(t0)= mv⊥δv⊥E − m(δv⊥E)2/2 to compute

δv⊥E
v⊥(t1)

= 1 −
√

1 − 2δE
mv2

⊥(t1)
. (3.5)

Equation (3.5) requires δE to not exceed the particle’s final perpendicular energy:

δE <mv2
⊥(t1)/2. (3.6)

Figure 7(a) shows that the probability distribution of δv⊥E , computed only for those
particles satisfying (3.6), is marginally narrower than that of δv⊥, as expected if
non-adiabatic kicks are the main contribution to δv⊥.

5

The ion diffusion 〈δv⊥Eδv⊥E〉/δt as a function of radius is shown in figure 7(b);
its value is normalized to v2

ti0�i0 in all of figure 7(b–g). Here, 〈· · · 〉 is a velocity-
distribution moment computed in radial bins. The use of δv⊥E decreases the
measured diffusion as compared with 〈δv⊥δv⊥〉/δt , as expected.

The ion diffusion due to fluctuating fields δE⊥(r) can be described by a diffusion
coefficient similar to those used in quasilinear models,

D⊥⊥ = 1
2

(
e

mi
δE⊥

)2

τc, (3.7)

where τc is a yet-unknown wave–particle correlation time. Equation (3.7) assumes
(i) weak but coherent kicks δv⊥ ≈ (e/mi)δE⊥τc; (ii) a uniform random distribution
of angles between v⊥ and δE⊥ to obtain a factor of 1/2 accounting for kicks in
gyrophase instead of v⊥ magnitude. For a scattering-measurement time δt < τc, we
expect

D⊥⊥ ≈ 〈δv⊥E δv⊥E〉
δt

, (3.8)

also replacing τc → δt in D⊥⊥.
Choosing δt < τc is unusual for studies of particle diffusion, as the resulting (3.8)

describes a more ‘ballistic’ than diffusive process. But, a short δt helps us. When
using a longer δt 
 τc, at least two issues arise. First, ions gyrate in and out of the
scattering zone, as the zone’s radial width is similar to an ion Larmor radius. A
typical ion may get one or a few kicks, gyrate out of the scattering zone and drift
adiabatically, re-enter the scattering zone to be kicked again, and so on, resulting
in a random walk with intermittent large time gaps. The scattering zone’s finite
radial width may also introduce bias in the correlation time τc, because a typical
inboard (small r ) ion gyrating in and out of the scattering zone sees a redshift

5We checked that (3.6) does not cause noticeable selection bias for short δt ��−1
i0 ; radial profiles of 〈δv⊥〉

and 〈δv⊥δv⊥〉, computed with and without particles excluded by (3.6), appear identical to the eye. For larger δt ,
particles accumulate order-unity kicks in v⊥ and selection bias appears.
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ω− k⊥v⊥, whereas a typical outboard (large r ) ion instead sees a blueshift ω+ k⊥v⊥.
Second, a longer δt needed to sample multiple gyration periods 2π�−1

i0 will introduce
axial bounce effects. In the Rm = 20 simulation, τbounce ≈ 40�−1

i0 , and even fewer ion
gyrations are executed within τbounce for the higher Rm cases.

In figure 7(c) we compare (3.8) with the ion diffusion measured from indi-
vidual particles. The fluctuating energy density is azimuth averaged as δE2

r =
〈E2

r 〉θ − 〈Er〉θ 2, and similarly for δE2
θ ; the sum δE2

⊥ = δE2
θ + δE2

r . The diffusion due
to δE2

θ agrees especially well with the particle measurement, whereas the diffusion
due to δE2

r agrees less well.
Numerical noise might drive axial losses from the plasma edge in the same way

that we are attributing to DCLC, because PIC particle count decreases at the plasma
edge. To check this possibility, figure 7(d) shows that the measured ion scattering is
converged in the number of particles per cell used. We are confident that ion scat-
tering is not due to numerical noise because (i) the DCLC electric fields have much
larger energy density than numerical noise at the grid scale, and figure 7(c) shows
good agreement in radial profiles of electric fields and scattering, (ii) we see weak
to no Nppc dependence of scattering rates, whereas if scattering were due to noise,
we might expect either an outwards shift in r as Nppc increases (for fixed DCLC
amplitude), or a decrease in scattering rate if noise suppresses DCLC amplitude;
(iii) ion scattering is clearly anisotropic (figure 7a), whereas numerical scattering
should be insensitive to v‖ versus v⊥ because the grid scale is much smaller than the
ion Larmor radius.

In figure 7(e) we show the effect of δt upon the radial profiles of measured ion
diffusion. Figure 7(f ) then samples the ion scattering at its radial peak r = 8.2 cm
(blue curve) and shows its dependence upon many more values of δt . We see that
the diffusion moment scales linearly with small δt as expected from (3.8); for com-
parison, the black dotted line shows an exactly linear correlation with δt . As δt
becomes ��−1

i0 , waves and particles decorrelate and the diffusion rate begins to fall.
We perform a similar calculation at (r, z)≈ (6.8, 50) cm (figure 7f , orange curve)
to conclude that τc is shorter near the fast ion turning point. If τc ∼ 1/�i (where �i

varies with z, unlike �i0), the lower τc can be easily explained by the 2× increase in
B magnitude.

Finally, figure 7(g) shows 〈δv⊥Eδv⊥E〉/δt as a function of (r, z) in the mirror’s
central cell. The ion scattering at all z is well localized to the same flux surfaces
between beam-ion turning points. Scattering is strongest towards z = 0, where the
central-cell field is relatively uniform.

We conclude from figure 7(e,f ) that particle scattering has a longer correlation
time τc and reaches a larger amplitude at the mirror midplane z = 0, as compared
with near the beam-ion turning points. Ions at z = 0, and throughout the central cell
where B ≈ B(z = 0), should be more important for regulating DCLC growth and
saturation than ions at the turning points.

