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ABSTRACT. The prediction of run-up and run-out of dry-flowing avalanches is
very important for land-use planning, design of run-out zone defenses and construction
of risk maps in avalanche terrain. In this paper, we present a numerical dynamics
model to predict the stop poesition of the tip of these avalanches when friction

coeflicients (internal and external

. initial flow depth and incoming speed are specified

for known path geometry in the run-out zone. We also compare our model to that in
the Swiss guidelines and to field examples. The results of these calculations clearly
define model differences and the implications of different choices of friction coefficients.

INTRODUCTION

Flowing avalanches (see Fig. 1) are those with a dense

core of granular flowing snow at the base, usually with

flow depth of one to several meters. Calculations of

avalanche run-up for flowing avalanches are very
important for the design of defenses to slow down or
stop the avalanche debris core, and the problem is
strongly related to calculations of run-out distances using
dynamic methods.

In this paper, a practical method is introduced for
calculating run-up and run-out, using avalanche-dyn-
amics principles. The model is compared to a related
model used in Switzerland which is desienated as the
present, standard Swiss guidelines (Salm and others, 1990
for avalanche-dynamics calculations in run-out zones. The
results illustrate important differences in the mathematical
and philosophical principles used in estimating stopping
distances ol avalanches from dynamics principles. The
differences are illustrated using field-documented examples

Fig. 1. Flowing avalanche enveloped in a turbulent dust cloud engaged in run-up on the side of a mountain.
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of avalanche run-up and run-out and theoretical compar-
isons using identical model parameters.

The focus of our paper is a simple, practical method
for run-up or run-out prediction similar to that proposed
in the Swiss guidelines (Salm and others, 1990). Thus, our
work is intended to apply to only one, small but
important, part of the avalanche-dynamics problem.
Specifically, we provide a simple theoretical ramework
from which it is possible to calculate run-up or run-out for
avalanches containing dry snow, provided that the
friction coellicients (including internal [riction), [low
depth of material approaching the run-up or run-out
slope, and slope geometry are known.

We do not address here the important question of how
to estimate incoming speeds and friction coeflicients. We
do, however, provide our prescription of how [riction
coefficients enter the run-up (or run-out) dynamics
problem, since our view differs from the somewhat
traditional one expressed in the Swiss guidelines. Due to
the complexity of the avalanche-dynamics problem and
the simplifications introduced for one-dimensional mot-
ion, it probably is not yet possible to say definitely which
view of this important question is most nearly correct.
Our comparisons with field examples do not completely
resolve this issue: high uncertainty remains with respect to
friction-parameter input.

FLOW AND BOUNDARY CONDITIONS

We consider first a model for run-up and run-out
calculations based upon solution of the dynamic-equili-
brium equations and continuity proposed by Hungr and
McClung (1987) and modeling at slope transitions
proposed by Takahashi and Yoshida (1979) and Taka-
hashi (1991) for the related problem of debris-flow
dynamics. The model is a depth-averaged, one-dimen-
sional formulation with constant densities assumed within,
p. and at the top of the core py, of the flowing avalanche,

In order to develop a practical dynamics model relevant
to run-up (and run-out) problems, it is very important to
begin from a realistic physical picture of the avalanche-flow
conditions. Since, in reality, the processes involved are very
complex, it would be very diflicult to model them in great
detail. One must, then, rely on a proper interpretation of
the trends in the processes involved to arrive at a model
with the correct form of boundary conditions. The
boundary conditions will be crucial for determining the
dynamic behavior of snow avalanches.

Direct observations of the flow conditions inside
avalanches are very rare and the information available
is not very precise. We are concerned here with physical
modeling of the conditions at the top and bottom of the
flowing snow as well as with the internal friction between
snow particles. Observations, measurements of flow
conditions and avalanche impact pressures indicate that
the core of flowing avalanches is a dense granular
material (McClung and Schaerer, 1985, 1993; Gubler
and others, 1986; Salm, 1993). By “dense”, we mean that
the concentration of solid material (volume fraction filled
by solid material) is high enough that the probability of
frequent collisions between particles is high during all
stages ol the flow. However, during run-out and run-up
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there will also be considerable rubbing f{riction between
the particles as they become close enough for enduring
particle contact. In the final stage, locking takes place and
static [riction is approached. The volume fraction filled by
solids has not been precisely measured in run-up and run-
out problems. However, back calculations by MecClung
and Schaerer (1985) vielded estimates of 30-50% solids
concentration within the flow for measurement in the
wrack (or transport zone) helore significant deceleration
and run-out deposition took place. These measurements
were taken just above the ground surface but are not
precise enough to give estimates relevant to the crucial
boundary condition at the bottom, In general, we expect
the volume concentration of solids to increase from the
top to the bottom of a flowing avalanche.

If the estimates of solids concentration from impact
data are reasonable. very important implications arise
with respect to run-up and run-out problems. In the final
stages of motion, we may expect the solids concentration
to be even higher than the 30-50% range measured in the
track. Gubler and others (1986) estimated from precise
radar measurements that the flowing material shows
concentrated shearing deformation at the bottom with
very little internal shearing in the main body of the flow
(Salm, 1993). This information is consistent with the
picture that the relevant volume concentration of solids is
high for run-up and run-out problems, with perhaps a
slightly reduced value within the zone of active shearing
at the bottom.

Observations of actual dry deposits from large
avalanches show that particle size decreases rapidly with
depth into the deposit. Particle sizes at the surface are
typically in the range 1-10 cm, but deeper in the deposit
particles are of much smaller sizes down to the millimeter
scale, These observations show that there have been
intense interactions (collisions) between particles and
with the sliding surface at some stages of their travel down
the mountain. Again, the indication is that the low musi
be considered dense: the collision mean free path is
smaller than the distance between the particles. In
addition, since the density of the fluid (air) is at least
10 °-10 * that of the particles, these two trends (low fluid
density and high volume concentration ol particles) mean
that we expect momentum transfer to be due to particle
collisions and rubbing friction between particles, with the
fluid ignored in the mechanical description. This is
particularly likely to be true in run-up and run-out
problems dealing with the final stages of motion.
McClung (1990) has discussed this physical condition
extensively.

