
2
Characteristic properties of detectors

Technical skill is the mastery of complexity while creativity is the
mastery of simplicity.

E. Christopher Zeeman

2.1 Resolutions and basic statistics

The criterion by which to judge the quality of a detector is its resolution
for the quantity to be measured (energy, time, spatial coordinates, etc.). If
a quantity with true value z0 is given (e.g. the monoenergetic γ radiation
of energy E0), the measured results zmeas of a detector form a distribution
function D(z) with z = zmeas−z0; the expectation value for this quantity is

〈z〉 =
∫
z ·D(z) dz

/∫
D(z) dz , (2.1)

where the integral in the denominator normalises the distribution func-
tion. This normalised function is usually referred to as the probability
density function (PDF ).

The variance of the measured quantity is

σ2
z =

∫
(z − 〈z〉)2D(z) dz

/∫
D(z) dz . (2.2)

The integrals extend over the full range of possible values of the
distribution function.

As an example, the expectation value and the variance for a rectangular
distribution will be calculated. In a multiwire proportional chamber with
wire spacing δz, the coordinates of charged particles passing through the
chamber are to be determined. There is no drift-time measurement on
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Fig. 2.1. Schematic drawing for the determination of the variance of a rectan-
gular distribution.

the wires. Only a hit on a particular wire with number nW is recorded
(assuming only one hit per event) and its discrete coordinate, zmeas =
zin + nWδz is measured. The distribution function D(z) is constant = 1
from −δz/2 up to +δz/2 around the wire which has fired, and outside
this interval the distribution function is zero (see Fig. 2.1).

The expectation value for z is evidently zero (=̂ position of the fired
wire):

〈z〉 =
∫ +δz/2

−δz/2
z · 1 dz

/∫ +δz/2

−δz/2
dz =

z2

2

∣∣∣∣+δz/2

−δz/2

/
z

∣∣∣∣+δz/2

−δz/2
= 0 ; (2.3)

correspondingly, the variance is calculated to be

σ2
z =

∫ +δz/2

−δz/2
(z − 0)2 · 1 dz

/
δz =

1
δz

∫ +δz/2

−δz/2
z2 dz (2.4)

=
1
δz

z3

3

∣∣∣∣+δz/2

−δz/2
=

1
3 δz

(
(δz)3

8
+

(δz)3

8

)
=

(δz)2

12
, (2.5)

which means

σz =
δz√
12

. (2.6)

The quantities δz and σz have dimensions. The relative values δz/z or
σz/z, respectively, are dimensionless.

In many cases experimental results are normally distributed, corre-
sponding to a distribution function (Fig. 2.2)
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58 2 Characteristic properties of detectors
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Fig. 2.2. Normal distribution (Gaussian distribution around the average value
z0).
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Fig. 2.3. Illustration of confidence levels.

D(z) =
1

σz

√
2π

e−(z−z0)2/2σ2
z . (2.7)

The variance determined according to Eq. (2.2) for this Gaussian distri-
bution implies that 68.27% of all experimental results lie between z0 − σz

and z0+σz. Within 2σz there are 95.45% and within 3σz there are 99.73%
of all experimental results. In this way an interval ([z0 − σz, z0 + σz]) is
defined which is called confidence interval. It corresponds to a confidence
level of 68.27%. The value σz is usually referred to as a standard error or
the standard deviation.

For the general definition we plot the normalised distribution function
in its dependence on z−〈z〉 (Fig. 2.3). For a normalised probability distri-
bution with an expectation value 〈z〉 and root mean square deviation σz

1 − α =
∫ 〈z〉+δ

〈z〉−δ

D(z) dz (2.8)
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2.1 Resolutions and basic statistics 59

is the probability that the true value z0 lies in the interval ±δ around the
measured quantity z or, equivalently: 100 ·(1−α)% of all measured values
lie in an interval ±δ, centred on the average value 〈z〉.