3.4. Particle confinement time
Because the loss cone is full – i.e. F(v⊥) is roughly constant within the loss

cone (figure 3) – our simulated mirrors are a collisionless analogue of the GDT
at the Budker Institute (Ivanov & Prikhodko 2017). Ions scatter across the loss-cone
boundary as fast as (or faster than) untrapped ions can stream out of the mirror,
implying an effective mean free path shorter than the device’s length. The particle
confinement time τp ≡ N/|dN/dt |, where N is the total number of ions, then scales
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(a) (b)

FIGURE 8. (a) Particle confinement time measured between t = 5 to 6τbounce, for mirrors of
varying Rm (blue, orange, green) and device length Lp (circle, triangle, star markers) as a
function of τGD (3.9). Small blue markers vary Te for Rm = 20; large blue marker is fiducial
Te = 1.25 keV. (b) Diffusion time scale 1/ν⊥⊥ (3.10) modelled from δE2

θ (solid markers) and
δE2⊥ (hollow markers), as a function of τGD. In both panels, diagonal dotted line is τp = τGD.

like the eponymous ‘gas dynamic’ time,

τGD = 2Lp Rm

vti‖
, (3.9)

adapted from Endrizzi et al. (2023, § 3) with vti‖ a characteristic parallel thermal
velocity.

To test the relation τp ∝ τGD, we measure τp between t = 5 to 6 τbounce, and vti‖ =
〈v2

‖〉1/2 at t = 6 τbounce, in each of the Rm = {20, 41, 64} simulations with Lp = 98 cm
on axis. We also measure τp and vti‖ in additional Rm = 20 simulations with varying
Te = 0, 2.5, 5, 10 keV and longer central cells (larger Lp); the latter are constructed as
follows. Split the ‘original’ mirror device in half at z = 0. Between the mirror halves,
insert a cylindrical plasma of length 98 or 168 cm, thereby increasing the entire
mirror’s half-length Lp by 1.5 or 2×. The cylinder has, at all z, the same velocity
distribution and magnetic field B as in the original mirror at z = 0. The simulation
domain is made larger; mesh voxel dimensions (
x , 
y, 
z) are the same as in § 2.
The cylinder’s magnetic field is unphysical because it has dBz/dr �= 0 and Br = 0,
implying non-zero current c∇ × B/(4π), so we exclude this current from the j × B
term in Ohm’s law(2.1).

The confinement time τp ∼O(102)μs, and τp scales linearly with τGD as expected
(figure 8a). Gas-dynamic confinement explains losses from the Rm = 20 and 41 sim-
ulations very well. Raising electron temperature Te from 0 to 10 keV lowers τp

from 57 to 35 μs for the Rm = 20 simulations. For comparison, the collisional (aka
‘classical’) confinement time is 0.1–0.2 s, using (3.4) of Endrizzi et al. (2023) with
n = 3 × 1013 cm−3, Rm = 20 to 64, and beam energy 25 keV.

The Rm = 64 shows 20 % better particle confinement than predicted by (3.9).
Why? The larger plasma radius and hence longer flux-tube length > 2Lp between
mirror throats only explains ∼5 % of the disagreement. We speculate that electro-
static potential effects may explain the remaining disagreement. In the Rm = 20, 41
cases, beam ions diffuse in v⊥ and escape with high v‖; electrostatic effects are weak
since Te � Ti , so (3.9) accurately describes the beam ion confinement. The Rm = 64
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case has more cool, low-temperature ions (figure 3i) that can be trapped by the
sloshing-ions’ potential peak at z ∼ 30 cm (Kesner 1973, 1980); confinement is thus
improved.

Instabilities in many settings are self-regulating; i.e. unstable waves drive phase-
space flow that quenches the waves’ own energy source, driving the system to
equilibrium (e.g. Kennel & Petschek 1966). If DCLC self-regulates, then we may
expect its amplitude to grow in time until the diffusion rate into the loss cone bal-
ances the axial outflow rate: ν⊥⊥ ∝ τ−1

GD. We test this by computing a diffusion rate
into the loss cone as

ν⊥⊥ ≡ 1
N�

∫
D⊥⊥(r)
v⊥LC

2
ni(r)2πr� dr, (3.10)

which is a density-weighted average of D⊥⊥ (3.7) over a cylindrical kernel of axial
length � and radial profile ni(r), normalized to N� = ∫

ni(r)2πr�dr . We take v⊥LC =
vti‖/

√
Rm − 1 to approximate the ions’ v⊥ at the loss cone boundary, we take �=

12 cm centred at z = 0, and we take τc =�−1
i0 . Given these assumptions, and given

that (3.7) is not from a self-consistent quasilinear theory, we interpret (3.10) as no
more accurate than an order-of-magnitude scaling. In figure 8(b) we compute the
diffusion time scale 1/ν⊥⊥ using either δE2

θ or δE2
⊥ as defined as in figure 7(c).

We observe that 1/ν⊥⊥ has similar magnitude as τGD, as expected. But, no trend is
obvious from the scatter and few data points.

4. Discussion
4.1. Cool plasma effects

How much cool plasma, and at what temperature, suppresses DCLC for the
peaked beam-ion distributions injected into WHAM? To answer this, figure 9 com-
putes DCLC linear stability with distinct ‘hot’ and ‘cool’ ion populations. The hot
ions are a beam distribution at t = 0 in our Rm = 20 simulation, taken from the mid-
plane z = 0 (figure 3b), with nhot = 4 × 1012 cm−3. The cool ions are a Maxwellian
of the same species (deuterium), with density ncool and temperature Tcool. We
solve (3.4) using the same procedure as in § 3.2, within a finite domain kρi0 < 15,
Re(ω)/�i0 < 10, and Im(ω)/�i0 < 4.

