Bull. Aust. Math. Soc. **111** (2025), 107–117 doi:10.1017/S0004972724000431

ENUMERATION OF GROUPS IN SOME SPECIAL VARIETIES OF A-GROUPS

ARUSHI[®] and **GEETHA VENKATARAMAN[®]**[∞]

(Received 3 March 2024; accepted 29 April 2024; first published online 27 August 2024)

Abstract

We find an upper bound for the number of groups of order *n* up to isomorphism in the variety $\mathfrak{S} = \mathfrak{A}_p \mathfrak{A}_q \mathfrak{A}_r$, where *p*, *q* and *r* are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak{A}_q \mathfrak{A}_r$.

2020 Mathematics subject classification: primary 20E10; secondary 20B15, 20B35, 20D10, 20E45, 20H30.

Keywords and phrases: group enumeration, variety of groups, general linear group, symmetric group, transitive subgroup, primitive subgroup, conjugacy class.

1. Introduction

A group is an *A*-group if its nilpotent subgroups are abelian. For any class of groups \mathfrak{B} , we denote the number of groups of order *n* up to isomorphism by $f_{\mathfrak{B}}(n)$. Computing f(n) becomes harder as *n* gets bigger. Thus, in the area of group enumerations, we attempt to approximate f(n). When counting is restricted to the class of abelian groups, *A*-groups or groups in general, the asymptotic behaviour of f(n) varies significantly. Let $f_{A,sol}(n)$ be the number of isomorphism classes of soluble *A*-groups of order *n*. Dickenson [2] showed that $f_{A,sol}(n) \leq n^{c \log n}$ for some constant *c*. McIver and Neumann [7] showed that the number of nonisomorphic *A*-groups of order *n* is at most $n^{\lambda+1}$, where λ is the number of prime divisors of *n* including multiplicities. In the same paper, they stated the following conjecture based on a result of Higman [4] and Sims [12] on *p*-group enumerations.

CONJECTURE 1.1. Let f(n) be the number of (isomorphism classes of groups of) order *n*. Then $f(n) \le n^{(2/27+\epsilon)\lambda^2}$, where $\epsilon \to 0$ as $\lambda \to \infty$.

In 1993, Pyber [9] proved a powerful version of Conjecture 1.1: the number of groups of order *n* with specified Sylow subgroups is at most $n^{75\mu+16}$, where μ is the

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

largest integer such that p^{μ} divides *n* for some prime *p*. From the results of Higman and Sims, and Pyber, $f(n) \le n^{2\mu^2/27+O(\mu^{5/3})}$. In [13], it was shown that $f_{A,sol}(n) \le n^{7\mu+6}$.

The variety $\mathfrak{A}_u\mathfrak{A}_v$ consists of all groups *G* with an abelian normal subgroup *N* of exponent dividing *u* such that *G*/*N* is abelian of exponent dividing *v*. (For more on varieties, see [8].) Let *p*, *q* and *r* be distinct primes. In this paper, we find a bound for $f_{\mathfrak{S}}(n)$, where $\mathfrak{S} = \mathfrak{A}_p\mathfrak{A}_q\mathfrak{A}_r$ and $f_{\mathfrak{S}}(n)$ counts the groups in \mathfrak{S} of order *n* up to isomorphism. The idea behind studying the variety \mathfrak{S} is that enumerating within the varieties of *A*-groups might yield a better upper bound for the enumeration function for *A*-groups. The 'best' bounds for *A*-groups, or even soluble *A*-groups, still lack the correct leading term. It is believed that a correct leading term for the upper bound of *A*-groups would lead to the right error term for the enumeration of groups in general.

A few smaller varieties of A-groups have already been studied in [1, Ch. 18]. The class of A-groups for which the 'best' bounds exist was obtained by enumerating in such small varieties of A-groups, but this did not narrow the difference between the upper and lower bounds for $f_{A,sol}(n)$ because these groups did not contribute a large enough collection of A-groups. Hence, a good lower bound could not be reached. To reduce the difference, we enumerate in the larger variety \mathfrak{S} of A-groups.

Throughout the paper, p, q, r and t are distinct primes. We assume that s is a power of t. We take logarithms to the base 2, unless stated otherwise, and follow the convention that $0 \in \mathbb{N}$. We use C_m to denote a cyclic group of order m for any positive integer m. Let $O_{p'}(G)$ denote the largest normal p'-subgroup of G. The techniques we use are similar to those in [1, 9, 13].

The main result proved in this paper is the following theorem.

THEOREM 1.2. Let
$$n = p^{\alpha}q^{\beta}r^{\gamma}$$
, where $\alpha, \beta, \gamma \in \mathbb{N}$. Then,
 $f_{\mathfrak{S}}(n) \leq p^{6\alpha^2}2^{\alpha-1+(23/6)\alpha\log\alpha+\alpha\log6}(6^{1/2})^{(\alpha+\gamma)\beta+(\alpha+\beta)\gamma+\alpha(\alpha-1)/2}n^{\beta+\gamma}$.

To prove Theorem 1.2, we prove a bound on the number of conjugacy classes of subgroups that are maximal amongst subgroups of $GL(\alpha, s)$ and that are in the variety $\mathfrak{A}_q\mathfrak{A}_r$ or \mathfrak{A}_r . We also prove results about the order of primitive subgroups of S_n that are in the variety $\mathfrak{A}_q\mathfrak{A}_r$ and show that they form a single conjugacy class. These results are stated below.

THEOREM 1.3. Let q and r be distinct primes. Let G be a primitive subgroup of S_n that is in $\mathfrak{A}_q\mathfrak{A}_r$ and let $|G| = q^{\beta}r^{\gamma}$, where $\beta, \gamma \in \mathbb{N}$. Let M be a minimal normal subgroup of G.

- (i) If $\beta = 0$, then |M| is a power of r and |G| = n = r with $G \cong C_r$.
- (ii) If $\beta \ge 1$, then $|M| = q^{\beta} = n$ with $\beta = \text{order } q \mod r$. Further, $G \cong M \rtimes C_r$ and $|G| = nr < n^2$.
- (iii) If $\gamma = 0$, then |M| is a power of q and |G| = n = q with $G \cong C_q$.