As stated above, the choice of δ = σz for a Gaussian distribution leads to
a confidence interval, which is called the standard error, and whose proba-
bility is 1−α = 0.6827 (corresponding to 68.27%). On the other hand, if a
confidence level is given, the related width of the measurement interval can
be calculated. For a confidence level of 1 − α =̂ 95%, one gets an interval
width of δ = ±1.96σz; 1 − α =̂ 99.9% yields a width of δ = ±3.29σz [1].
In data analysis physicists deal very often with non-Gaussian distribu-
tions which provide a confidence interval that is asymmetric around the
measured value. Consequently, this is characterised by asymmetric errors.
However, even in this case the quoted interval of ±1σz corresponds to
the same confidence level, 68.27%. It should be noted that sometimes the
confidence level is limited by only one border, while the other one extends
to +∞ or −∞. In this case one talks about a lower or upper limit of the
measured value set by the experiment.∗

A frequently used quantity for a resolution is the half width of a dis-
tribution which can easily be read from the data or from a fit to it. The
half width of a distribution is the full width at half maximum (FWHM).
For normal distributions one gets

Δz(FWHM) = 2
√

2 ln 2σz = 2.3548σz . (2.9)

The Gaussian distribution is a continuous distribution function. If one
observes particles in detectors the events frequently follow a Poisson dis-
tribution. This distribution is asymmetric (negative values do not occur)
and discrete.

For a mean value μ the individual results n are distributed according to

f(n, μ) =
μn e−μ

n!
, n = 0, 1, 2, . . . (2.10)

The expectation value for this distribution is equal to the mean value μ
with a variance of σ2 = μ.

Let us assume that after many event-counting experiments the average
value is three events. The probability to find, in an individual experiment,
e.g. no event, is f(0, 3) = e−3 = 0.05 or, equivalently, if one finds no
event in a single experiment, then the true value is smaller than or equal
to 3 with a confidence level of 95%. For large values of n the Poisson
distribution approaches the Gaussian.

∗ E.g., direct measurements on the electron-antineutrino mass from tritium decay yield a limit
of less than 2 eV. From the mathematical point of view this corresponds to an interval from
−∞ to 2 eV. Then one says that this leads to an upper limit on the neutrino mass of 2 eV.
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60 2 Characteristic properties of detectors

The determination of the efficiency of a detector represents a random
experiment with only two possible outcomes: either the detector was effi-
cient with probability p or not with probability 1−p = q. The probability
that the detector was efficient exactly r times in n experiments is given
by the binomial distribution (Bernoulli distribution)

f(n, r, p) =
(
n

r

)
prqn−r =

n!
r!(n− r)!

prqn−r . (2.11)

The expectation value of this distribution is 〈r〉 = n · p and the variance
is σ2 = n · p · q.

Let the efficiency of a detector be p = 95% for 100 triggers (95 particles
were observed, 5 not). In this example the standard deviation (σ of the
expectation value 〈r〉) is given by

σ =
√
n · p · q =

√
100 · 0.95 · 0.05 = 2.18 (2.12)

resulting in

p = (95 ± 2.18)% . (2.13)

Note that with this error calculation the efficiency cannot exceed 100%, as
is correct. Using a Poissonian error (±√

95) would lead to a wrong result.
In addition to the distributions mentioned above some experimental

results may not be well described by Gaussian, Poissonian or Bernoulli dis-
tributions. This is the case, e.g. for the energy-loss distribution of charged
particles in thin layers of matter. It is obvious that a distribution func-
tion describing the energy loss must be asymmetric, because the minimum
dE/dx can be very small, in principle even zero, but the maximum energy
loss can be quite substantial up to the kinematic limit. Such a distribution
has a Landau form. The Landau distribution has been described in detail
in the context of the energy loss of charged particles (see Chap. 1).