Figure 9(a) predicts that DCLC is suppressed when cool and hot ion densities
are nearly equal, and Tcool ∼ 2 to 10 keV. In cases where DCLC is not fully stabi-
lized, figure 9(b) shows that dense-enough cold plasma will at least stabilize low
cyclotron harmonics; we anticipate that the remaining unstable high harmonics may
have weaker scattering rate. Figure 9(b) qualitatively concurs with recent measure-
ments on the GDT device: DCLC at high harmonics appeared when a relatively high
gas density was puffed into GDT’s central chamber before neutral-beam injection
(Prikhodko et al. 2018; Shmigelsky et al. 2024); critically, this form of DCLC did
not impede the build-up of plasma pressure. Figure 9(c–h) show the effect of varying
Tcool (with ncool = nhot) upon DCLC mode structure in (ω, k). As Tcool rises, quench-
ing of low harmonics proceeds to total stabilization. When Tcool is too high and near
the beam ions’ effective temperature, the ‘cool’ plasma is less able to reduce the
velocity-space gradient dF/dv⊥ and DCLC becomes unstable at all harmonics.

To test the predictions of figure 9, we repeat the Rm = 20 Hybrid-VPIC simula-
tion with cool plasma added to the radial edge, varying ncool ≈ {4, 8, 16} × 1012 cm−3

within radii r ∼ 5 to 12 cm (figure 10a) and also varying Tcool = {1, 2, 5} keV. The
simulation results are summarized in figure 10(b–i).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 9. Effect of cool plasma on DCLC linear stability in WHAM with Rm = 20 and a
hot beam-ion distribution. (a): The 2-D regime map of maximum growth rate Im(ω)/�i0 as
a function of ncool and Tcool. (b) Like (a), but showing minimum Re(ω)/�i0 that is DCLC
unstable. As cool plasma density is raised, low harmonics are stabilized. White pixels in (b),
at Tcool ∼ 5 keV and log10(ncool/nhot)∼ 0, mean that no linearly unstable modes were found.
(c) Example ion distribution F(v⊥) with 1 keV cool plasma (dotted blue) added to initial Rm =
20 distribution. (d) Dispersion relation solutions corresponding to (c), showing normal modes
(black), unstable mode Re(ω) (blue) and unstable mode Im(ω) (green). (e, f ) Like (c, d), but
with 4.9 keV cool plasma. (g, h) Like (c, d), but with 9.0 keV cool plasma.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

FIGURE 10. Effect of cool plasma on particle losses and density fluctuations in Hybrid-VPIC
simulations with Rm = 20. (a) Initial density radial profiles for hot (black) and cool (coloured)
ions. (b) Total number of hot ions within simulation domain, normalized to initial value, for
varying ncool at fixed Tcool = 1 keV. (c) Like panel (b), but for cool ions. (d) Particle confinement
time τp = N/(dN/dt) for hot and cool populations, same simulations as in (b) and (c). (e)
Fourier spectra of azimuthal density fluctuations, using total (hot plus cool) ion population;
solid lines are median and shading is 25–75 percentile range within 3–6 μs. (f )–(i) Like (b)–(e),
but emphasis on varying Tcool = {1, 2, 5} keV at fixed ncool. Curve styles are matched across all
panels.

Cool 1 keV plasma quenches DCLC losses and improves the hot plasma’s final
N/N (t = 0) by a factor of ∼2 to 5× (figure 10b). The hot plasma’s final confine-
ment time is at most τp = 445 μs, a stark improvement over τp = 50 μs without cool
plasma (figure 10d). The cool plasma itself is less well confined with τp � 200 μs
(figure 10d), but it may be externally replenished in real experiments or in more
realistic future simulations. The simulation with lowest ncool = 4 × 1012 cm−3 shows
that cool ions are better confined than the hot ions, qualitatively consistent with
trapping by the sloshing ions’ axial potential (figure 10b,c). The situation reverses
at higher ncool: hot ions become better confined than cool ions, which we specu-
late may be due to flattening of ion density n, and hence also electric potential φ,
along z.

Azimuthal fluctuations in density confirm that cool plasma quenches DCLC at
m ≈ 10 (figure 10e). But, cool ions also drive faster-growing MHD interchange-like
modes at m ≈ 4. If our simulations were run longer than t = 6 μs, these interchanges
might eventually cause large ion losses. In laboratory devices, interchange can be
stabilized by shear flow driven by either external voltage biasing (Beklemishev et al.
2010; Yakovlev et al. 2018) or electron cyclotron heating (Yoshikawa et al. 2019).
We thus remain optimistic that cool plasma stabilization can work in WHAM, espe-
cially given the method’s success in real laboratory experiments (Coensgen et al.
1975; Shmigelsky et al. 2024). In § 4.4, we will comment further on interchange
identification and growth/suppression.

The Hybrid-VPIC simulations quench DCLC losses at higher ncool/nhot and lower
Tcool than predicted by the linear theory. The hot-ion confinement is worse with
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Tcool = 5 keV as compared with lower Tcool (figure 10f–h), which contrasts with the
prediction of figure 9 that Tcool = 5 keV with ncool ≈ nhot fully stabilizes DCLC within
a wide (k,Re(ω), Im(ω)) domain. Why does Tcool ∼ 1 keV work better than 5 keV? It
may be explained by some combination of (i) weaker electrostatic trapping and faster
outflow vti‖ as Tcool increases, and (ii) quasilinear diffusion of beam ions towards the
loss cone, which shifts the unstable drive dF/dv⊥ to lower v⊥ so that lower Tcool

becomes stabilizing.
Let us expand on point (ii). For a quasilinearly diffused F(v⊥), the relevant Tcool is

set not by the injected beam distribution, but instead by the loss-cone’s v⊥ boundary
value at the injected beam’s characteristic v‖. For WHAM’s 45◦ pitch-angle beam,
DCLC-scattered ions escape at the loss-cone boundary with perpendicular energy,

miv
2
⊥/2 ∼ Ebeam cos2 θN B I/(Rm − 1)≈ 0.7 keV, (4.1)

using Ebeam = 25 keV, θN B I = 45◦, and Rm = 20. Equation (4.1) agrees with the
Tcool = 1 keV stabilization in our simulations (figure 10).