THEOREM 1.4. The primitive subgroups of S_n that are in $\mathfrak{A}_q\mathfrak{A}_r$ and of order $q^{\beta}r^{\gamma}$, where $\beta, \gamma \in \mathbb{N}$, form a single conjugacy class.

THEOREM 1.5. There exist constants b and c such that the number of conjugacy classes of subgroups that are maximal amongst the subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_a\mathfrak{A}_r$ is at most

$$\gamma(b+c)(\alpha^2/\sqrt{\log \alpha})+(5/6)\alpha\log\alpha+\alpha(1+\log 6) c(3+c)\alpha^2$$

where t, q and r are distinct primes, s is a power of t, and $\alpha > 1$.

Section 2 investigates primitive subgroups of S_n that are in \mathfrak{A}_r or $\mathfrak{A}_q\mathfrak{A}_r$. Sections 3 and 4 deal with subgroups of the general linear group. Theorem 1.2 is proved in Section 5.

2. Primitive subgroups of S_n that are in \mathfrak{A}_r or $\mathfrak{A}_a\mathfrak{A}_r$

In this section, we prove results that give us the structure of the primitive subgroups of S_n that are in \mathfrak{A}_r or $\mathfrak{A}_q\mathfrak{A}_r$. We also show that such subgroups form a single conjugacy class. Both Theorems 1.3 and 1.4 are proved in this section.

Theorem 1.3 provides the order of a primitive subgroup of S_n that is in the variety $\mathfrak{A}_q\mathfrak{A}_r$. By [13, Proposition 2.1], if *G* is a soluble *A*-subgroup of S_n , then $|G| \leq (6^{1/2})^{n-1}$. Indeed, this bound is determined primarily by considering primitive soluble *A*-subgroups of S_n . This bound would clearly hold for any subgroup of S_n that is in the variety $\mathfrak{A}_q\mathfrak{A}_r$. However, we show that when the subgroup is primitive and in the variety $\mathfrak{A}_q\mathfrak{A}_r$, we can do better.

LEMMA 2.1. S_n has a primitive subgroup in \mathfrak{A}_r if and only if n = r. In this case, any primitive subgroup G that is in \mathfrak{A}_r will be cyclic of order r. All primitive subgroups of S_n that are in \mathfrak{A}_r form a single conjugacy class.

PROOF. Let *G* be a primitive subgroup of S_n that is in \mathfrak{A}_r . Since *G* is soluble, *M* is an elementary abelian *r*-subgroup. By the O'Nan–Scott theorem [10], $|\mathcal{M}| = n = |G|$, so $G = \mathcal{M} \cong C_r$ and n = r. Conversely, any transitive subgroup *G* of S_r is primitive [15, Theorem 8.3]. Since *n* is prime, any subgroup of order *n* in S_n will be generated by an *n*-cycle. Further, any two *n*-cycles are conjugate in S_n . Thus, the primitive subgroups of S_n that are also in \mathfrak{A}_r form a single conjugacy class.

PROOF OF THEOREM 1.3. Let *G* be a subgroup of S_{Ω} , where $|\Omega| = n$, and let $G \in \mathfrak{A}_q \mathfrak{A}_r$. Then $G = Q \rtimes R$, where *Q* is an elementary abelian Sylow *q*-subgroup, *R* is an elementary abelian Sylow *r*-subgroup and $|G| = q^{\beta}r^{\gamma}$, with β , $\gamma \in \mathbb{N}$. Let *M* be a minimal normal subgroup of *G*. Then *M* is an elementary abelian *u*-group. Clearly, $|M| = u^k$ for some k > 1 and for some prime $u \in \{q, r\}$.

Now F(G), the Fitting subgroup of G, is an abelian normal subgroup of G and so, by the O'Nan–Scott theorem, n = |M| = |F(G)|. However, $M \le F(G)$, therefore, M = F(G)and $n = u^k$. If $\beta \ge 1$, then $Q \le F(G)$ and we have $n = q^\beta = u^k$ and M = F(G) = Q. Let $H = G_\alpha$ be the stabiliser of an $\alpha \in \Omega$. By [1, Proposition 6.13], G is a semidirect product of M by H and H acts faithfully by conjugation on M. By Maschke's theorem, *M* is completely reducible. However, *M* is a minimal normal subgroup of *G*, so *M* is a nontrivial irreducible $\mathbb{F}_q H$ -module and *H* is an abelian group acting faithfully on *M*. By [14, Corollary 4.1], $H \cong C_r$ and $\beta = \dim M = \operatorname{order} q \mod r$ and the result follows. If $\gamma = 0$ or $\beta = 0$, then |G| is a power of *u*, where $u \in \{q, r\}$. Thus, *G* is a primitive subgroup that is also in \mathfrak{A}_u and the result follows by Lemma 2.1.

It is clear from these results that if S_n has a primitive subgroup G of order $q^{\beta}r^{\gamma}$ in $\mathfrak{A}_q\mathfrak{A}_r$, then *n* must be *r* or *q* and G is cyclic with |G| = n, or $n = q^{\beta}$ and G is a semi-direct product of an elementary abelian *q*-group of order q^{β} by a cyclic group of order *r*. The limits imposed on *n* and the structure of such primitive subgroups gives the next result.

PROOF OF THEOREM 1.4. Let *G* be a primitive subgroup of S_{Ω} that is in $\mathfrak{A}_q \mathfrak{A}_r$, where $|\Omega| = n$, and let $|G| = q^{\beta}r^{\gamma}$. Let *M* be a minimal normal subgroup of *G*. As seen in the proof of Theorem 1.3, M = F(G) and n = |M| is either a power of *q* or *r*. If $\gamma = 0$ or $\beta = 0$, then |G| is a power of *u*, where $u \in \{q, r\}$. Thus, *G* is a primitive subgroup that is also in \mathfrak{A}_u and the result follows by Lemma 2.1.