The methods for the statistical treatment of experimental results pre-
sented so far include only the most important distributions. For low event
rates Poisson-like errors lead to inaccurate limits. If, e.g., one genuine
event of a certain type has been found in a given time interval, the exper-
imental value which is obtained from the Poisson distribution, n ± √

n,
in this case 1 ± 1, cannot be correct. Because, if one has found a genuine
event, the experimental value can never be compatible with zero, also not
within the error.

The statistics of small numbers therefore has to be modified, leading
to the Regener statistics [2]. In Table 2.1 the ±1σ limits for the quoted
event numbers are given. For comparison the normal error which is the
square root of the event rate is also shown.
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2.1 Resolutions and basic statistics 61

Table 2.1. Statistics of low numbers. Quoted are the ±1σ errors on the basis of
the Regener statistics [2] and the ±1σ square root errors of the Poisson statistics

lower limit number of events upper limit
square statistics of statistics of square
root error low numbers low numbers root error

0 0 0 1.84 0
0 0.17 1 3.3 2
0.59 0.71 2 4.64 3.41
1.27 1.37 3 5.92 4.73
6.84 6.89 10 14.26 13.16

42.93 42.95 50 58.11 57.07

The determination of errors or confidence levels is even more compli-
cated if one considers counting statistics with low event numbers in the
presence of background processes which are detected along with searched-
for events. The corresponding formulae for such processes are given in the
literature [3–7].

A general word of caution, however, is in order in the statistical treat-
ment of experimental results. The definition of statistical characteristics
in the literature is not always consistent.

In the case of determination of resolutions or experimental errors, one is
frequently only interested in relative quantities, that is, δz/〈z〉 or σz/〈z〉;
one has to bear in mind that the average result of a number of experiments
〈z〉 must not necessarily be equal to the true value z0. To obtain the
relation between the experimental answer 〈z〉 and the true value z0, the
detectors must be calibrated. Not all detectors are linear, like

〈z〉 = c · z0 + d , (2.14)

where c, d are constants. Non-linearities such as

〈z〉 = c(z0)z0 + d (2.15)

may, however, be particularly awkward and require an exact knowledge
of the calibration function (sometimes also called ‘response function’). In
many cases the calibration parameters are also time-dependent.

In the following some characteristic quantities of detectors will be
discussed.

Energy resolutions, spatial resolutions and time resolutions are calcu-
lated as discussed above. Apart from the time resolution there are in
addition a number of further characteristic times [8].
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62 2 Characteristic properties of detectors

2.2 Characteristic times

The dead time τD is the time which has to pass between the registration
of one set of incident particles and being sensitive to another set. The
dead time, in which no further particles can be detected, is followed by
a phase where particles can again be measured; however, the detector
may not respond to the particle with full sensitivity. After a further time,
the recovery time τR, the detector can again supply a signal of normal
amplitude.

Let us illustrate this behaviour using the example of a Geiger–Müller
counter (see Sect. 5.1.3) (Fig. 2.4). After the passage of the first particle
the counter is completely insensitive for further particles for a certain
time τD. Slowly, the field in the Geiger–Müller counter recovers so that
for times t > τD a signal can again be recorded, although not at full
amplitude. After a further time τR, the counter has recovered so that
again the initial conditions are established.

The sensitive time τS is of importance for pulsed detectors. It is the
time interval in which particles can be recorded, independent of whether
these are correlated with the triggered event or not. If, for example, in
an accelerator experiment the detector is triggered by a beam interaction
(i.e. is made sensitive), usually a time window of defined length (τS) is
opened, in which the event is recorded. If by chance in this time interval
τS a cosmic-ray muon passes through the detector, it will also be recorded
because the detector having been made sensitive once cannot distinguish
at the trigger level between particles of interest and particles which just
happen to pass through the detector in this time window.