It is interesting to contrast WHAM with 2XIIB, which used 90◦ pitch-angle beam
injection. In 2XIIB, DCLC-scattered ions have v‖ ∼ 0 and therefore escape at the
loss-cone boundary with perpendicular energy

miv
2
⊥/2 ∼ qi
φ/(Rm − 1)∼ 0.2 − 0.5 keV (4.2)

using qi
φ ∼ (2 − 5)× Te, Te ≈ 100 eV and Rm = 2 (Coensgen et al. 1975); here 
φ
is the axial potential drop from midplane to throat (Baldwin 1977, § V.B). So, we
may bear in mind that the appropriate Tcool to stabilize DCLC (and the parametric
dependence of Tcool upon either Ebeam or 
φ) is mediated by the beam injection
angle in a given device.

4.2. Spatial gradient effects
A smaller spatial gradient ερi0 also helps to stabilize DCLC (Baldwin 1977; Correll

et al. 1980; Ferron & Wong 1984). Figure 11 shows this for plasma parameters
similar to the physically larger, break-even axisymmetric mirror (BEAM) design
concept of Forest et al. (2024). We recompute DCLC linear stability for BEAM’s
radial edge comprising (i) hot deuterium and tritium beam ions, with equal den-
sities of deuterium and tritium, and temperature T ≈ 60 keV (Forest et al. 2024,
figure 6), and (ii) cool Maxwellian ions with varying ncool, Tcool and isotope choice
of hydrogen, deuterium, tritium or a deuterium–tritium mixture (equal densities
of deuterium and tritium). The stability calculation assumes ερi0 = −0.04, B = 3 T
and nhot = 6 × 1013 cm−3 counting both deuterium and tritium species. The value
1/|ερi0| = 25 approximately matches the DCLC design constraint a/ρi = 25 used
by both Forest et al. (2024) and Frank et al. 2025. For normalization, we take
ρi0 = 1.2 cm and fci0 = 22.9 MHz. We solve (3.4) using the same procedure as in
§ 3.2, within a finite domain kρi0 < 30, Re(ω)/�i0 < 10 and Im(ω)/�i0 < 5. The
domain is larger than before because DCLC appears at larger kρi0; the relevant k
may be estimated for the nth cyclotron harmonic as kρi0 ≈ n/(|ε|ρi0)/(Ti⊥/Ti0), from
requiring that the ion diamagnetic drift ω/k = vDi intersects the harmonics ω= n�i0.
The Bessel sums retain all terms with index |n|� 120 to ensure convergence.
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FIGURE 11. Effect of cool plasma on DCLC linear stability in a physically larger next-step
mirror, similar to the BEAM concept described in Forest et al. (2024), with spatial gradient
|ε|ρi0 = 0.04 smaller than in WHAM. Each panel shows varying cool plasma composition. For
the cool D ∗ T case, ncool counts both D/T species, and the cool D and cool T have equal
densities. Total stabilization Im(ω)→ 0 is achieved when the cool ions’ isotopes are matched
to that of the hot ions. Colourmap range in Im(ω) is reduced from figure 9(a).

Figure 11 predicts that a larger region of the parameter space (ncool/nhot, Tcool/Thot)
becomes available to help stabilize DCLC in a BEAM-like concept. Complete
stabilization Im(ω)→ 0 occurs when the cool plasma is a deuterium–tritium mix-
ture like the hot plasma, following the empirical ‘spectral rule’ of Kotelnikov &
Chernoshtanov (2018). For cool plasma of pure hydrogen, deuterium or tritium, we
find that Im(ω) is reduced but generally remains non-zero; the remaining unstable
modes have ω at the hot-ion cyclotron harmonics not overlapped by the cool-ion
harmonics, as previously shown by Kotelnikov & Chernoshtanov (2018).

Both Tang et al. (1972, figure 1) and Baldwin (1977, figure 7) also computed the
maximum radial gradient ε for DCLC to be stable, as a function of the density-
proxy parameter (�i/ωpi)

2. For WHAM, ερi0 ∼ 1 is DCLC unstable for nearly all
values of (�i/ωpi)

2 anyway. For the model BEAM plasma in figure 11, we find
(�i/ωpi)

2 ∼ 3 × 10−4 requires low ερi0 ∼ 0.01 for stability, so it is reasonable that
our model with |ερi0| ∼ 0.04 remains DCLC unstable in the absence of cool plasma.

Though figure 11 suggests that a BEAM-like concept may be DCLC unstable, we
note that many mitigating factors remain. First, BEAM-sized plasmas need much
lower ncool to stabilize DCLC as compared with WHAM, as expected from previ-
ous work (Baldwin 1977); there are many ways to craft such cool plasma in the
laboratory. Second, the peaked beam-ion distributions used here may be viewed
as ‘maximally’ unstable; quasilinear diffusion will smooth ion distributions towards
marginal stability, as discussed in §§ 3.4 and 4.1. Third, our calculation neglects
physical effects such as finite plasma β (i.e. ∇ B along r ) and both radial and axial
geometry; these effects are generally thought to aid stability (Tang et al. 1972).
Fourth, recall from figure 9 that even if DCLC remains unstable, it can be rendered
less harmful by pushing Re(ω) to high harmonics of �i0 and so reducing DCLC’s
scattering rate, as shown on the GDT device (Shmigelsky et al. 2024). Fifth, the
plasma parameters in figure 11 are only an example; no attempt was made, for
this manuscript, to optimize parameters beyond what was discussed in Forest et al.
(2024). Lastly, we recall that DCLC has been successfully mitigated in past and
current mirror devices, including two that used WHAM/BEAM-like sloshing-ion
injection: TMX-U and GDT.