We know the structure of *G* when $\beta \ge 1$ from the proof of Theorem 1.3. Hence, *H* can be regarded as a soluble *r*-subgroup of $GL(\beta, q)$ and it is not difficult to show that the conjugacy class of *G* in S_n is determined by the conjugacy class of *H* in $GL(\beta, q)$. Let *S* be a Singer subgroup of $GL(\beta, q)$, so that $|S| = q^{\beta} - 1$. Now, |H| = r and *r* divides |S|. Further, $gcd(|GL(\beta, q)|/|S|, r) = 1$ as β is the least positive integer such that $r \mid q^{\beta} - 1$. From [3, Theorem 2.11], $H^x \le S$ for some $x \in GL(\beta, q)$. Since all Singer subgroups are conjugate in $GL(\beta, q)$, the result follows.

3. Subgroups of $GL(\alpha, s)$ that are in \mathfrak{A}_r

In this section, we prove results that give us a bound on the number of conjugacy classes of the subgroups that are maximal amongst subgroups of $GL(\alpha, s)$ that are in \mathfrak{A}_r . The limits on the structure of such groups ensures that if they exist, they form a single conjugacy class.

LEMMA 3.1. The number of conjugacy classes of irreducible subgroups of $GL(\alpha, s)$ that are also in \mathfrak{A}_r is at most 1.

PROOF. Let *G* be a nontrivial irreducible subgroup of $GL(\alpha, s)$ that is also in \mathfrak{A}_r . Then *G* is an elementary abelian *r*-group of order r^{γ} , say, where $\gamma \in \mathbb{N}$. Since *G* is a faithful abelian irreducible subgroup of $GL(\alpha, s)$ whose order is coprime to *s*, it follows that *G* is cyclic [14, Lemma 4.2]. Thus, |G| = r and $\alpha = d$, where d = order *s* mod *r*. From [11, Theorem 2.3.3], the irreducible cyclic subgroups of order *r* in $GL(\alpha, s)$ lie in a single conjugacy class.

PROPOSITION 3.2. The number of conjugacy classes of subgroups that are maximal amongst subgroups of $GL(\alpha, s)$ that are also in \mathfrak{A}_r is at most 1.

PROOF. Let *G* be maximal amongst subgroups of $GL(\alpha, s)$ that are also in \mathfrak{A}_r . Since $char(\mathbb{F}_p) = t \nmid |G|$, by Maschke's theorem, we can find groups G_i such that $G \leq G_1 \times G_2 \times \cdots \times G_k = \hat{G} \leq GL(\alpha, s)$, where for each *i*, the group G_i is a (maximal) irreducible subgroup of $GL(\alpha_i, s)$ that is also in \mathfrak{A}_r . Further, $\alpha = \alpha_1 + \cdots + \alpha_k$. Clearly, $G_i \cong C_r$ and $\alpha_i = d$ = order *s* mod *r* for each *i*. Thus, we must have $\alpha = dk$ and by the maximality of *G*, we have $G = \hat{G}$. Further, the conjugacy classes of G_i in $GL(\alpha_i, s)$ determine the conjugacy class of *G* in $GL(\alpha, s)$.

So if *d* does not divide α , then $GL(\alpha, s)$ cannot have an elementary abelian *r*-subgroup. If $d \mid \alpha$, then any *G* that is maximal amongst subgroups of $GL(\alpha, s)$ that are also in \mathfrak{A}_r must have order r^k , where $k = \alpha/d$. By Lemma 3.1, all such groups form a single conjugacy class.

4. Subgroups of $GL(\alpha, s)$ that are also in $\mathfrak{A}_{q}\mathfrak{A}_{r}$

We prove results that give a bound on the order of subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_q\mathfrak{A}_r$ and also a bound for the number of conjugacy classes of subgroups that are maximal amongst subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_q\mathfrak{A}_r$. Theorem 1.5 is proved in this section.

PROPOSITION 4.1. Let G be a subgroup of $GL(\alpha, s)$ that is in $\mathfrak{A}_{q}\mathfrak{A}_{r}$.

- (i) Let m = |F(G)|. If G is primitive, then $|G| \le cm$, where $c = \text{order } s \mod m$ and $c \mid \alpha$. Further, m is either r or q or qr.
- (ii) $|G| \le (6^{1/2})^{\alpha-1} d^{\alpha}$, where $d = \min\{qr, s\}$.

PROOF. Let $V = (\mathbb{F}_s)^{\alpha}$. Let *G* be a primitive subgroup of $GL(\alpha, s)$ that is in $\mathfrak{A}_q\mathfrak{A}_r$ and let $|G| = q^{\beta}r^{\gamma}$, where β and γ are natural numbers. If $\beta = 0$ or $\gamma = 0$, then the result follows from Lemma 3.1. Assume that β and γ are at least 1. Let F = F(G) be the Fitting subgroup of *G*. Since $G \in \mathfrak{A}_q\mathfrak{A}_r$, it follows that *F* is abelian and $|F| = q^{\beta}r^{\gamma_1} = m$, where $\gamma_1 \leq \gamma$. By Clifford's theorem, since *G* is primitive, $V = X_1 \oplus X_2 \oplus \cdots \oplus X_a$ as an *F*-module, where the X_i are conjugates of *X*, an irreducible $\mathbb{F}_s F$ -submodule of *V*. Note that *F* acts faithfully on *X*.

Let *E* be the subalgebra generated by *F* in End(*V*). The X_i are conjugates of *X*, so *E* acts faithfully and irreducibly on *X* and *E* is commutative. By [1, Proposition 8.2 and Theorem 8.3], *E* is a field. Thus, $E \cong \mathbb{F}_{s^c}$ as an $\mathbb{F}_s F$ -module, where $c = \dim(X)$ and $\alpha = ac$. Note that *F* is an abelian group of order *m* acting faithfully and irreducibly on *X*. Consequently, *F* is cyclic and *c* is the least positive integer such that $m | s^c - 1$. Clearly, m = q or m = qr and so $\beta = 1$. It is not difficult to show that *G* acts on *E* by conjugation. Hence, there exists a homomorphism from *G* to $\operatorname{Gal}_{\mathbb{F}_s}(E)$. Let *N* be the kernel of this map. Then $N = C_G(E) \leq C_G(F) \leq F$. However, $F \leq N$. Hence, F = N. So $G/F \leq \operatorname{Gal}_{\mathbb{F}_s}(E) \cong C_c$ and $|G| \leq cm$.