The readout time is the time that is required to read the event, possibly
into an electronic memory. For other than electronic registering (e.g. film),
the readout time can be considerably long. Closely related to the readout
time is the repetition time, which describes the minimum time which must
pass between two subsequent events, so that they can be distinguished.
The length of the repetition time is determined by the slowest element in
the chain detector, readout and registering.

amplitude

time

first
event

possible second
events

τD τR

Fig. 2.4. Illustration of dead and recovery times in a Geiger–Müller counter.
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2.4 Random coincidences 63

The memory time of a detector is the maximum allowed time delay
between particle passage and trigger signal, which still yields a 50%
efficiency.

The previously mentioned time resolution characterises the minimum
time difference where two events can still be separated. This time res-
olution is very similar to the repetition time, the only difference being
that the time resolution refers, in general, to an individual component of
the whole detection system (e.g. only the front-end detector), while the
repetition time includes all components. For example, the time resolution
of a detector can be extremely short, but the whole speed can be lost by
a slow readout.

The term time resolution is frequently used for the precision with which
the arrival time of a particle in a detector can be recorded. The time
resolution for individual events defined in this way is determined by the
fluctuation of the rise time of the detector signal (see Chap. 14).

2.3 Dead-time corrections

Every particle detector has a dead time τD where no particles after an
event can be recorded. The dead time can be as short as 1 ns in Cherenkov
counters, but in Geiger–Müller tubes it can account for 1 ms.

If the count rate is N , the counter is dead for the fraction NτD of the
time, i.e., it is only sensitive for the fraction 1−NτD of the measurement
time. The true count rate – in the absence of dead-time effects – would
then be

Ntrue =
N

1 −NτD
. (2.16)

Rate measurements have to be corrected, especially if

NτD � 1 (2.17)

is not guaranteed.

2.4 Random coincidences

Coincidence measurements, in particular for high count rates, can be sig-
nificantly influenced by chance coincidences. Let us assume that N1 and
N2 are the individual pulse rates of two counters in a twofold coincidence
arrangement. For the derivation of the chance coincidence rate we assume
that the two counters are independent and their count rates are given by
Poisson statistics. The probability that counter 2 gives no signal in the
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64 2 Characteristic properties of detectors

time interval τ after a pulse in counter 1 can be derived from the Poisson
distribution, see Eq. (2.10), to be

f(0, N2) = e−N2τ . (2.18)

Correspondingly, the chance of getting an uncorrelated count in this
period is

P = 1 − e−N2τ . (2.19)

Since normally N2τ � 1, one has

P ≈ N2τ . (2.20)

Because counter 2 can also have a signal before counter 1 within the
resolving time of the coincidence circuit, the total random coincidence
rate is [9, 10]

R2 = 2N1N2τ . (2.21)

If the signal widths of the two counters are different, one gets

R2 = N1N2(τ1 + τ2) . (2.22)

In the general case of q counters with identical pulse widths τ the q-fold
random coincidence rate is obtained to be [9, 10]

Rq = qN1N2 · · ·Nqτ
q−1 . (2.23)

To get coincidence rates almost free of random coincidences it is essential
to aim for a high time resolution.

In practical situations a q-fold random coincidence can also occur, if
q − k counters are set by a true event and k counters have uncorrelated
signals. The largest contribution mostly comes from k = 1:

Rq,q−1 = 2(K(1)
q−1 ·N1 +K

(2)
q−1 ·N2 + · · · +K

(q)
q−1 ·Nq) · τ , (2.24)

where K(i)
q−1 represents the rate of genuine (q− 1)-fold coincidences when

the counter i does not respond.
In the case of majority coincidences the following random coincidence

rates can be determined: If the system consists of q counters and each
counter has a counting rate of N , the number of random coincidences for
p out of q stations is

Rp(q) =
(
q

p

)
pNpτp−1 . (2.25)
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For q = p = 2 this reduces to

R2(2) = 2N2τ , (2.26)

as for the twofold chance coincidence rate. If the counter efficiency is high
it is advisable to use a coincidence level with p not much smaller than q
to reduce the chance coincidence rate.