As an aside, the 2-D parameter-regime maps of figures 9(a) and 11 show inter-
esting structure that has been studied in detail by Gerver (1976, figures 1, 3
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(a) (b)

FIGURE 12. Effect of parallel-kinetic electron response upon DCLC linear stability, using
ion distributions from the WHAM Rm = 20 simulation at either t = 0 to obtain a beam-ion
distribution (a), or at t = 6 μs to obtain a saturated distribution with dF/dv⊥ < 0 (b).

and 4); Gerver used a subtracted-Maxwellian distribution for hot ions, unlike our
arbitrary beam-ion distributions, but his results agree qualitatively with ours. For
example, figure 11 shows that at low Tcool/Thot, a distinct instability occurs even
at large ncool/nhot � 10−1; it is called double-humped instability by Baldwin (1977)
and Kotelnikov et al. (2017) or ion two-temperature instability by Gerver (1976).
The interested reader may consult Gerver (1976), Baldwin (1977), Post (1987 )and
Kotelnikov et al. (2017) for more thorough treatments and reviews of DCLC
linear-stability physics.

4.3. Kinetic electron effects
Our linear dispersion relation assumed k = k⊥, neglecting both ion and electron

parallel responses. But, k‖ ∼ π/(2Lp) is imposed by the mirror geometry for the
lowest possible axial harmonic. In WHAM with Rm = 20, electrons with Te ∼ 1 keV
have thermal velocity vte similar to DCLC parallel phase velocity ω/k‖ ∼�i0/k‖, so
DCLC modes may be Landau damped by electrons.

We qualitatively assess the effect of parallel electron kinetics in (3.4) by replacing
the perpendicular, cold-fluid electron susceptibility,

χe = ω2
pe

�2
e

+ ω2
pe

|�e|
ε

kω
, (4.3)

with a more general form for oblique electrostatic waves that includes a B-parallel
kinetic response,

χe = −
(

k⊥
k

)2 ω2
pe

�2
e

[
1 + ε|�e|

k⊥ω

]
ζ0e Z(ζ0e)−

(
k‖
k

)2 ω2
pe

k2
‖v

2
te

Z ′(ζ0e). (4.4)

Here Z is the plasma dispersion function, ζ0e =ω/(k‖vte), and vte = √
2Te/me. We

fix k‖ = π/(2Lp) to mimic a fundamental-harmonic mode along the device axis. Both
(4.3) and (4.4) are dimensional. The derivation is briefly sketched in Appendix B.

Figure 12 recomputes DCLC linear stability, using (4.4) to show the effect of par-
allel electron kinetics, for the ion distributions from our WHAM Rm = 20 simulation
at t = 0 and t = 6 τbounce ≈ 6 μs. Figure 12(a) shows that the t = 0, peaked beam-ion
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distribution with empty loss cone remains unstable for a broad range of k; electron
kinetics do not stabilize a strongly peaked and hence strongly unstable F(v⊥). In
contrast, figure 12(b) shows that the marginally unstable t = 6 μs distribution with
filled loss cone has DCLC growth rates reduced by electron kinetics.

In the limit Te → ∞, ζ0e → 0 suppresses the electron parallel susceptibility; i.e.
the (k‖/k)2 term in (4.4) asymptotes to 1/(k2λ2

De), where λDe is the electron Debye
length, and its magnitude and contribution to D is negligible. More importantly,
hot electrons and finite k‖ suppress the perpendicular drift term in (4.4) by driving
ζ0e Z(ζ0e)→ 0; this disables the coupling between ion Bernstein waves and the drift
wave. In figure 12(b), at Te � 50 keV the resulting mode structure appears similar
to the ‘pure’ ion Bernstein waves in a homogeneous plasma, but with non-zero
growth rates. These unstable Bernstein modes are negative-energy waves satisfying
the criterion ∂ [ωRe(D)] /∂ω|Re(ω) < 0 (Stix 1992, § 4–2); in this criterion we replaced
the Hermitian part of the dielectric tensor with Re(D)= Re(1 + χi + χe), which is
valid because D has no contributions from off-diagonal terms χ‖⊥ in either species’
susceptibility tensor. See also Kadomtsev et al. (1964), Bers & Gruber (1965) and
Baldwin (1977).

In the limit of low Te � 1 keV, the perpendicular drift term in (4.4) reverts to
its fluid form because ζ0e Z(ζ0e)→ −1. The parallel term, which asymptotes to
−(k‖/k)2(ωpe/ω)

2, is the main new influence on DCLC mode structure. Figure 12(a)
shows that the t = 0 beam-ion distribution is not much affected at low Te when com-
pared with figure 6(j). But, figure 12(b) shows that the t = 6 μs distribution has
low harmonics of DCLC suppressed, and the growth rates of higher harmonics
somewhat reduced, by electron kinetics when compared with figure 6(g).

Equation (4.4) is less accurate than bounce averaging of unperturbed particle
orbits within a specified axial mirror geometry, as has been performed and studied
by, for example Cohen et al. (1983), Koepke et al. (1986a) and others. A significant
unknown is the effect of the non-monotonic axial electric potential φ; since φ ∼ Te

and φ can trap electrons at sloshing-ion turning points, electron orbits may be signif-
icantly modified. None of this is captured in our Hybrid-VPIC simulations given the
simple electron closure. Our goal is only to show qualitatively how parallel electron
kinetics, including electron Landau damping, may impact DCLC. We conclude that
saturated DCLC amplitude and frequency in WHAM may be tuneable via Te or
other device parameters, as was done on the MIX-1 device previously (Koepke et al.
1986a; Koepke 1992).