Let G be an irreducible imprimitive subgroup of $GL(\alpha, s)$ that is also in $\mathfrak{A}_q\mathfrak{A}_r$. Then $G \leq G_1 \text{ wr } G_2 \leq GL(\alpha, s)$, where G_1 is a primitive subgroup of $GL(\alpha_1, s)$ that is in $\mathfrak{A}_q\mathfrak{A}_r$, and the group G_2 can be regarded as a transitive subgroup of S_k that is in $\mathfrak{A}_{q}\mathfrak{A}_{r}$. Further, $\alpha = \alpha_{1}k$. By the previous part, $|G_{1}| \leq c'm'$, where $c' = \text{order } s \mod m'$ and $m' = |F(G_{1})|$ is either r or q or qr. Also $c' \mid \alpha_{1}$. By [13, Proposition 2.1], $|G_{2}| \leq (6^{1/2})^{k-1}$. Using $c' \leq 2^{c'-1} \leq (6^{1/2})^{c'-1}$, we see that $|G| \leq (6^{1/2})^{\alpha-1} (m')^{k}$. Since $m' \mid p^{c'} - 1$, we have $(m')^{k} \leq d^{\alpha}$, where $d = \min\{qr, s\}$.

Since *t* does not divide *q* or *r*, by Maschke's theorem, any subgroup *G* of $GL(\alpha, s)$ that is in $\mathfrak{A}_q\mathfrak{A}_r$ will be completely reducible. Thus, $G \leq G_1 \times \cdots \times G_k \leq GL(\alpha, s)$, where the G_i are irreducible subgroups of $GL(\alpha_i, s)$ that are in $\mathfrak{A}_q\mathfrak{A}_r$ and $\alpha = \alpha_1 + \cdots + \alpha_k$. Hence, $|G| \leq (6^{1/2})^{\alpha-1} d^{\alpha}$, where $d = \min\{qr, s\}$.

PROPOSITION 4.2. There exist constants b and c such that the number of conjugacy classes of subgroups that are maximal amongst irreducible subgroups of GL(α , s) that are in $\mathfrak{A}_{\alpha}\mathfrak{A}_{r}$ is at most $2^{(b+c)(\alpha^{2}/\sqrt{\log \alpha})+(5/6)\log\alpha+\log 6}s^{(3+c)\alpha^{2}}$ provided $\alpha > 1$.

PROOF. Let *G* be a subgroup of $GL(\alpha, s)$ that is maximal amongst irreducible subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_q\mathfrak{A}_r$. Let $|G| = q^{\beta}r^{\gamma}$, where β and γ are natural numbers. If $\beta = 0$ or $\gamma = 0$, then the result follows from Lemma 3.1. Assume that β and γ are at least 1. Let $V = (\mathbb{F}_s)^{\alpha}$ and F = F(G), the Fitting subgroup of *G*. Then $F = Q \times R_1$, where *Q* is the unique Sylow *q*-subgroup of *G* and $R_1 \leq R$, where *R* is a Sylow *r*-subgroup of *G*. So *F* is abelian and $|F| = q^{\beta}r^{\gamma_1} = m$, where $\gamma_1 \leq \gamma$.

From Clifford's theorem, regarding V as an $\mathbb{F}_s F$ -module, $V = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_l$, where $Y_i = kX_i$ for all *i*, and X_1, \ldots, X_l are irreducible $\mathbb{F}_s F$ -submodules of V. Further, for each *i*, *j*, there exists $g_{ij} \in G$ such that $g_{ij}X_i = X_j$ and, for $i = 1, \ldots, l$, the X_i form a maximal set of pairwise nonisomorphic conjugates. Also, the action of G on the Y_i is transitive. It is not difficult to check that $C_F(Y_i) = C_F(X_i) = K_i$, say. Thus, F/K_i acts faithfully on Y_i and when its action is restricted to X_i , it acts faithfully and irreducibly on X_i . Since X_i is a nontrivial irreducible faithful $\mathbb{F}_s F/K_i$ -module, and *t* is coprime to *q* and *r*, it follows that F/K_i is cyclic and dim $\mathbb{F}_s(X_i) = d_i$, where d_i is the least positive integer such that m_i divides $s^{d_i} - 1$, and where m_i is the order of F/K_i . Since the X_i are conjugate, dim $\mathbb{F}_s(X_i) = d_i = d$ for all *i*.

Let E_i be the subalgebra generated by F/K_i in $\text{End}_{\mathbb{F}_s}(Y_i)$. Note that E_i is commutative as F/K_i is abelian. Further, X_i is a faithful irreducible E_i -module. So E_i is simple and becomes a field such that $E_i \cong \mathbb{F}_{s^d}$. We also observe that $\alpha = kld$.

Let k, l, d be fixed such that $\alpha = kld$. Next we find the number of choices for F up to conjugacy in GL(V). Clearly,

$$F \le F/K_1 \times F/K_2 \times \cdots \times F/K_l \le E_1^* \times E_2^* \times \cdots \times E_l^*$$

$$\le GL(Y_1) \times GL(Y_2) \times \cdots \times GL(Y_l) \le GL(V),$$

where E_i^* denotes the multiplicative group of the field E_i . Let $E = E_1^* \times E_2^* \times \cdots \times E_l^*$. Then $|E| = (s^d - 1)^l$. Regarding *V* as an $\mathbb{F}_s E$ -module, $V = kX_1 \oplus kX_2 \oplus \cdots \oplus kX_l$, where E_i^* acts faithfully and irreducibly on X_i and dim_{E_i}(X_i) = 1 for all *i*. Further, for $i \neq j$, E_i^* acts trivially on X_j . It is not difficult to show that there is only one conjugacy class of subgroups of type *E* in GL(*V*).

So once k, l and d are chosen such that $\alpha = kld$, up to conjugacy, there is only one choice for E. Since E is a direct product of l isomorphic cyclic groups, any subgroup of E can be generated by l elements. In particular, F can be generated by l elements. So the number of choices for F as a subgroup of E is at most $|E|^l = (s^d - 1)^{l^2}$.