2.5 Efficiencies

A very important characteristic of each detector is its efficiency, that is,
the probability that a particle which passes through the detector is also
seen by it. This efficiency ε can vary considerably depending on the type of
detector and radiation. For example, γ rays are measured in gas counters
with probabilities on the order of a per cent, whereas charged particles in
scintillation counters or gas detectors are seen with a probability of 100%.
Neutrinos can only be recorded with extremely low probabilities (≈ 10−18

for MeV neutrinos in a massive detector).
In general, efficiency and resolution of a detector are strongly corre-

lated. Therefore one has to find an optimum for these two quantities also
under consideration of possible backgrounds. If, for example, in an exper-
iment with an energy-loss, Cherenkov, or transition-radiation detector a
pion–kaon separation is aimed at, this can in principle be achieved with
a low misidentification probability. However, for a small misidentification
probability one has to cut into the distribution to get rid of the unwanted
particle species. This inevitably results in a low efficiency: one cannot have
both high efficiency and high two-particle resolution at the same time (see
Chaps. 9 and 13).

The efficiency of a detector can be measured in a simple experiment
(Fig. 2.5). The detector whose unknown efficiency ε has to be determined
is placed between two trigger counters with efficiencies ε1 and ε2; one must
make sure that particles which fulfil the trigger requirement, which in this
case is a twofold coincidence, also pass through the sensitive volume of
the detector under investigation.

The twofold coincidence rate is R2 = ε1 ·ε2 ·N , where N is the number of
particles passing through the detector array. Together with the threefold
coincidence rate R3 = ε1 ·ε2 ·ε·N , the efficiency of the detector in question
is obtained as

ε =
R3

R2
. (2.27)

If one wants to determine the error on the efficiency ε one has to con-
sider that R2 and R3 are correlated and that we are dealing in this case
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trigger 1

trigger 2

particle

detector

ε1 R2

R3ε

ε2

Fig. 2.5. A simple experiment for the determination of the efficiency of a
detector.

with Bernoulli statistics. Therefore, the absolute error on the threefold
coincidence rate is given by, see Eq. (2.12),

σR3 =
√
R2 · ε(1 − ε) , (2.28)

and the relative error of the threefold coincidence rate, normalised to the
number of triggers R2, is

σR3

R2
=

√
ε(1 − ε)
R2

. (2.29)

If the efficiency is small (R3 � R2, ε � 1), Eq. (2.28) reduces to

σR3 ≈
√
R3 . (2.30)

In case of a high efficiency (R3 ≈ R2, 1 − ε � 1, i.e. ε ≈ 1) the error can
be approximated by

σR3 ≈
√
R2 −R3 . (2.31)

In these extreme cases Poisson-like errors can be used as an approxima-
tion.

If an experimental setup consists of n detector stations, frequently only
a majority coincidence is asked for, i.e., one would like to know the effi-
ciency that k or more out of the n installed detectors have seen a signal. If
the single detector efficiency is given by ε, the efficiency for the majority
coincidence, εM, is worked out to be

εM = εk(1 − ε)n−k

(
n

k

)
+ εk+1(1 − ε)n−(k+1)

(
n

k + 1

)
+ · · ·

+ εn−1(1 − ε)
(

n

n− 1

)
+ εn . (2.32)
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The first term is motivated as follows: to have exactly k detectors efficient
one gets the efficiency εk, but in addition the other (n− k) detectors are
inefficient leading to (1 − ε)n−k. However, there are

(
n
k

)
possibilities to

pick k counters out of n stations. Hence the product of multiplicities
is multiplied by this number. The other terms can be understood along
similar arguments.

The efficiency of a detector normally also depends on the point where
the particle has passed through the detector (homogeneity, uniformity),
on the angle of incidence (isotropy), and on the time delay with respect
to the trigger.