For run-up and run-out, then, we consider the motion
of a dense core of material with lower-density material
suspended in turbulent eddies around the upper surface of
the core. Takahashi (1991) took the bold step of un-
coupling turbulent fluid processes and particle-particle-
collision and rubbing-friction effects to enable the basal
shear resistance to be written as the sum of two terms. In
what follows, we adopt Takahashi’s strategy initially, but
in the final formulation of our model we do not retain the
uncoupled form to express the motion resistance at the
upper and lower boundaries. The assumption that the
hasal shear resistance can be written as a sum (Equation
(1) below) has been traditional in avalanche-dynamics
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formulations since Voellmy (1933) and Salm (1966).
Since the Swiss guidelines essentially contain this
assumption, it is retained here initially, but it is not
contained in our model. At the bottom of the flow, then,
we take the downslope resistance, 7, to motion as the sum
of two terms:

= 24 (1)

where T is resistance due to particle interaction with the
sliding surface and adjacent particles within the low, and
7 is turbulent friction generated by any turbulence
within the interstitial air at the base of the flow. For the
dense flow at the base of the flow, however, we assume
that 7/ < T". This is because the high density (volume
fraction) ol particles at the base of the flow will prevent
turbulence from forming within the interstitial air.
Furthermore, we assume (Dent, 1986, 1993; McClung,
1990 that bottom [riction (due to collisions and rubbing)
is coupled to the normal stress provided by the
overburden ol material by a dynamic coefficient of
friction, g, which may in general depend on rate of
shearing and volume fraction as well as roughness and
condition of the sliding surface. Basal drag will always be
dominant in run-out and run-up, with drag at the top of
the flow often being negligihle. We then adopt a dynamic
Coulomb-type relaton

m, = ppgh cos (2)

for our definition of basal resistance. In Equation (2), pis
depth-averaged density, /i is mean flow depth along the
run-up (or run-out) slope and i is slope angle. We later
derive an approximate expression for h and replace it by
the expected mean deposition depth in the run-out zone.
Dent (1993) shows examples of how g may vary with
speed. particle-restitution  coefficient and inter-particle
friction for dense. rapidly sheared granular materials.

At the top of the core, we envision resistance to motion
being represented by turbulent drag due to air/snow dust
by representing the upper surface of the flow. If one
adopts "T'akahashi’s strategy. an equation analogous to
Equation (2) can be written for the top of the flow, but in
this case T"is negligible and 7 is of primary importance.
The upper surface of the core presents a rough surface
which generates friction as the avalanche is transported
along the incline with speed. . The upper surface of the
core is envisioned as consisting of a rough surface with
saltating particles at the top immersed in a snow-dust and
air mixture suspended in turbulent eddies. The drag at
the top of the flow is represented as:

1 ;
7 = = pCpt? (3)

where py is density of the snow-dust-air mixture and is
about 10kgm * (MeClung, 1990) and Cp is a drag
cocfficient for turbulent flow over a rough upper
periphery of the core. Following McClung (1990), we
estimate that the value of Cp is about 0.01, from
Schlicting (1972). In at least some problems of run-up
and run-out, we believe that the contribution of Equation
(3) to stopping dynamics may often he very small (if not
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negligible). For completeness, however, we will retain
Equation (3) to represent drag at the top of the flow
instead of prescribing a free surface there.

For Equation (2), pis the mean density of material in
the core of the avalanche. Since the mixture there may
consist of snow particles (a mixture of ice and air) and air,
we may write

p=pC+pa(l - C) (4)

for the mixture, where C'is the volume fraction filled by
snow particles, pg is the density of snow particles, and py
is the air density. With €' in the range 0.30-0.50, as
estimated by McClung and Schaerer (1985), and with P
in the range 200-500kgm * (McClung and Schaerer,
1993) and ps = I kgm * (density of air), pis in the range
of about 100-300kgm °, or at least ten times pr. the
density at the top of the flow. At the bottom of the flow,
due to destructive collisions. it is possible that the particles
consist of millimeter-size individual ice grains (917 kg
m %), and the flow density may be as high as 450 kg m °.
In the interior of the flow, it may be necessary to
account for internal friction between snow particles in
run-up and run-out problems. Salm (1993) points out
that internal shearing is only possible if the internal
friction angle ¢ is less than the slope angle in first
approximation. Since run-up and run-out problems are,
[rom field observations, those in the last stages of motion
in which at least some of the material is “locked” or not
undergoing rapid shearing, we must have a mechanism to
account for the internal resistance in the flow mechanics.
Salm (1966, 1993) proposes that allowance he made for
passive snow pressure analogous to passive earth pressure
for the compressive states of stress expected in run-up and
run-out problems. The longitudinal passive snow pressure
(per unit width) may be represented as (Craig, 1988):

1 2 ,
@y = = pgkpho™ cos iy (5)
2

where (¢ is internal friction angle)

cos iy + v/ cos? iy — cos? ¢

o = Yy

cos Uy — v/ cos? iy — cos? ¢

k=1 o< y. (6)

In Equation (6), cohesion is ignored, and hg and
represent flow depth and slope angle on entering the run-
out zone, respectively. For ¢ < 1)y, Equation (5) reduces
to the fluid analogy introduced by Hungr and McClung
(1987) for which k, = 1. For g = 0°, Equation (6)
reduces to the expression given by Salm (1993). There is
considerable uncertainty with respect to the role of
passive snow pressure in avalanche dynamics. Since the
constitutive equation for flowing snow is unknown, our
formulation takes the simplest possible form by specifying
a constant internal friction angle. Below we discuss some
preliminary suggestions for a rough determination of ¢
based upon Salm’s (1993) discussion and our own
observations. Salm and others (1990) and Salm (1993)
estimate for run-out zones based upon avalanche deposits
that ¢ is about 25°. This estimate (¢ = 257%) is recom-
mended in the Swiss guidelines (Salm and others, 1990).
and we shall also retain this estimate for run-up and run-
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out problems. With ¢ = 25" and ¢y =07, Equation (6)
gives k, = 2.5. Equation (6) with ¢ = 25 predicts that
locking in the flow will begin at slope angles ol about 257
Thus passive snow pressure will begin to become a factor
in run-up and run-out problems for slope angles less than
95°, if ¢ is taken as 25°. This seems to be reasonable as a
rough estimate, as speeds in large, dry avalanches are
usually beginning a decelerating phase for such slope
angles (Gubler and others, 1986), and the {lowing snow
should be entering a compressive phase.

Evidence from avalanche deposits (described above)
shows that particle sizes decrease rapidly below  the

surface of deposits to produce a uniform distribution of

particles of small size. This indicates that shearing
deformations and intense destructive collisions of partic-
les have taken place through the depth of the flow at some
stages of motion. Salm (1993) points out that ¢ has never
been estimated in flowing snow. Static values for ¢ are
estimated by McClung (1987) in the range 50-60; such
values may be reasonable for deposited snow, but here we
provide estimates during run-up and run-out for which
we believe the static estimates (50-607) would be too
high. Physically, &, then depends on flow conditions and
state of stress, but for our practical work we estimate it by
choosing a reasonable value for ¢ and then incorporate
geometric effects using Equations (3) and (6). Iield
estimates of impact pressures in the transport zone (track)
by McClung and Schaerer (1985) show that pressures in
large, dry avalanches have a highly fluctuating compon-
ent for a slope angle of 31°. These measurements indicate
that the material is not in a completely locked state until
lower slope angles are encountered in the deposition zone.
These observations make it reasonable that passive snow
pressure begins to take eflect as the mass approaches the
deposition zone consistent with a value for ¢ near 25°. We
recommend adopting an angle, ¢, with an approximate
value intermediate between 07 (no [riction) and 50-60
(static value from in situ tests) to describe flowing snow in
the final stages of run-up or run-out. Accordingly, we
have chosen ¢ = 257, consistent with the Swiss guidelines
(Salm and others, 1990).