Since, *G* acts transitively on $\{Y_1, \ldots, Y_l\}$, there exists a homomorphism ϕ from *G* into S_l . Let $N = \ker(\phi) = \{g \in G \mid gY_i = Y_i \text{ for all } i\}$. Clearly, $F \leq N$ and G/N is a transitive subgroup of S_l that is in \mathfrak{A}_r . If $g \in N$, then $gE_ig^{-1} = E_i$. Thus, there exists a homomorphism $\psi_i : N \to \operatorname{Gal}_{\mathbb{F}_s}(E_i)$. This induces a homomorphism ψ from *N* to $\operatorname{Gal}_{\mathbb{F}_s}(E_1) \times \operatorname{Gal}_{\mathbb{F}_s}(E_2) \times \cdots \times \operatorname{Gal}_{\mathbb{F}_s}(E_l)$ such that $\ker(\psi) = \bigcap_{i=1}^l N_i = F$, where $N_i = \ker(\psi_i) = C_N(E_i)$. So N/F is isomorphic to a subgroup of $\operatorname{Gal}_{\mathbb{F}_s}(E_1) \times \operatorname{Gal}_{\mathbb{F}_s}(E_2) \times \cdots \times \operatorname{Gal}_{\mathbb{F}_s}(E_l)$. Since $\operatorname{Gal}_{\mathbb{F}_s}(E_i) \cong C_d$ for every *i*, it follows that N/F can be generated by *l* elements.

Let $T = \operatorname{GL}(\alpha, s)$. Let $\hat{N} = \{x \in N_T(F) \mid xY_i = Y_i \text{ for all } i\}$. Then $F \leq N \leq \hat{N} \leq N_T(F)$. We will find the number of choices for N as a subgroup of \hat{N} , given that F has been chosen. The group \hat{N} acts by conjugation on E_i and fixes the elements of \mathbb{F}_s . So we have a homomorphism $\rho_i : \hat{N} \to \operatorname{Gal}_{\mathbb{F}_s}(E_i)$ with kernel $C_{\hat{N}}(E_i)$. Define $C = \bigcap_{i=1}^l C_{\hat{N}}(E_i)$. Note that $N \cap C = F$. Also, \hat{N}/C is isomorphic to a subgroup of $\operatorname{Gal}_{\mathbb{F}_s}(E_1) \times \operatorname{Gal}_{\mathbb{F}_s}(E_2) \times \cdots \times \operatorname{Gal}_{\mathbb{F}_s}(E_i)$, where each $\operatorname{Gal}_{\mathbb{F}_s}(E_i)$ is isomorphic to C_d . So $|\hat{N}/C| \leq d^l$. Clearly, C centraliess E_i for each i. Therefore, there exists a homomorphism from C into $\operatorname{GL}_{E_i}(Y_i)$ for each i. Hence, C is isomorphic to a subgroup of $\operatorname{GL}_{E_1}(Y_1) \times \operatorname{GL}_{E_2}(Y_2) \times \cdots \times \operatorname{GL}_{E_l}(Y_l)$. As $\dim_{\mathbb{E}_i}(Y_i) = k$ and $E_i \cong \mathbb{F}_{s^d}$ for all i, it follows that $|C| \leq s^{dk^2l}$. Hence, $|\hat{N}| \leq d^l s^{dk^2l}$.

Now $NC/C \cong N/(N \cap C) = N/F$. So NC/C can be generated by l elements since N/F can be generated by l elements. However, $|\hat{N}/C| \le d^l$, therefore, there are at most d^{l^2} choices for NC/C as a subgroup of \hat{N}/C . Once we make a choice for NC/C as a subgroup of \hat{N}/C , we choose a set of l generators for NC/C. As $N \cap C = F$, we see that N is determined as a subgroup of \hat{N} by F and l other elements that map to the chosen generating set of NC/C. We have |C| choices for an element of \hat{N} that maps to any fixed element of \hat{N}/C . Thus, there are at most $|C|^l$ choices for N as a subgroup of \hat{N} once NC/C has been chosen. So we have at most $d^{l^2}(s^{dk^2l})^l = d^{l^2}s^{dk^2l^2}$ choices for N as a subgroup of \hat{N} , once F is fixed.

Next we find the number of choices for *G* given that *F* and *N* are fixed as subgroups of *T* and $\hat{N} \leq T$, respectively. Let $\hat{Y} = \{y \in N_T(F) \mid y \text{ permutes the } Y_i\}$. Then $F \leq G \leq \hat{Y} \leq N_T(F) \leq \text{GL}(V)$. Also there exists a homomorphism from \hat{Y} to S_l with kernel $\{y \in \hat{Y} \mid yY_i = Y_i \text{ for all } i\} = \hat{N}$. Thus, \hat{Y}/\hat{N} may be regarded as a subgroup of S_l . However, $G \cap \hat{N} = N$. Thus, $G/N = G/(G \cap \hat{N}) \cong G\hat{N}/\hat{N}$. So $G/N \cong G\hat{N}/\hat{N} \leq \hat{Y}/\hat{N} \leq S_l$. Note that G/N is a transitive subgroup of S_l that is in \mathfrak{A}_r . By [5, Theorem 1], there exists a constant *b* such that S_l has at most $2^{bl^2/\sqrt{\log l}}$ transitive subgroups for l > 1. Hence, the number of choices for $G\hat{N}/\hat{N}$ as a subgroup of \hat{Y}/\hat{N} is at most $2^{bl^2/\sqrt{\log l}}$.

By [6, Theorem 2], there exists a constant *c* such that any transitive permutation group of finite degree greater than 1 can be generated by $\lfloor cl/\sqrt{\log l} \rfloor$ generators. Thus, $G\hat{N}/\hat{N}$ can be generated by $\lfloor cl/\sqrt{\log l} \rfloor$ generators for l > 1. Once a choice for $G\hat{N}/\hat{N}$

is made as a subgroup of \hat{Y}/\hat{N} and $\lfloor cl/\sqrt{\log l} \rfloor$ generators are chosen for $G\hat{N}/\hat{N}$ in \hat{Y}/\hat{N} , then *G* is determined as a subgroup of \hat{Y} by \hat{N} and the elements of \hat{Y} that map to the $\lfloor cl/\sqrt{\log l} \rfloor$ generators chosen for $G\hat{N}/\hat{N}$. So we have at most $|\hat{N}|^{\lfloor cl/\sqrt{\log l} \rfloor}$ choices for *G* as a subgroup of \hat{Y} once a choice of $G\hat{N}/\hat{N}$ in \hat{Y}/\hat{N} is fixed. Hence, there are