4.4. Other modes
Our simulations mostly grow DCLC, but other kinetic and fluid modes can appear

in mirror devices (Post 1987). The modes relevant to WHAM were surveyed by
Endrizzi et al. (2023); here we add a few remarks.

Interchange modes should be stabilized by the effect of finite ion Larmor radius,
specifically collisionless gyroviscosity (Roberts & Taylor 1962), when

k⊥ρi0 > 4
√

a

Lp
≈ 1.3, (4.5)

with a ≈ 10 cm the plasma column radius and assuming a curvature-driven growth
rate vti0/

√
aLp (Ryutov et al. 2011, § III.B). In figure 13, we present new simulations

of Maxwellian ions with varying temperature Ti0 = 5 to 20 keV in the WHAM Rm =
20 geometry. As Ti0 decreases, DCLC weakens in amplitude and spectral width, and
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(a) (b) (c)

FIGURE 13. Interchange modes appear and DCLC weakens as Ti decreases (a to c) in sim-
ulations of Maxwellian ions in WHAM’s Rm = 20 magnetic-field geometry. Fourier spectra
computed as in figure 6. The dot–dashed cyan line plots the interchange mode’s expected phase
velocity, ω/k = vDi/2, assuming spatial gradient ε = (10 cm)−1.

a lower-m mode grows in amplitude and spectral width. We identify the lower-m
mode as interchange because (i) its phase velocity is half the ion diamagnetic drift
and in the same direction (neglecting gravitational drift, which is ∼(a/Lp)× smaller),
consistent with the planar-slab derivation (Rosenbluth et al. 1962; Roberts & Taylor
1962); (ii) its k bandwidth qualitatively scales with Ti following (4.5). Note that in
this paragraph and figure 13, we redefine vti0 = √

2Ti0/mi with a factor of
√

2, which
also affects ρi0 = vti0/�i0. We caution that our simulated interchange has relatively
strong m = 2 and m = 4 modes compared with, for example, the odd m = 3 mode;
this effect may be unphysical, and we suspect mesh imprinting.

Alfvén ion cyclotron (AIC) modes do not appear at significant amplitude in our
simulations; recall that both δBr and δBθ are small (§ 3.1), and pitch-angle scattering
is weak compared with DCLC’s v⊥ scattering (figure 3). Does our non-observation
agree with theory and prior experiments? An empirical criterion for AIC growth,
obtained from experiments on the tandem mirror GAMMA-10 (Ichimura et al. 1993;
Katsumata et al. 1996), is

Ti⊥/Ti‖ > 0.55/β0.5
⊥ , (4.6)

based on data with β⊥ < 0.03. One linear-instability criterion, derived for a homoge-
neous bi-Maxwellian plasma (Gary et al. 1994) and with a form commonly used in
the solar-wind literature (e.g. Hellinger et al. 2006), is

Ti⊥/Ti‖ > 1 + 0.43/β0.42
‖ . (4.7)

At t = 0 in our Rm = 20 simulation, the sloshing-ion turning points have β⊥ =
8πnTi⊥/B2 = 0.17 and β‖ = 8πnTi‖/B2 = 0.068, with corresponding anisotropy
Ti⊥/Ti‖ = 2.5; our simulations with larger Rm have similar anisotropy and lower
plasma beta at the turning points. Both (4.6) and (4.7) indicate that AIC may be
unstable at the turning points.

So, why does AIC not appear? First, since AIC is driven by gradients of f on
resonant surfaces in velocity space, (4.6) and (4.7) will not be so precise when applied
to different ion distributions; for example, Isenberg et al. (2013) noted that subtle
modifications to f at marginal AIC stability can modify anisotropy thresholds based
on bi-Maxwellian temperatures by a factor of ∼2. Second, AIC is stabilized by
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the inhomogeneous plasma in WHAM. Sloshing ions put perpendicular pressure
anisotropy at turning points, so instability drive weakens towards the mirror cell’s
centre. A small plasma column radius with respect to the ion Larmor radius also aids
stability (Tsidulko & Chernoshtanov 2014). And, AIC is suppressed if the mirror’s
axial length is shorter than a critical length (Tajima et al. 1977; Tajima & Mima
1980; Nicks et al. 2023),

Lc = 2π 2

√
Ti‖
β⊥Ti⊥

(
c

ωpi

)
. (4.8)

The critical length Lc ≈ 182 cm is very close to WHAM’s length 2Lp = 196 cm,
again taking β⊥ = 0.17 and assuming c/ωpi = 5.9 cm for density n = 3 × 1013 cm−3

at sloshing-ion turning points. Third, DCLC simply has a faster growth rate and
decreases plasma beta before AIC can be triggered.

To summarize: AIC with low axial mode number may be marginally unstable for
WHAM, based on the highest possible β⊥ and density n at sloshing-ion turning
points. But multiple effects weaken AIC drive and so may explain why it does not
appear in our simulations.

4.5. Comparison with real mirrors
In real mirror devices, discrete DCLC modes can persist stably for ∼O(1 ms)

(Shmigelsky et al. 2024), but DCLC can also appear as discrete bursts of enhanced
fluctuations with duration ∼10 to 100 μs (Coensgen et al. 1975; Yamaguchi 1996;
Shmigelsky et al. 2024). Our simulations do not show bursting, nor did previous
simulations by Cohen et al. (1983). Yamaguchi (1996) explained bursting DCLC
in the GAMMA-6A experiment using a quasilinear model with bounce-averaged
electron Landau damping; they appealed to (i) separation between DCLC scatter-
ing and axial outflow time scales (i.e. 1/ν⊥⊥ � τGD); and (ii) fast time variation
in DCLC growth rate with slower variation in electron-Landau damping rate. In
our simulations, 1/ν⊥⊥ ∼ τGD at order of magnitude (figure 8b); DCLC appears
marginally stable and does not damp upon ions within a time scale � τGD. It would
be interesting to see if future kinetic simulations with longer simulation durations,
electron-Landau damping or other physical effects can replicate DCLC bursting.