LEADING-EDGE THEORETICAL MODEL

For run-up and run-out, we adopt a one-dimensional
model to calculate the position of the leading edge of the

avalanche, with quantities averaged through the depth of

the flowing snow measured perpendicular to the surface
over which the avalanche is flowing. We consider the flow
as incompressible so that the density of material in the
body of the flowing snow is assumed constant. We also
assume that the discharge per unit width, @ (m2s™), is
constant throughout run-up or run-out. The assumption
of constant ( is a very rough approximation. Consistent
with the background material above, the resistive forces
are a dynamic Coulomb friction force at the bottom of the
avalanche (Equation (2)) and a turbulent resistive force
at the top and around the upper periphery of the
avalanche body (Equation (3)). Note that our boundary-
condition formulations do not require the assumption
implied by Equation (1) of decoupling the stress terms,
even though this assumption is rooted in most avalanche-
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dynamics models since Voellmy’s (1955).

Considering the problem of run-up, following Hungr
and McClung (1987) and Takahashi (1991). we express
Newton's second law (see Figure 2 for the geometry) as:

d(phvx)

al =Ti+T+T3+T3+T5. (7)

Fig. 2. Schematic of [lowing-avalanche run-ufi on an
adverse slope; (a) lumped-mass or centre-of-mass model,
(b) leading-edge model.

The quantities are expressed as force per unit width of the
flow, and terms T7-T5 are driving and resistive forces
affecting motion, i is mean flow depth along the run-out
slope, and z is distance along the run-out slope measured
from zero at the beginning of the run-out slope. Terms
T\ T arve given below (force per unit width); of these, T3
and Ty are always resistive terms.

T, Driving force pghz sin )

Ty Momentum flux phovo® cos(1y — 1) approaching the
run-out or run-up slope, where g, vo and hg are
initial slope angle, speed and flow depth, respectively
Dynamic Coulomb resistive force (at the bottom)
—ppgha cos

Turbulent resistive force (at the top) —%ptcn‘vz

T

i

s

Passive s s stdsRine S L 50t EA. ey il
ASSIVEe SNoOwW 'pl essure force term 5 Pghg D COs U
cos(n — ).

Equation (7) is derived for a very general momentum
principle for constant supply to the flow. The momentum
flux term T is calculated as the incoming mass flux (per
unit width) times the incoming velocity, with the velocity
taken as the mean value through the depth of flow. It
represents the discharge (or supply) of momentum to the
run-out or run-up slope. See Appendix B for an
explanation of this term.

By analogy to fluid dynamics, we assume supercritical
flow at the beginning of the run-out slope so that
conditions upstream are not influenced. Typical speeds
and flow depths for avalanches indicate this is a good
assumption. The other terms on the righthand side of
Equation (7) come from the sum of all the forces acting on
the flowing avalanche mass, including gravity, friction at
the top and bottom and internal, passive snow pressure.
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These formulae differ from Hungr and MeClung's
(1987) for terms T) and T5. In T, we assume here that
turbulent resistive force acts only at the top and upper
surface, not the bottom, of the avalanche. In 75, we have
included friction between the snow particles (for & > 1)
as expressed in Equation (6). In order to solve for the run-
out or run-up distance, we solve Equation (7) for the
distance, x. when v =0 with the initial condition that
t=0 when o =0. In our formulation, slope angles
(10, 1y) are taken positive if the slope is downward from
horizontal and negative it upward (adverse slopes). In
Equation (7), ¢ is taken positive on the approach slope
and negative on run-up slope (or for adverse slopes in
run-out). In addition, we must invoke the depth-
averaged, integrated continuity equation so that mass is
conserved:

]i.l‘ = h(]‘l-‘[]f . (8)

The derivation of Equation (8) requires the assumption of
constant mean dynamic low depth, A, in the run-up (or
run-out) zone.

Rearrangement of Equation (7) gives:

d

a(uf) = —Gyt + V — Dyv’t (9)

where Gy = g(picosth — sin o))

V = wycos(thy — )| 1 ST (10)
i
with
L{p\Cp
Dy==-[—=|—. 1}
v =317/ (11)

On the run-up or run-out slope we seck a numerical
solution of Equations (8) and (9) for v as a function of
time. The run-up or run-out distance is then given by the
mtegral of v from ¢ = 0 until t = . the time taken on the
run-up slope until the front of the avalanche stops. It is of
interest to compare the two resistance terms Gyt and
Dyv?t for a run-up slope. The ratio of these terms is:
Cr'”/D..r’2 where, on the adverse run-up slope, Gy is
represented by g(sin || + pcos [¥]). i.e. ¥ is negative.

Typical values for Dy result from (McClung. 1990)
pi/p=0.1, h=3m, Cp = 0.0] and in run-up problems.
If = 30", p= 0.3, and v = 20ms ', the ratio becomes
Go/Dyv* = 112. For our model, therefore, in some cases
of practical interest, the term Dyv*f may be ignored in

run-up (and run-out) problems, and drag may be
attributed to dynamic Coulomb drag at the base of the
avalanche. When the term Dyv?t is ignored, an’ analytical
solution is available and the run-out distance is

12 .
Xp=— (12)
Gy
and the run-up height is
H=——siny. (13)
G
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Following Salm (1993), we derive an approximate
expression lor the mean deposition depth on the run-up
{or run-out) slope. Neglecting the turbulent term, the
solution for the speed along the deceleration slope is:

g = \/G_U(XH — .‘1.‘)- :

(14)

For an approximate mean {low depth in the run-up (or
run-out) zone, we assume from conservation of mass,
following Salm (1993), a constant supply of mass per unit
width entering into the run-up (or run-out) zone until the
tip comes to rest. The balance for the flux of material (per
unit width) is:

Q = Hi= h(]l'” (15)

where h is instantancous flow depth during run-out.
Equation (15) is written for one-dimensional motion,
and if the approximations dh/dz <1 and constant
density are assumed, simplification results, Integration
of Equation (13) all along the deposition zone, with h = h
taken as constant, gives the mean deposition-zone depth

(Salm, 1993):
T hyvg

&
In Equation (16), quantities with a bar (v) are averaged
along the length of the run-up or run-out zone.
Integration ol

Equation (14) (assuming neglect of

turbulent drag) gives:

3
h o~ —
)

hovg

v

(17)

where V' is given by Equation (10). With neglect of
passive snow pressure and the slope-angle momentum
correction (cos(vy — 1) — 1), Equation (17) predicts
that h is about 1.50.