Arushi and G. Venkataraman

$$2^{bl^2/\sqrt{\log l}} (d^l s^{dk^2l})^{\lfloor cl/\sqrt{\log l}\rfloor} \le 2^{bl^2/\sqrt{\log l}} d^{cl^2/\sqrt{\log l}} s^{cdk^2l^2/\sqrt{\log(l)}}$$

choices for G as a subgroup of \hat{Y} assuming that choices for F and N have been made. Putting together all these estimates, the number of conjugacy classes of subgroups that are maximal amongst irreducible subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_{q}\mathfrak{A}_{r}$ is at most

$$\sum_{(k,l,d)} (s^d - 1)^{l^2} d^{l^2} s^{dk^2 l^2} 2^{bl^2/\sqrt{\log l}} d^{cl^2/\sqrt{\log l}} s^{cdk^2 l^2/\sqrt{\log l}},$$

where (k, l, d) ranges over ordered triples of natural numbers which satisfy $\alpha = kld$ and l > 1. We simplify the above expression as follows. Writing $\alpha = kld$,

$$(s^d - 1)^{l^2} d^{l^2} s^{dk^2 l^2} s^{cdk^2 l^2 / \sqrt{\log l}} \le s^{(3+c)\alpha^2}.$$

Since $x/\sqrt{\log x}$ is increasing for $x > e^{1/2}$, we have $l/\sqrt{\log l} \le \alpha/\sqrt{\log \alpha}$ for $l \ge 2$. Thus, $2^{bl^2/\sqrt{\log l}} d^{cl^2/\sqrt{\log l}} \le 2^{(b+c)\alpha^2/\sqrt{\log \alpha}}$.

There are at most $2^{(5/6)\log\alpha+\log 6}$ choices for (k, l, d). Thus, there exist constants b and c such that the number of conjugacy classes of subgroups that are maximal amongst irreducible subgroups of $GL(\alpha, s)$ that are in $\mathfrak{A}_q\mathfrak{A}_r$ is at most

$$2^{(b+c)(\alpha^2/\sqrt{\log \alpha}) + (5/6)\log \alpha + \log 6} s^{(3+c)\alpha^2}$$

provided $\alpha > 1$.

Theorem 1.5 follows as a corollary to Proposition 4.2.

PROOF OF THEOREM 1.5. Let *G* be maximal amongst subgroups of $GL(\alpha, s)$ that are also in $\mathfrak{A}_q\mathfrak{A}_r$. As the characteristic of $\mathbb{F}_s = t$ and $t \nmid |G|$, by Maschke's theorem, $G \leq \hat{G}_1 \times \cdots \times \hat{G}_k \leq GL(\alpha, s)$, where the \hat{G}_i are maximal among irreducible subgroups of $GL(\alpha_i, p)$ that are also in $\mathfrak{A}_q\mathfrak{A}_r$, and where $\alpha = \alpha_1 + \cdots + \alpha_k$. By the maximality of *G*, we have $G = \hat{G}_1 \times \cdots \times \hat{G}_k$.

The conjugacy classes of $\hat{G}_i \in GL(\alpha_i, s)$ determine the conjugacy class of $G \in GL(\alpha, s)$. So by Proposition 4.2, the number of conjugacy classes of subgroups that are maximal amongst the subgroups of $GL(\alpha, s)$ that are also in $\mathfrak{A}_q\mathfrak{A}_r$ is at most

$$\sum_{(\alpha)} \prod_{i=1}^{k} 2^{(b+c)(\alpha_i^2/\sqrt{\log \alpha_i}) + (5/6)\log \alpha_i + \log 6} s^{(3+c)\alpha_i^2},$$

where the sum is over all unordered partitions $\alpha_1, \ldots, \alpha_k$ of α . We assume that if $\alpha_i = 1$ for some *i*, then the part of the expression corresponding to it in the product is 1. Since $x/\sqrt{\log x}$ is increasing for $x > e^{1/2}$ and $\alpha = \alpha_1 + \cdots + \alpha_k$,

https://doi.org/10.1017/S0004972724000431 Published online by Cambridge University Press

$$\prod_{i=1}^{k} 2^{(b+c)(\alpha_i^2/\sqrt{\log \alpha_i}) + (5/6)\log \alpha_i + \log 6} \le 2^{(b+c)(\alpha^2/\sqrt{\log \alpha}) + (5/6)\alpha \log \alpha + \alpha \log 6}.$$

It is not difficult to show that the number of unordered partitions of α is at most $2^{\alpha-1}$. So the number of conjugacy classes of subgroups that are maximal amongst the subgroups of GL(α , s) that are also in $\mathfrak{A}_{a}\mathfrak{A}_{r}$ is at most

$$2^{(b+c)(\alpha^2/\sqrt{\log \alpha}) + (5/6)\alpha \log \alpha + \alpha(1+\log 6))} s^{(3+c)\alpha^2}$$

provided $\alpha > 1$.

We end this section with the following remark that provides an alternative bound.

REMARK 4.3. We do not have an estimate for the constants *b* and *c* occurring in Theorem 1.5. If we use a weaker fact that any subgroup of S_n can be generated by $\lfloor n/2 \rfloor$ elements for all $n \ge 3$, then we get a weaker result that the number of transitive subgroups of S_n that are in $\mathfrak{A}_q\mathfrak{A}_r$ is at most $6^{n(n-1)/4}2^{(n+2)\log n}$. Using this in the proof of Theorem 1.5 shows that the number of conjugacy classes of subgroups that are maximal amongst the subgroups of $\mathrm{GL}(\alpha, s)$ that are also in $\mathfrak{A}_q\mathfrak{A}_r$ is at most

$$s^{5\alpha^2} 6^{\alpha(\alpha-1)/4} 2^{\alpha-1+(23/6)\alpha\log\alpha+\alpha\log6}$$

where *t*, *q* and *r* are distinct primes, *s* is a power of *t*, and $\alpha \in \mathbb{N}$.