Both TMX-U and GDT saw that DCLC could be driven at sloshing-ion turning
points instead of at the mirror midplane z = 0 (Berzins & Casper 1987; Shmigelsky
et al. 2024). Why does DCLC have strongest drive at z = 0, versus at the turning
points, in our simulations of WHAM? In TMX-U, the end-plug could be stabilized
on one side and not the other due to a combination of axial flows from the central cell
and localized ECH at the end-plug outer-turning point (Berzins & Casper 1987). As
for GDT versus WHAM, we cannot answer definitively, but we note that WHAM’s
shorter axial length of 2 m may constrain DCLC’s axial eigenmodes as compared
with GDT’s 7 m length.

Where do cool ions come from in real experiments? In WHAM, DCLC-scattered
ions escape with large |v‖| and are not trapped. Charge exchange between beam ions
and cool neutrals can generate < 1 keV ions that trap in the midplane’s electrostatic
potential well; prerequisite cool neutrals naturally outgas from plasma-facing materi-
als. In tandem mirrors like TMX-U, central-cell outflow into end-plug cells can also
provide cool ions to stabilize DCLC (Simonen et al. 1983; Berzins & Casper 1987).
Central-cell outflow may also help to reduce the growth rate of curvature-driven col-
lisionless trapped-particle modes (Rosenbluth 1982; Berk et al. 1983), as outflowing
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ions can sample good curvature near mirror throats and help to couple adjacent
MHD-unstable and stable mirror cells.

Cool-ion stabilization of DCLC may face problems in larger and more powerful
mirrors. The axial electrostatic well at z = 0, which traps cool ions, will become shal-
lower due to ion–ion pitch-angle scattering of the beam ions. Pitch-angle scattering is
counter-balanced by neutral-beam capture via charge exchange (CX) or impact ion-
ization, as both processes create new hot ions with 45◦ pitch-angle. The CX between
hot ions / fast neutrals also pumps out the isotropized, scattered hot ions, so one CX
event collimates the ions’ pitch-angle distribution more effectively than one impact-
ionization event. But, the CX cross-section drops relative to impact ionization for
beam energies � 70 keV (Endrizzi et al. 2023, figure 10). It thus becomes harder to
collimate the ion pitch-angle distribution and harder to maintain an axial electrostatic
potential well with O(102) keV NBI (e.g. Forest et al. 2024, figure 6). And, tandem
central-cell outflow reduces fusion performance and may set limits on power-plant
reactor design (e.g. Frank et al. 2025, § 3.2). Future mirror designs may thus need
other methods to help stabilize DCLC.

The WHAM experiment began operating in July 2024 (Anderson et al. 2024). A
comparison between experimental data and our simulations is not yet available. We
anticipate that WHAM plasmas and diagnostics may be tuned to create and measure
DCLC modes in future experimental campaigns.

5. Conclusions

We have performed 3-D kinetic-ion simulations of WHAM, initialized with a
neutral-beam-injected deuteron population with Ti ∼ 10 keV and cool, isothermal-
fluid electrons with Te ∼ 1 keV, to assess kinetic plasma stability in a high-
performance, collisionless-ion regime. We find that WHAM’s beam-ion distribution
is unstable to an electrostatic, flute-like (k ≈ k⊥) mode that grows on � 1 μs time
scales; it propagates azimuthally around the column in the ion diamagnetic direction
and has angular frequency between �i0 and 2�i0. We identify it as the DCLC mode,
well known from prior mirror experiments (Coensgen et al. 1975) and previously
anticipated to be a possible concern for WHAM (Endrizzi et al. 2023).

The plasma column and DCLC fluctuations settle into a steady-state decay by
t = 6 μs. Particles escape axially with confinement time τp = n/(dn/dt)∼ 102 μs in
a ‘gas dynamic’ regime, wherein the scattering rate into the loss cone equals or
exceeds the rate of free-streaming axial loss from the mirror. Particle losses are due
to collisionless v⊥ scattering upon the DCLC modes; the particle–wave correlation
time is approximately �i0

−1 at the mirror midplane. Particle losses and velocity-space
diffusion are strongest at the plasma’s radial edge, whereas the plasma column’s core
can maintain dF/dv⊥ > 0 at low v⊥.

We review well known and experimentally tested methods for stabilizing DCLC:
addition of cool plasma to fill the loss cone, larger plasma extent (smaller gradient)
and parallel electron kinetics including Landau damping. In 3-D simulations with
cool ions initialized at the plasma’s radial edge, the beam ions’ confinement time
can be raised by up to 9×, though an order-unity ratio of cool/hot ion number
density is needed and the cool-ion confinement is poorer than that of the beam
ions. The best-case beam-ion confinement time of several 100 μs also remains two
orders of magnitude below the ideal, ‘classical’ confinement time of 0.1–0.2 s. In a
real experiment, the cool ions must be provided and replenished by external sources
because DCLC does not scatter beam ions into the axial electrostatic potential well
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(Kesner 1973, 1980) where they could be trapped to help stabilize DCLC. The
DCLC-scattered beam ions are lost because they retain large parallel speeds and so
never enter the trapped region of phase space.