When slope-angle momentum correction is important
(such as in run-up), Equation (17) predicts that i can be
as high as 3hy. Field measurements show that this
approximate range of values (1.5 to 3hy) is reason-
able. The approximations and one-dimensional character
of’ Equation (17) mean that only rough estimates are
provided. In problems for which turbulent drag is im-
portant, the estimate in Equation (17) could be revised by
numerical integration to derive the speed estimate
analogous to Equation (14) which is given for neglect of
turbulent drag. However, since Equation (17) is only a
rough estimate, and since we expect turbulent drag to be
small in many run-up and run-out problems, this added
sophistication is probably unnecessary. Following Salm
(1993), for practical problems we now replace h in our
theoretical model with h given by Equation (17). This
assumption is equivalent to taking the mean deposition
depth as our estimate of the mean flow depth in the run-
out or run-up zone.

Equation (17) provides only an approximate estimate
(e.g. Salm, 1993): dynamic dependence on {low-depth
changes and turbulence during run-out are ignored and
constant discharge is assumed, In reality, input discharge is
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expected to decrease from a certain time after the passage
of the avalanche front. Since deceleration and deposition
processes relate to non-equilibrium states, an expression
like Equation (17), derived from idealized simplifications,
is only a rough estimate. Avalanche-flow height variations
and deposition depth often display two- and three-
dimensional effects, not included in Equation (17).

LUMPED-MASS MODELS

Models containing the assumption that motion may be
described by the centre of mass of the avalanche have
been the most popular for run-up and run-out problems,
The models of Voellmy (1955), Salm (1979), Perla and
others (1980) and Salm and others (1990) are mathemat-
ically equivalent to motion description as if the avalanche
mass were concentrated at a point at the centre of mass.
The model of McClung (1990) is also a centre-of-mass
model but is intended only for speed estimates, not run-
out estimates. Lumped-mass models have two disadvan-
tages in run-up and run-out problems:

(1) Since motion description is with respect to the centre
of mass instead of the tip of the avalanche, such
models predict shorter run-up or run-out (Hungr and
McClung, 1987; Chu and others, 1995) if the same
friction coeflicients are used.

(2) It is not possible to include passive snow pressure
explicitly in the run-up or run-out formulation since
only external forces can be specified in a point-mass
model.

Salm (1979), Perla and others (1980) and McClung
(1990) have derived the differential equation for the
lumped-mass models analogous to Equation (9):

1dv?
2 ds

= —GU = D()‘Uz. . (18)

In Equation (18), ds is an element of path length along
the incline. For the simple geometry of Figure 2. we
assume, [ollowing Perla and others (1980), that only the
slope-parallel component of velocity is transferred on to
the run-up or run-out slope: vy — vy cos(1yy — 10) when iy
is greater than . The solution to Equation (18) is then
(e.g. Salm, 1979; Perla and others, 1980):

‘U.2 = (’U(] COS('U:‘U = i'f}))g 3 VI]2 e—ZD,,.‘r il VEJ:Z (19)

where V% = Gly/Dy. Equation (19) is mathematically
equivalent to speed estimates in the Swiss guidelines
(Salm, 1993) except that the Swiss guidelines do not
account [or the momentum loss at slope transitions
when the slope angle decreases (it is assumed that
(cos(vg — ) — 1)). Also, in the guidelines, the
parameter Dy is envisioned as accounting for turbulent
drag at the base of the flow instead of at the top of the
flow as we envision it. Appendix A explains the relation
between Doh and its alternative representation in the
Swiss guidelines (g/€) for our model and the Swiss
guidelines. With the substitutions, Dy :g/fl{ (Swiss
guidelines) instead of
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1 Pr) Cp (f)) ]
Dy =—-|=)—= (ourmodel), £ — 2| — | =—
=3 (2) 2 ¢ . e—2(2) 2

and cos(ty — ) — 1, the speed equations of the Swiss
guidelines are recovered.

The solution to Equaton (18) for the run-out distance
1s:

i
xn = In{1 20
% 2Dy 5 ( ¥ Vo2 i

For the run-up height, we get (¢ is taken negative)

sin vg? cos® (g — )
H =" o 1 a—— AL ) 21
2D, ( Vo2 (21)

vg? cos® (2 — t.-"))

With the substitutions above, cos(ty —1)— 1 and
Dy :g/gfﬁ. Equation (20) is identical to that given for
run-out distance in the guidelines (Salm, 1993). Using
L’'Hospital’s rule, in the limit as 2y — 0 (neglect of
turbulent drag), Equation (20) reduces to

_ l?-’u! cos® (g — v)

X =
g Gy

For run-up, we take ) negative in G, and the run-up
height is:
2 Dy i
vy cos™ (Yo — 1)

H = Tsin i (23)

Equations (22) and (23) may be compared to Equations
(12) and (13) for the leading front model. If passive snow
pressure is neglected, Equations (12) and (13) predict
exactly twice the run-out or run-up. This comparison
shows a fundamental difference between the models: the
leading-edge model always predicts longer run-up or run-
out if the same incoming speed and friction coeflicients
are used, because it simulates the motion of the tip of the
avalanche (instead of the centre of mass) and because it
contains passive snow pressure explicitly. Hungr and
McClung (1987) have emphasised these differences
previously. In addition to a different momentum
formulation, the Swiss guidelines (Salm and others,
1990; Salm, 1993) contain no provision for momentum
loss as slope angle decreases. Experimental data from
small-scale experiments on granular flows show that the
correction, vy — vy cos(yy — 1), is important in run-up
(Chu and others, 1995).

To compare solutions for the leading-edge model and
the centre-of-mass approach for cases in which turbulent
drag is important, the numerical solution to Equations
(7), (8) and (17) may be compared to Equations (20) and
(21). To complete the model for the Swiss guidelines
(Salm and others, 1990; Salm, 1993) it is necessary (o
introduce the mean run-out zone deposition depth
analogous to Equation (17) for our model. Salm (1993)
gives the expression from the Swiss guidelines from an
engineering hydraulics argument:

v’

h=ho+ 0 (24)
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2 . —
where A = tan®(45° 4+ ¢/2). This can be related to our
expression for passive snow pressure by substitution:
A = kpeosyy with ¢y = 0° In other words, cosiy is

explicitly taken as 1 in the Swiss guidelines instead of

accounting for the multiplier cos vy as is usual in passive-
pressure theory (Craig, 1988). For comparison between
the leading-edge and lumped-mass models in the next
section, we shall specify a value lor @ to achieve the same
assumptions.