5. Enumeration of groups in $\mathfrak{A}_p\mathfrak{A}_q\mathfrak{A}_r$

In this section, we prove Theorem 1.2, namely,

$$f_{\mathfrak{S}}(n) \leq p^{6\alpha^2} 2^{\alpha - 1 + (23/6)\alpha \log \alpha + \alpha \log 6} (6^{1/2})^{(\alpha + \gamma)\beta + (\alpha + \beta)\gamma + \alpha(\alpha - 1)/2} n^{\beta + \gamma},$$

where $n = p^{\alpha}q^{\beta}r^{\gamma}$ and $\alpha, \beta, \gamma \in \mathbb{N}$. We use techniques adapted from [9, 13, 14].

PROOF OF THEOREM 1.2. Let *G* be a group of order $n = p^{\alpha}q^{\beta}r^{\gamma}$ in $\mathfrak{A}_{p}\mathfrak{A}_{q}\mathfrak{A}_{r}$. Then $G = P \rtimes H$, where *P* is the unique Sylow *p*-subgroup of *G* and $H \in \mathfrak{A}_{q}\mathfrak{A}_{r}$. So we can write $H = Q \rtimes R$, where $|Q| = q^{\beta}$ and $|R| = r^{\gamma}$. Let $G_{1} = G/O_{p'}(G)$, $G_{2} = G/O_{q'}(G)$ and $G_{3} = G/O_{r'}(G)$. Clearly, each G_{i} is a soluble *A*-group and $G \leq G_{1} \times G_{2} \times G_{3}$ as a subdirect product. Further, $O_{p'}(G_{1}) = 1 = O_{q'}(G_{2}) = O_{r'}(G_{3})$.

Since $G_1 = G/O_{p'}(G)$, we see that $G_1 \in \mathfrak{A}_p \mathfrak{A}_q \mathfrak{A}_r$ and if P_1 is the Sylow *p*-subgroup of G_1 , then $P_1 \cong P$. Thus, $|G_1| = p^{\alpha}q^{\beta_1}r^{\gamma_1}$ and we can write $G_1 = P_1 \rtimes H_1$, where $H_1 \in \mathfrak{A}_q \mathfrak{A}_r$. So $H_1 = Q_1 \rtimes R_1$, where $Q_1 \in \mathfrak{A}_q$ and $|Q_1| = q^{\beta_1}, R_1 \in \mathfrak{A}_r$ and $|R_1| = r^{\gamma_1}$. Further, H_1 acts faithfully on P_1 . Hence, we can regard $H_1 \leq \operatorname{Aut}(P_1) \cong \operatorname{GL}(\alpha, p)$. Let M_1 be a subgroup that is maximal amongst p'-A-subgroups of $\operatorname{GL}(\alpha, p)$ that are also in $\mathfrak{A}_q \mathfrak{A}_r$ and such that $H_1 \leq M_1$. Let $\hat{G}_1 = P_1 M_1$. The number of conjugacy classes of the M_1 in $\operatorname{GL}(\alpha, p)$ is at most $p^{5\alpha^2} 6^{\alpha(\alpha-1)/4} 2^{\alpha-1+(23/6)\alpha \log \alpha+\alpha \log 6}$ by Remark 4.3.

Since $G_2 = G/O_{q'}(G)$, we see that $G_2 \in \mathfrak{A}_q\mathfrak{A}_r$ and if Q_2 is the Sylow q-subgroup of G_2 , then $Q_2 \cong Q$. Thus, $|G_2| = q^{\beta}r^{\gamma_2}$ and we can write $G_2 = Q_2 \rtimes H_2$, where

 $H_2 \in \mathfrak{A}_r$. So $|H_2| = r^{\gamma_2}$. Also, $H_2 \leq \operatorname{Aut}(Q_2) \cong \operatorname{GL}(\beta, q)$. Let M_2 be a subgroup that is maximal amongst q'-A-subgroups of $\operatorname{GL}(\beta, q)$ that are also in \mathfrak{A}_r and such that $H_2 \leq M_2$. Let $\hat{G}_2 = Q_2 M_2$. The number of conjugacy classes of M_2 in $\operatorname{GL}(\beta, q)$ is at most 1 by Proposition 3.2.

Since $G_3 = G/O_{r'}(G)$, we see that $G_3 \in \mathfrak{A}_r\mathfrak{A}_q$ and if R_3 is the Sylow *r*-subgroup of G_3 , then $R_3 \cong R$. Thus, $|G_3| = q^{\beta_3}r^{\gamma}$ and we can write $G_3 = R_3 \rtimes H_3$, where $H_3 \in \mathfrak{A}_r$. So $|H_3| = q^{\beta_3}$. Also, $H_3 \leq \operatorname{Aut}(R_3) \cong \operatorname{GL}(\gamma, r)$. Let M_3 be a subgroup that is maximal amongst r'-*A*-subgroups of $\operatorname{GL}(\gamma, r)$ that are also in \mathfrak{A}_q and such that $H_3 \leq M_3$. Let $\hat{G}_3 = R_3M_3$. The number of conjugacy classes of the M_3 in $\operatorname{GL}(\gamma, r)$ is at most 1 by Proposition 3.2.

Let $\hat{G} = \hat{G}_1 \times \hat{G}_2 \times \hat{G}_3$. Then $G \leq \hat{G}$. The choices for P_1, Q_2 and R_3 are unique, up to isomorphism. We enumerate the possibilities for \hat{G} up to isomorphism and then find the number of subgroups of \hat{G} of order n up to isomorphism. For the former, we count the number of \hat{G}_i up to isomorphism which depends on the conjugacy class of the M_i . Hence, the number of choices for \hat{G} up to isomorphism is $\prod_{i=1}^{3}$ {number of choices for \hat{G}_i up to isomorphism}. Now we estimate the choices for G as a subgroup of \hat{G} using a method of 'Sylow systems' introduced by Pyber in [9].