Our simulations are limited, especially in the electric field model and isothermal-
fluid electron closure. Future work may incorporate electron inertia, an electron
energy equation, drift-kinetic electrons or more to help model (i) bounce-averaged
electron Landau damping, and (ii) the plasma’s axial and radial electric potential
structure, which dictate outflows and rotation. And, the initial condition of a hot,
beam-ion plasma with only mild slowing-down upon electrons is idealized. A two-way
coupling between Hybrid-VPIC and CQL3D-m over a 20 ms laboratory shot dura-
tion, passing DCLC quasilinear diffusion coefficients from kinetic simulations into
the Fokker–Planck equation, may yield more realistic predictions. Adding neutral-
ion interactions to our CQL3D-m models would improve our cool-ion stabilization
modelling. Other subsystems on WHAM are not modelled, for example heating
of ions and electrons via radio-frequency and microwave radiation, respectively, or
biased end-rings within the expanders used to drive rotation and shear flow. So,
future work may also consider a wider range of fuelling and heating scenarios in
WHAM and next-step mirror devices.

Supplementary material

The supplementary material for this article can be found at https://doi.org/
10.1017/S0022377825000480
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FIGURE 14. Effect of hyper-resistivity, increasing (a) to (c), upon density-fluctuation Fourier
spectra in WHAM Rm = 64 simulations; panel (b) is the same data as figure 6(c). Fourier
spectra and annotations constructed like in figure 6, at same r = 2.69ρi0 over t = 3 to 6 τbounce,
but the colourmap range and 2-D plot domain/range are changed.

Appendix A. Hyper-resistivity scan
Hyper-resistivity, although intended to suppress gridscale numerical noise, may

also alter DCLC mode structure as discussed in § 2.2. Figure 14 shows that raising
or decreasing ηH by a factor of 3 alters the spectrum of density fluctuations at the
plasma edge; with higher ηH , the spectrum broadens and is less coherent.

Appendix B. Electron parallel response
To obtain the electrons’ parallel response in § 4.3, we start again from Stix (1992,

§ 14-3, (9)), neglecting spatial derivatives of order ∂2g/∂y2 or higher in Stix’s nota-
tion, where g is the guiding-centre distribution. For a Maxwellian guiding-centre
distribution, the susceptibility is

χs =
(
ωps

�s

)2 ∞∑
n=−∞

e−λ In(λ)

{ (
k⊥
k

)2 [
2n

k2
⊥

(
1 − nε

k⊥

)
+ ε

k⊥

]
Z(ζn)

k‖

+
(

k‖
k

)2 2
k2

‖

(
1 − nε

k⊥

)
[1 + ζn Z(ζn)]

}
, (B1)

where the modified Bessel function In(λ) has argument λ= k2
⊥/2, the plasma disper-

sion function Z(ζn) has argument ζn = (ω− n)/k‖ and the variables ω, ε, k, k⊥, k‖
are all dimensionless following the same species-specific scheme used for (3.3).
Equation (B1) is valid for any k angle. The limit ζn → ∞ and k‖/k → 0 recovers the
perpendicular susceptibility given by (3.3). The limit ε/k⊥ → 0 recovers the standard
Harris (1959) dispersion relation (Gurnett & Bhattacharjee 2017, § 10.2).

Let us simplify (B1). Take the limits λ→ 0 and ζ±1 = (ω∓ 1)/k‖ ≈ ∓1/k‖ → ∞ in
order to expand e−λ In(λ) and Z(ζ±1). But, make no assumptions on the magnitude
of ζ0 =ω/k‖. Also, drop all |n|> 1 Bessel terms. The result is

χs =
(
ωps

�s

)2
{(

k⊥
k

)2 [
ε

k⊥ω
− 1

]
ζ0 Z(ζ0)+

(
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)2 2
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}
, (B2)
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which yields (4.4) after putting in dimensions. The limit ζ0 → ∞ recovers the familiar
cold-fluid result, written as follows in dimensional variables:

χs =
(

k⊥
k

)2 ω2
ps

�2
s

[
1 − ε�s

k⊥ω

]
−

(
k‖
k

)2 ω2
ps

ω2
. (B3)

A subtlety appears when expanding (B1) into (B2). Consider the susceptibility
tensor components χ⊥⊥ and χ‖‖ for a hot homogeneous plasma (Stix 1992, § 10).
The perpendicular response simplifies in the cold-fluid limit,

χ⊥⊥ → ω2
ps

�2
s

. (B4)

But, χ⊥⊥ is cancelled by the analogous expansion of χ‖‖ when (i) both k⊥ and k‖
are finite; (ii) ζ0 is kept finite; and (iii) terms of order O(λ1) are kept in expanding
e−λ I0(λ). The said expansion gives

χ‖‖ → ω2
ps

�2
s

2
k2

‖
[1 + ζ0 Z(ζ0)]

(
1 − λ+O(λ2)

)

= ω2
ps

�2
s
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2
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‖
[1 + ζ0 Z(ζ0)] − k2

⊥
k2

‖
− k2
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k2

‖
ζ0 Z(ζ0)

}
, (B5)

with k‖ dimensionless as before. Then, in the combined electrostatic susceptibility

χ ≈ (k⊥/k)2χ⊥⊥ + (k‖/k)2χ‖‖ + (2k‖k⊥/k2)χ⊥‖, (B6)

we see that (B4) and (B5) partly cancel, and only a parallel contribution
−(k⊥/k)2(ωps/�s)

2ζ0 Z(ζ0) remains. This remainder term can be seen in (B2). When
the ζ0 → ∞ limit is taken, it is this parallel remainder that provides the usual per-
pendicular response χ⊥⊥ →ω2

ps/�
2
s . This is to some extent a semantic quibble; we

can also say that the remainder term −(k⊥/k)2(ωps/�s)
2ζ0 Z(ζ0) cancels the parallel

term −(k⊥/k)2(ωps/�s)
2 to leave only the perpendicular term +(k⊥/k)2(ωps/�s)

2

in (B6). But, the overall point stands that the perpendicular term in (B2) can be
significantly modified by the parallel response, even when k‖ � k⊥; the regulating
parameter is ζ0.
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