For run-up estimates, the guidelines (Salm and others,
1990) simply specily:

)
tn”
H = hgel——r (25)
2g\
for an approximate estimate of run-up from analogy to
engineering hydraulics,

MODEL COMPARISONS AND FIELD EXAMPLES

In order to caleulate run-out or run-up from our model or
the Swiss guidelines, one must have estimates of vy, hy. g,
o, and Dy (our model) or £ (Swiss guidelines). In
addition, the geometry must be known (¢ and v0). Field
examples in which all of these parameters are known
accurately ave virtually non-existent; one must always rely
on theoretical estimates for the parameters to some extent.
In this section, we compare the models theoretically by
using the same geometry and parameter estimates with vy
varying, and we also attempt comparison for field
examples in which at least the incoming speed, v, is
measured and path geometry is known.

(i) Model comparison

Figure 3 shows model comparisons for run-out with the
same input parameters: i = 257, ¢ = 87, ¢ = 253° with
input flow depth (0.5-2.5m) and approach speed (15

35ms ) varied. For this example, we have used [riction
parameters specified by Salm (1993), p = 0.135, £ =
1000ms °, and equivalent to suggestions in the Swiss
guidelines for large avalanches. The results show that the
predictions are similar, with the leading-edge maodel
usually  (not always) producing longer (more conser-
vative) run-out for initial flow depths > 1 m. In Figure 3h
the deposition (flow) depths are shown as input to the
calculations of Figure 3a. The run-out distance predic-
tions for the Swiss guidelines are significantly boosted by
assuming very high deposition depths. In the guidelines,
as in our model, the dynamic flow depth is taken constant
during run-out and is equated to mean deposition depth.
Salm (1993) showed that deposition depths predicted by
the Swiss guidelines may be higher than the real ones by a
factor ol about 3. Salm (1993 has noted that the Swiss
guidelines use unrealistically high low depths. If the same
low depths were assumed for both models for the
calculations in Figure 3, the guidelines would predict
much shorter run-out than the leading-edge model
because the guidelines are essentially a centre-of-mass
model (see discussion above). Another difference is that
the leading-edge model accounts for momentum loss at
the slope transition whereas the guidelines do not. This is
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Fig. 3. (a) Run-out predictions for the leading-edge model
(—) and the Swiss guidelines (centve-of-mass model )
(Q) as a function of approach-flow depth (ho) and
approach speed (vy). Caleulations are shown for hg = 0.5,
10, 1.5, 2.0 and 2.5m. (b)) Deposition flaw depths for the
calculalions in (a): g = 25 ¢ =8 .&= 1000 ms %,
W= 0.155, 0= 25,

not wsually very important in run-out problems, but it is
important in run-up (see Chu and others (1995) and the
discussion  below) where the slope-angle transition is
abrupt. For the calculations in Figure 3, turbulent drag is
important and influences the results.

different
[riction parameters than in Figure 3: 4y = 25°, 1 = 8°,
p="03, £= 19620ms ", ¢ = 25°. See Appendix A for
an explanation of the choice of & In this example,
turbulent drag will be small, as we envision for run-out or

Figure 4 shows run-out comparison for

run-up problems. For the results in Fieure 4, the
calculations for the Swiss guidelines are essentially
independent of initial flow depth when initial speed is

specified, because for the guidelines flow depth enters only
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Fig. 4. (a) Run-oul predictions for the leading-edge model
(— ) and the Swiss guidelines (centre-of-mass model)
(Q) as a function of approach-floww depth (ho) and
approach speed (vo). Caleulations are shown for hy = 0.5,
1.0, 1.5. 2.0 and 2.5m. Note that, for the friction
paramelers used, the Swiss guidelines run-out predictions
are independent of initial flow depth if v is specified. ()
Deposition flow depths for the calculations in (a);
Po=25°, »=28°, €=19620ms*, p=0.3,
@= 257

through the turbulent drag term (which is small in this
example). For the results in Figure 4, the Swiss guidelines
predict about hall the run-out of the leading-edge model.
For the leading-edge model, flow-depth dependence
enters explicitly from the passive snow pressure.

Figure 5 shows a comparison of three models for run-
up caleulations with g = 0.155, £ = 1000 ms L =25
iy = 10° and 1 = —30°. Included are: (1) the leading-
edge model; (2) Equation (21) for Swiss guidelines run-
out adapted for an adverse slope (¢ negative), with
cos(yp — 1) — 1 with h predicted by Equation (24); and
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Fig. 5. (a) Run-up height as a function of approach speed
and approach-flow depth. —, leading-edge model; O,
Swiss guidelines (Equation (25)); and [0, Swiss
guidelines run-oul equations for an adverse slope
( Equation (21) with cos(vg —1)) — 1, Dy = g/ff;,
and Equation (24)). Initial flow depths wused are
ho = 0.5, 1.0, 1.5, 2.0 and 2.5m. For all calculations:
Yo = 10°, = —30°, p=0.155, E= 1000ms >, ¢ =
25°. (b) Deposition flow depths for the calculations in
et , leading-edge model; O, Swiss guidelines
(Fquation (24)).

(3) Equation (25) as the recommendation for the Swiss
guidelines. Since the guidelines contain assumptions of
very high flow depths and there is no account of
momentum loss at the slope angle transition, run-up is
boosted to partially make up for higher energy loss in the
centre-of-mass formulation contained in the guidelines.
Figure 5 shows that the Swiss guidelines predict much
lower run-up (Equation (25)). When run-out Equations
(21) and (24) from the guidelines are used on the adverse
slope, the predictions are comparable to the leading-edge
model. This similarity results because cos(iy — ) is
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assumed to be 1 and because very high flow depths are
used in the guidelines. The final results from Equations
(21) and (24) are essentially independent of initial flow
depth for a given initial speed. Again, if the same friction
coeflicients and flow depths were used in the models
(Equations (21) and (24) and Equations (7), (8) and
(17)), the leading-edge model would predict about twice
the run-up (Hungr and McClung, 1987).

Figure 6 gives calculations of Q(m”s ' ): discharge per
unit width as a [unction of incoming speed and mean
deposition depth (m) for three incoming speeds: 15, 25
and 35ms ', For the leading-edge model, Equation (17)
is used, and for the Swiss guidelines Equation (24). Salm
(1993) and H. Gubler (personal communication) have
argued that the guidelines result in use of deposition
depths (taken as a flow depth in dynamics calculations)
which are too high; based on Figure 6, we agree. Again,
when turbulent drag is important, run-out predicted by
the guidelines is dependent on flow depth, and if very high
flow depths are used run-out is increased in a manner that
seems physically unrealistic by this mechanism,

(ii) Field examples

Field example 1: Battleship, Colorado, U.S.A. ( February 1987 )
Figure 7a gives the geometry of an example of avalanche
run-up from the Battleship avalanche (February 1987) in
Colorado, U.S.A. Speed estimates are available from
timing the avalanche between known points on the path,
In partcular, it is estimated that the avalanche had a
speed of about 45ms '
Total run-out along the slope was about 93 m with run-
up height being about 58m. The average slope angle

on entering the run-up segment.

along run-up was -31°; average deposit depth was 1 -5 m.
We estimated the basal friction coeflicient, g, from the
centre-ol-mass model (McClung, 1990) by assuming an
initial flow depth of 2-3m, with p/p= 0.1, and
Cp = 0.01 to give Dgh = 0.0005. With Dyh = 0.0005

McClung and Mears: Dry-flowing avalanche run-up and run-out
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35ms . —, leading-edge model; O, Swiss guidelines.
o= 25, v=8&, Q = why, ¢ =25. Initial flow
depths used are hy = 0.5, 1.0, 1.5, 2.0 and 2.5m.