Let \hat{G} be fixed. We count the number of choices for G as a subgroup of \hat{G} . Let $S = \{S_1, S_2, S_3\}$ be a Sylow system for G, where S_1 is the Sylow p-subgroup of G, S_2 is a Sylow q-subgroup of G and S_3 is a Sylow r-subgroup of G such that $S_iS_j = S_jS_i$ for all i, j = 1, 2, 3. Then $G = S_1S_2S_3$. By [1, Theorem 6.2, page 49], there exists $\mathcal{B} = \{B_1, B_2, B_3\}$, a Sylow system for \hat{G} such that $S_i \leq B_i$, where B_1 is the Sylow p-subgroup of \hat{G} , B_2 is a Sylow q-subgroup of \hat{G} and B_3 is a Sylow r-subgroup of \hat{G} . Note that $|B_1| = p^{\alpha}$. Further, any two Sylow systems for \hat{G} are conjugate. Hence, the number of choices for G as a subgroup of \hat{G} and up to conjugacy is at most

$$|\{S_1, S_2, S_3 \mid S_i \le B_i, |S_1| = p^{\alpha}, |S_2| = q^{\beta}, |S_3| = r^{\gamma}\}| \le |B_1|^{\alpha} |B_2|^{\beta} |B_3|^{\gamma}.$$

We observe that $B_2 = T_{21} \times T_{22} \times T_{23}$, where T_{2i} are Sylow *q*-subgroups of \hat{G}_i for i = 1, 2, 3. From [13, Proposition 3.1], $|T_{21}| \leq |M_1| \leq (6^{1/2})^{\alpha-1} p^{\alpha}$ and $|T_{23}| = |M_3| \leq (6^{1/2})^{\gamma-1} r^{\gamma}$. Further, $|T_{22}| = |Q_2| = q^{\beta}$. Hence, $|B_2| \leq (6^{1/2})^{\alpha+\gamma-2} p^{\alpha} q^{\beta} r^{\gamma} \leq (6^{1/2})^{\alpha+\gamma} n$ and so $|B_2|^{\beta} \leq (6^{1/2})^{(\alpha+\gamma)\beta} n^{\beta}$. Similarly, we can show that $|B_3| \leq (6^{1/2})^{\alpha+\beta-2} p^{\alpha} q^{\beta} r^{\gamma}$. So $|B_3|^{\gamma} \leq (6^{1/2})^{(\alpha+\beta)\gamma} n^{\gamma}$. Putting all the estimates together, the number of choices for *G* as a subgroup of \hat{G} up to conjugacy is at most $|B_1|^{\alpha} |B_2|^{\beta} |B_3|^{\gamma}$, which is at most

$$p^{\alpha^2} (6^{1/2})^{(\alpha+\gamma)\beta} n^{\beta} (6^{1/2})^{(\alpha+\beta)\gamma} n^{\gamma} \le p^{\alpha^2} (6^{1/2})^{(\alpha+\gamma)\beta+(\alpha+\beta)\gamma} n^{\beta+\gamma}.$$

Therefore, the number of groups of order $p^{\alpha}q^{\beta}r^{\gamma}$ in $\mathfrak{A}_{p}\mathfrak{A}_{q}\mathfrak{A}_{r}$ up to isomorphism is at most

$$p^{5\alpha^{2}} 6^{\alpha(\alpha-1)/4} 2^{\alpha-1+(23/6)\alpha \log \alpha+\alpha \log 6} p^{\alpha^{2}} (6^{1/2})^{(\alpha+\gamma)\beta+(\alpha+\beta)\gamma} n^{\beta+\gamma} = p^{6\alpha^{2}} 2^{\alpha-1+(23/6)\alpha \log \alpha+\alpha \log 6} (6^{1/2})^{(\alpha+\gamma)\beta+(\alpha+\beta)\gamma+\alpha(\alpha-1)/2} n^{\beta+\gamma}.$$

References

- [1] S. R. Blackburn, P. M. Neumann and G. Venkataraman, *Enumeration of Finite Groups* (Cambridge University Press, Cambridge, 2007).
- [2] G. Dickenson, 'On the enumeration of certain classes of soluble groups', *Q. J. Math.* **20**(1) (1969), 383–394.
- [3] M. D. Hestenes, 'Singer groups', Canad. J. Math. 22(3) (1970), 492–513.
- [4] G. Higman, 'Enumerating p-groups. I: Inequalities', Proc. Lond. Math. Soc. (3) 10(3) (1960), 24–30.
- [5] A. Lucchini, 'Enumerating transitive finite permutation groups', Bull. Lond. Math. Soc. 30(6) (1998), 569–577.
- [6] A. Lucchini, F. Menegazzo and M. Morigi, 'Asymptotic results for transitive permutation groups', *Bull. Lond. Math. Soc.* 32(2) (2000), 191–195.
- [7] A. McIver and P. M. Neumann, 'Enumerating finite groups', Q. J. Math. 38(2) (1987), 473–488.
- [8] H. Neumann, Varieties of Groups (Springer-Verlag, Berlin-Heidelberg, 1967).
- [9] L. Pyber, 'Enumerating finite groups of given order', Ann. of Math. (2) 137(1) (1993), 203–220.
- [10] L. Scott, 'Representations in characteristic p', in: *The Santa Cruz Conference on Finite Groups*, Proceedings of Symposia in Pure Mathematics, 37 (eds. B. Cooperstein and G. Mason) (American Mathematical Society, Providence, RI, 1981).
- [11] M. W. Short, *The Primitive Soluble Permutation Groups of Degree Less than 256* (Springer, Berlin–Heidelberg, 1992).
- [12] C. C. Sims, 'Enumerating p-groups', Proc. Lond. Math. Soc. (3) 15(3) (1965), 151–166.
- [13] G. Venkataraman, 'Enumeration of finite soluble groups with Abelian Sylow subgroups', Q. J. Math. 48(1) (1997), 107–125.
- [14] G. Venkataraman, Enumeration of Finite Soluble Groups in Small Varieties of A-groups and Associated Topics, Tech. Report, Centre for Mathematical Sciences, St. Stephen's College (University of Delhi, Delhi, 1999).
- [15] H. Wielandt, *Finite Permutation Groups* (Academic Press, London, 1964), translated from German by R. Bercov.

ARUSHI, School of Liberal Studies (Mathematics),

Dr. B. R. Ambedkar University Delhi, Delhi 110006, India e-mail: arushi.18@stu.aud.ac.in, arushi.garvita@gmail.com

GEETHA VENKATARAMAN, School of Liberal Studies (Mathematics),

Dr. B. R. Ambedkar University Delhi, Delhi 110006, India

e-mail: geetha@aud.ac.in, geevenkat@gmail.com