In many applications of detectors it is necessary to record many par-
ticles at the same time. For this reason, the multiparticle efficiency is
also of importance. The multiparticle efficiency can be defined as the
probability that exactly N particles are registered if N particles have
simultaneously passed through the detector. For normal spark chambers
the multitrack efficiency defined this way decreases rapidly with increas-
ing N , while for scintillation counters it will probably vary very little with
N . The multiparticle efficiency for drift chambers can also be affected by
the way the readout is done (‘single hit’ where only one track is recorded
or ‘multiple hit’ where many tracks (up to a preselected maximum) can be
analysed).

In modern tracking systems (e.g. time-projection chambers) the mul-
titrack efficiency is very high. This is also necessary if many particles
in jets must be resolved and properly reconstructed, so that the invari-
ant mass of the particle that has initiated the jet can be correctly
worked out. In time-projection chambers in heavy-ion experiments as
many as 1000 tracks must be reconstructed to allow for an adequate
event interpretation. Figure 2.6 shows the final state of a head-on col-
lision of two gold nuclei at a centre-of-mass energy of 130 GeV in the
time-projection chamber of the STAR experiment [11]. Within these
dense particle bundles also decays of short-lived particles must be identi-
fied. This is in particular also true for tracking detectors at the Large
Hadron Collider (LHC), where a good multitrack reconstruction effi-
ciency is essential so that rare and interesting events (like the Higgs
production and decay) are not missed. The event shown in Fig. 2.6,
however, is a little misleading in the sense that it represents a two-
dimensional projection of a three-dimensional event. Overlapping tracks
in this projection might be well separated in space thereby allowing track
reconstruction.

The multitrack efficiency in such an environment can, however, be influ-
enced by problems of occupancy. If the density of particle tracks is getting
too high – this will for sure occur in tracking devices close to the inter-
action point – different tracks may occupy the same readout element. If
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Fig. 2.6. A reconstructed Au + Au collision in the STAR time-projection
chamber at a centre-of-mass energy of 130 GeV [11].

the two-track resolution of a detector is denoted by Δx, and two parti-
cles or more have mutual distances less than Δx, track coordinates will
be lost, which will eventually lead to a problem in track reconstruction
efficiency if too many coordinates are affected by this limitation. This can
only be alleviated if the pixel size for a readout segment is decreased.
This implies an increased number of readout channels associated with
higher costs. For inner trackers at high-luminosity colliders the question
of occupancy is definitely an issue.

Event-reconstruction capabilities might also suffer from the deterio-
ration of detector properties in harsh radiation environments (ageing).
A limited radiation hardness can lead to gain losses in wire chambers,
increase in dark currents in semiconductor counters, or reduction of trans-
parency for scintillation or Cherenkov counters. Other factors limiting the
performance are, for example, related to events overlapping in time. Also
a possible gain drift due to temperature or pressure variation must be kept
under control. This requires an on-line monitoring of the relevant detec-
tor parameters which includes a measurement of ambient conditions and
the possibility of on-line calibration by the injection of standard pulses
into the readout system or using known and well-understood processes to
monitor the stability of the whole detector system (slow control).
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2.6 Problems

2.1 The thickness of an aluminium plate, x, is to be determined by the
absorption of 137Cs γ rays. The count rate N in the presence of
the aluminium plate is 400 per 10 seconds, and without absorber
it is 576 in 10 seconds. The mass attenuation coefficient for Al is
μ/� = (0.07 ± 0.01) (g/cm2)−1. Calculate the thickness of the foil
and the total error.

2.2 Assume that in an experiment at the LHC one expects to measure
10 neutral Higgs particles of mass 115 GeV/c2 in hundred days of
running. Use the Poisson statistics to determine the probability of
detecting

5 Higgs particles in 100 days,
2 particles in 10 days,
no Higgs particle in 100 days.

2.3 A pointlike radioactive γ-ray source leads to a count rate of R1 =
90 000 per second in a GM counter at a distance of d1 = 10 cm. At
d2 = 30 cm one gets R2 = 50 000 per second. What is the dead time
of the GM counter, if absorption effects in the air can be neglected?
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