1 : 8 % F
(m ') we found an approximate value for p by selecting

the value for which the two speed estimates (60ms |
reducing to 45ms ') are matched for the terrain in the
track in betweeen the two estimates. The inital flow
depth was estimated by knowledge of the release volume
(2 x 10" m?), the measured time for the volume to flow
through the lower track and the confined path geometry.
The fracture depth averaged about 1 m, but we estimated
the flow depth to be 2-3 m on entering the run-up slope.
This gave the estimated friction coeflicients of g = 0.32;

Doh = 0.0005 (m") or €= 19620ms ? for use in the
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Fig. 7. (a) Slope profile, speed estimales and run-up_for the Battleship avalanche, February 1987. (b) Slope profile, speed
estimates and run-oul for Mount Pizzac avalanche, January 1994,

https://doi.org/10.3189/50022143000016233 Published online by Cambridge University Press

367


https://doi.org/10.3189/S0022143000016233

Journal of Glaciology

run-up calculations. We assume ¢ =25" to give k, = 1.87.
Model calculations gave: = 0.32; Dy = 0.0005/2.28 =
0.0002 (m '
the same parameters, except g = 3m, we get h=6.8m,

) h=45m (hy = 2m); run-up = 57 m. For

run-up = 58m. In this example. the agreement is very
close to the observed run-up, and we believe it is lortuitous
because of all the uncertainties in parameter estimates and
incoming speeds.

Il we assume Equation (

to represent run-up for
the Swiss guidelines, we estimate (19 = 45 ms ' =25
(A= 2.5), hy=2m) run-up = 43m. For the same
parameters, except by = 3 m, we get run-up = 44nm.

Irom the run-out, equations for the Swiss guidelines
(Equations (21) and (24)) are applied, with =1,
wi= 0.82;¢ = 19620:m:s 2 hy=2o0r3mand A = 2.5; we
get run-up = 67m for both h=2926m (hg=2m) and
h=23.6m (hy=3m).

If we use friction coefficients recommended in the
guidelines and Salm (1993) in Equations (21) and (24),

92

p=0.155, £ = 1000ms =, A=2.5 (¢ = 257) and hy =
2m, we get run-up = 77 m, h = 22.6m. For both sets of
friction coellicients, Lquations (21) and (24) overestimate
run-up because very high flow (mean-deposition) depths
are used in the calculations (much higher than observed)
and because all the momentum is taken to be conserved
on the run-up slope, instead of just the slope-parallel
component. Granular-flow experiments by Chu and
others (1995) show the importance of taking only the
slope-parallel component in run-up problems,

Field example 2: Mount Pizzac, Italy ( January 1994)

Figure 7b shows geometry for the slope profile ahove and
in the run-out zone for Mount Pizzac. The avalanche was
small with a volume of 2000m’ and was triggered by
explosives (Natale and others, 1994). Average slope angle
for 267 m above the last measurement point was 29°. The
estimated speed at the final measurement point was 22
93ms ', and the speed approaching the calibration zone
267 m above the last measurement point was 25 ms ' We
assume Cp=0.01, and pg/fp=0.1,
£=19620ms >, Dyh = 0.0005m ', as in previous
examples. With this assumption about turbulent drag, il
the speed drops from 25 to 22ms ' over the 267 m
interval upslope of the run-out calculation point, we

to give

estimate from our model that g = 0.6, and this estimate

. ¥
along with £€= 19620 ms ~
calculations. To estimate passive pressure, we assume

1s used in the run-out

¢ = 257, and since 1y = 29°, i.e. greater than 25°, we
assume ky, = | (from Equation (6)). Measured flow depth
approaching the run-out zone was | m, and we used this
value for g in our calculations.

With the above inputs, the calculations from our
maodel yield: h=1.5m (maximum flow depth measured
was 2.5m), run-out 190m (if vy = 22ms Y or 207 m (if
vp=23ms ') beyond the last measurement point.
Measured run-out distance was 170 m. For this exam-
ple, the calculated mean (or deposition) low depth is less
than the measured maximum depth. The run-out
distance is overestimated but the differences are well
within the range of uncertainty of the model parameter
inputs. In Appendix B, we offer a partial explanation for
the overestimate: for such a small avalanche the supply
(or discharge) may decrease with time, resulting in

i
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shorter run-out. This example is the only one we have
found for which there are reasonably accurate measure-
ments of speeds, low depths and geometry to enable all
model parameter inputs to be measured.

This avalanche is very small and does not fit the Swiss
guidelines for extreme avalanches. According to the
cuidelines, an extreme avalanche would not stop on a
slope of 197, Our maodel is more general; it can be used to
predict run-out or run-up for even small dry-flowing
avalanches, provided input parameters can be estimated
and the basic assumptions are satisfied as well.

Field examples 3 and 4: Aulta, Switzerland (& and 10 February
1984 )

Salm and Gubler (1985) and Gubler and others (1986)
documented speeds, initial (racture depths, run-out and
path geometry for two avalanches on the Aulta avalanche
path. We have used our model to predict the run-out. For
both avalanches we assume ¢ = 257, and hp = | m (close
to estimated fracture depths). For both avalanches, we
assume £ = 19620ms 7, as in previous comparisons, and
have estimated the friction coeflicient g by using speed-
deceleration information and path geometry in our model
prior to the point at which we begin our run-out cal-
culations. Both examples from Aulta have high uncer-
tainty because neither run-out is well documented. In
addition, the avalanche path has a gully in the final stages
which opens up in the run-out arca. Caution should
therefore be used when taking these examples to support
our model.

Figure 8a shows path geometry, speed estimates and
run-out position for the 8 February avalanche (Gubler
and others, 1994). The speed drops from about 55 to
45ms |
From these data and the assumptions above, we estimate

over a horizontal reach distance of about 480 m.

i = 04. For the run-out (run-up) calculations, we take
e =0°% b= -12°, = 26ms ' When input in our
model, these estimates gave a run-out distance of 110m

Aulta, Switzerland - February 8, 1984

55m.'s
|
| 45 m/s 26 m/s
| ! ‘
\ \
49, | Runout position
Om ‘ 1‘ (90pm)
B e : T
0
Aulta, Switzerland - February 10, 1984
52m/s % g

Runout position

Fig. 8. (a) Slope profile, speed estimates and run-out for
the Aulta avalanche, & February 1984. (b) Slope profile,
speed estimates and run-out for the Aulta avalanche, 10
February 1964.
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which compares favourably with the measured estimate of
about 90 m.

Figure 8h shows path geometry, speed estimates and
run-out position for the 10 February avalanche. The
speed drops from about 52 to 35ms ' over a horizontal
distance of 250m on a slope with mean angle of 18.4°.
With the assumption € = 19620 ms °, from our model,
we estimate u = 0.7, using ¢ = 25°, and hg = 1 m. For
the run-out calculations, we take iy = 18.4°, ¢ = 12°,
These assumptions give: h= 1.5m, run-out = 244 m.
The measured run-out distance is about 260 m (Salm and
Gubler, 1985: Gubler and others, 1986).

SUMMARY

We have presented a method for calculating run-up and
run-out in the deceleration phase of avalanche motion.
Our method applies only to the important but restricted
case in which initial conditions can be estimated:
incoming speed. incoming [low depth, friction coel=
ficients and internal friction. Our method is similar in
spirit to that proposed in the Swiss guidelines (Salm and
others. 1990), but the modelling details differ. Some
differences include:

1) Instead of a centre-of-mass model, as in the Swiss
guidelines, we calculate the stopping position of the tip
of the avalanche by simultaneous solution of the
momentum and continuity equations. The implication
is that, given the same [riction conditions and [low
depth, our model gives longer (and more conser-
vative) run-out. Similar lindings are reported by Salm
(1993) [or another model which takes into account
momentum and continuity: longer run-out is pre-
dicted.

(2) We estimate mean deposition depth (or mean run-out
zone low depth) from supply as proposed by Salm
1993 ). This (approximate) estimate gives reasonable
Tow depths which are uwsed in the calculations.
According to Salm (1993) and H. Gubler (personal
communication), the deposition depths (Equation
(24)) used in the calculations for the Swiss guidelines
from engineering-hydraulics analogy are unrealist-
ically high. The application of these high flow depths
in the guidelines causes increases in run-out to
partially make up for difference (1)

(3) In our model. we are able o input passive snow
pressure directly, and in doing so we have also
accounted for slope-angle dependence. The Swiss
guidelines is a center-of~mass (or lumped-mass)
model, into which only external forces may be input:
there is no way of accounting for passive snow pressure
explicitly, Instead, the Swiss guidelines input passive
snow pressure implicitly through flow-depth depen-
dence using an engineering-hvdraulics argument.
Salm (1993) constructed a model as an alternative
to the Swiss guidelines which did include passive snow
pressure explicitly.

(4) We have introduced slope-angle corrections into our
model to account for momentum losses due to slope-
angle decreases in run-out or run-up (adverse-slope)
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problems. This effect will be most important in run-up
at sharply increasing slope-angle changes. Granular-
flow experiments (Chu and others, 1995) in a {lume
show that this effect is important at sharp slope-angle
transitions. For the run-up example from Battleship,
Colorado, the equations adapted from the Swiss
guidelines (Equations (21) and (24)) produce reason-
able results for two reasons:
(a) momentum loss at the slope-angle transition was
not accounted for;
b) unrealistically high deposition depths are pre-
dicted.
These two effects increase the run-up to compensate
for the fact that the centre-of-mass model will
normally produce lower run-up,

Our limited experience with the run-up Equation (25
proposed in the Swiss guidelines suggests that it may
underestimate run-up. This belief is based on model
comparison as well as the example from the Battleship
avalanche, Colorado. In a previous study (Chu and
others, 1995) for granular flows in a flume, it was shown
that during run-up there is a tendency for material to he
deposited at a sharp slope-angle transition, with max-
imum run-up occurring by material overriding that
trapped at the corner. The implication is that run-up in
very sharp slope-angle transitions may exceed even that
for the leading-edge run-up equations we have proposed
(Chu and others, 1995). Therefore, it is possible that in
some field examples Equation (25) may underestimate
run-up even more than in the Bauldeship example. Our
model does not contain a mechanies formulation
sophisticated enough to be applied when the slope-angle
transition approaches 90", Equation (23] from the Swiss
guidelines contains no explicit slope-angle dependence. Tt
must be kept in mind that the [ormulation we have
proposed here is one-dimensional. Neither it nor that for
the Swiss guidelines is designed to handle the two-
dimensional and three-dimensional features which can be
important in run-out and run-up for real avalanches, A
disadvantage of our formulation compared to the Swiss
guidelines is that, in general, no analytic solutions are
available when turbulent drag is important. Numerical
solutions are easy to obtain, however, and it is likely that
in the future numerical solutions will be required when
two- or three-dimensional aspects of the problem are
incorporated.

We believe that our formulation as applied in this
paper is more suitable [or run-up than run-out, Surely,
the basal friction conditions will change as the avalanche
mass decelerates and stops, which implies that the friction
coellicient g may need to be varied along the run-out
zone (McClung, 1990). Since run-up slope distances are
shorter than run-out distances, basal friction variations
during deposition may not be as serious in run-up. If
theoretical estimates of friction-parameter variations
along the run-out zone were known, it would be easy to
incorporate them in our numerical solution scheme.

Another reason our formulation is more suitable for
run-up than run-out is our assumption of constant
discharge (or supply) in the derivation of the momentum
Equation (7). This assumption is closer to heing satisfied
for run-up or for large avalanches. If the discharge
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decreases with time, the momentum flux (term Tb) would
have to be reduced with time in Equation (7). Such
modification would, however, result in prediction of
shorter run-out distances. Therefore, our assumption of
constant supply (or discharge) instead of decreasing
discharge with time is likely to produce conservative
estimates of run-out, which is usually an advantage in
engineering calculations. See Appendix B for details.

Aside from the modelling differences described above,
our view about the values of the friction coefficients ¢ and
€ (or Dgh) is different from that of Salm and others (1990)
and Salm (1993). We helieve that basal [ricion in run-
out and run-up can be accounted for almost entirely by
the dynamic Coulomb friction coefficient g, with £ (or
Dyh) playing only a role as turbulent friction at the upper
surface of the flowing mass. Our view is conditioned by
the results of Dent (1986, 1993) showing how basal shear
and normal forces can be coupled in a dense, rapidly
deforming granular material such as we envision for
avalanching material in run-out and run-up problems.
The model of McClung (1990) for estimating speeds all
along the incline is also based on the concept that shear
and normal forces are entirely coupled at the lower basal
boundary. Since the basal friction conditions in dry-
flowing avalanches have never been measured, we must
rely at this point on physical principles and models for
information about basal (riction mechanisms. This
uncertainty should not detract from the model we have
presented. If turbulent drag does play a significant role in
basal friction (e.g. Salm, 1993), our model can still be
applied, and indeed we have presented example calcula-
tions in our paper to represent this alternative view.
Regardless of which of these two pictures is most nearly
correct, large-scale roughness features will also play a role
in basal friction (Salm, 1993), and no theoretical model
exists for proper inclusion of this effect.

Salm (1993) showed that the run-out estimates of the
Swiss guidelines are very sensitive to initial flow depth.
His calculations [or the Ariefa avalanche in Switzerland,
for example, showed an increase of 200 m run-out with
an initial flow-depth increase from 0.8 to 1.0m. This
effect is found to some degree in our model as well, but it
is highly dependent on the choice of friction coefficients:
p and Doh (or £) taken for model comparisons. From
Figures 3 and 4, we show that given an initial approach
speed the equations of the Swiss guidelines are essentially
independent of initial flow depth when turbulent drag is
small (Fig. 4) (we believe that turbulent drag should be
small in run-up and run-out). When turbulent drag is
small, our model shows increasing run-out distance with
increasing flow depth (Fig. 4), but the sensitivity is not
large. This flow-depth dependence results because we
are able to input passive snow pressure explicitly. Our
analysis, together with Salm’s example, field observa-
tions and examples such as Battleship, Colorado,
reinforces our beliel that turbulent drag is small in
run-out and run-up. Run-out and run-up should depend
on inital flow depth, but the sensitivity implied in the
models with respect to flow-depth dependence, when
turbulent drag is taken to be significant, seems too great
in our experience.

c
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APPENDIX A
ESTIMATE OF TURBULENT DRAG COEFFICIENT

In our formulation, the quantity Dyh is represented by:

D(,ﬁ—l(’i‘)cu = (A1)
2\ p '3
Solving for & gives:
AW
=2 —)=. A2
: (ﬁl) Cp 2

I p/py =~ 0.1 and il Cp =~ 0.01, calculation gives:

~ 2 ol T . .
£=19620ms °. This result contains the assumption

that turbulent drag acts at the top (upper surface) of

the flow. If p/p; = 1 (turbulent drag is assumed to act at
the hase of the flow only), then €= 1962ms? (or
982ms ? if Cp = 0.02, nearly equivalent to Salm’s
estimate of 1000ms ). Both our model and the prescrip-
tion given by Salm (1993) contain the assumption that
Cp =~ 0.01 to 0.02, which is equivalent to a coeflicient
(Schlicting. 1972) for turbulent flow over a rough
boundary. The important difference between these results
stems from our beliel that for flowing avalanches,
particularly in run-out and run-up problems, turbulent
drag is negligible at the base of the flow. We believe that the
high volume fraction filled by solid materials (up to 50%)
will prevent turbulence from forming in the interstitial air
between the particles and that momentum will be
transferred by particle collisions and rubbing friction.
Due to the large dilference in density between the particles
and the air (ratio 100 to 1000), we believe that the presence
of the air at the base of the flow will play a negligible role in
the mechanics of run-up and run-out problems,

APPENDIX B

MOMENTUM PRINCIPLE APPLIED TO
AVALANCHE DYNAMICS

Following Daugherty and others (1985), we consider an
avalanche mass contained at time t in a control volume
which is fixed in position. At time ¢ + Af, the avalanche
mass has moved to a new position along the run-out or
run-up slope. At time t = 0, the tip of the avalanche mass
is just coincident with the start of the run-out or run-up
slope (see Fig. 9).
Definitions of important quantities are:

(mV), = momentum of entire avalanche mass at
time t

(MY ) = momentum ol entire avalanche mass at
time ¢ + At

(m'V'), = momentum ol avalanche mass within the
control volume at time t

(m'Vr)H_\, = momentum ol avalanche mass within the
control polume at time t + Al

A(mY),, = momentum of avalanche mass that leaves

the control volume during At
A(mV),, = momentum of avalanche mass that enfers
the control during Af.
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"; e T2 Avalanche boundary
% / at time t + At

AR

.
* Avalanche boundary at time t

B
4

Avalanche tip at time t = 0

Fig. 9. Schematic of fixed control volume for momentum
principle at run-out (or run-up) slope.

At time t, by definition, (mV), = (m'V'),. At time £ + At
(shaded portion of Figure 9), the momentum of the entire
avalanche mass is the sum of the momentum within the
control volume at £ + Af, plus the momentum that has
flowed out of the control volume during Af, minus the
momentum that has flowed into the control volume
(unshaded area of Figure 9) during At. This balance may
be written:

(mV),, 5 = (M'V'), 4, + A(mV),,, — A(mV) (B1)

ot in *

Therefore, the change of momentum of the avalanche

mass is:

A(mV) = (mV),, 4, — (mV), . (B2)

Combining these expressions and substituting into New-
ton’s second law, we get:

lim A(mV) d(mV)
) =
Al —0 At dt
(B3)
:d(“'v).nn — d(mV);, 4 (V) — (M'V'),

dt dit

where XF is the vector sum of all forces acting on the
avalanche mass including gravity, drag at the top and
bottom and passi\-‘r‘ SNOW pressure.
Equation (B3) is a perfectly general momentum
principle (Daugherty and others, 1985). It applies for
compressible or incompressible flow, and steady or
unsteady flow. For steady flow, which we assume in this
paper. the momentum balance becomes:
d(mV) d(mV)

YE = ont in
dt d!

(B4)

because the last term of Equation (B3) is zero. Equation
(B4) states that, [or steady flow, the sum of the forces on
the avalanche mass is equal to the net rate of outfllow of
momentum across the original (fixed) control surface.
The second term in Equation (B4) represents  the
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momentum rate or momentum flux into the control
volume from oncoming avalanche material reaching the
beginning of the run-out slope (control volume): it is a
physically necessary force which cannot be neglected.
For our model, we have assumed an incompressible
flow in one dimension and we have implicitly taken the
velocity as the mean value over the face of the control
volume. The rate of momentum transfer into the control
volume (momentum flux) is given by (prodA)vy where
dA is the element of area on the face of the control
volume. The rate of momentum transfer across the entire
area (per unit width) is then po’hg: the second term in
Equation (B4) (see Fig. 2). For a run-up (or adverse)
slope, however, we assume that only the component of
momentum parallel to the slope is effective in pushing the
avalanche mass forward (the force component perpend-

icular to the control-volume face). With respect to Figure
2, this gives pug®hg cos(iby — 1) term T3 in Equation (7).
All the other terms in Equation (7) came [rom the
lelfthand side of Equation (B4): gravity, forces at the top
and bottom and passive snow pressure.

From Equation (B4), if the momentum flux into the
control volume (discharge or supply) decreases with time,
as might happen some time after the passage of the
avalanche front, the momentum rate out of the control
volume also reduces with time. For our model, such a
situation would imply reduced run-out distance. There-
fore, our assumption of constant discharge is a conserva-
tive one from the perspective ol run-out: our calculated
run-out distances may exceed the real ones. It is
important to remember that other uncertain features of
the avalanche-dynamics problem may mask this effect.
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