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A classification of incompleteness
statements
Henry Towsner and James Walsh

Abstract. For which choices of X , Y , Z ∈ {Σ1
1 , Π1

1} does no sufficiently strong X-sound and Y-
definable extension theory prove its own Z-soundness? We give a complete answer, thereby delim-
iting the generalizations of Gödel’s second incompleteness theorem that hold within second-order
arithmetic.

1 Introduction

Gödel’s second incompleteness theorem states that no sufficiently strong consistent
and recursively axiomatized theory proves its own consistency. We give an equivalent
restatement here:

Theorem 1.1 (Gödel) No sufficiently strong Π0
1 -sound and Σ0

1 -definable theory proves
its own Π0

1 -soundness.

A theory is Π0
1 -sound (or, in general, �-sound) if all of its Π0

1 theorems (�
theorems) are true. This notion can be formalized in the axiom systems we consider
(see Definition 2.1).

A recent result [5] lifts Gödel’s theorem to the setting of second-order arithmetic,
where stronger reflection principles are formalizable.

Theorem 1.2 (Walsh) No sufficiently strong Π1
1-sound and Σ1

1-definable theory proves
its own Π1

1-soundness.

Note that this latter theorem applies to all Σ1
1-definable theories and not just to the

narrower class of Σ0
1 -definable theories.

There are three classes of formulas in the statement of Theorem 1.2, leading to eight
variations one could consider, including the original. In this, we consider the other
seven. Table 1 records the truth-values of the statement: No sufficiently strong X-sound
and Y-definable theory proves its own Z-soundness.

To place the ✗s on Table 1, we show how to give appropriately non-standard
definitions of arbitrarily strong sound theories. Theorem 1.2 places the first✓ on the
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2 H. Towsner and J. Walsh

Table 1: Truth values of the statement: No sufficiently strong X-sound and Y-definable theory
proves its own Z-soundness.

X Y Z
✓ Π1

1 Σ1
1 Π1

1
✗ Π1

1 Π1
1 Π1

1
✗ Σ1

1 Π1
1 Π1

1
✗ Π1

1 Σ1
1 Σ1

1
✗ Σ1

1 Σ1
1 Σ1

1
✗ Π1

1 Π1
1 Σ1

1
✗ Σ1

1 Σ1
1 Π1

1
✓ Σ1

1 Π1
1 Σ1

1

table; for this a “sufficiently strong” theory is any extension of Σ1
1-AC0. For the second

✓ a “sufficiently strong” theory is any extension of ATR0.
Both ✓s can be placed on the table via relatively simple reductions to Gödel’s

original second incompleteness theorem. However, in [5], it was emphasized that
the first ✓ (i.e., Theorem 1.2) can be established by a self-reference-free (indeed,
diagonalization-free) proof, which is desirable since applications of self-reference are
a source of opacity. In particular, the first ✓ can be established by attending to the
connection between Π1

1-reflection and central concepts of ordinal analysis. To place
the second✓ on the table, we forge a connection between provable Σ1

1-soundness and
a kind of “pseduo-ordinal analysis.” Whereas Π1

1-soundness provably follows from the
well-foundedness of a theory’s proof-theoretic ordinal, we show that Σ1

1-soundness
provably follows from the statement that a certain canonical ill-founded linear order
lacks hyperarithmetic descending sequences. In this way, we provide a proof with
neither self-reference nor diagonalization of yet another analog of Gödel’s second
incompleteness theorem.

2 The proofs

2.1 Simplest cases

We begin by placing the first four ✗s on the table.

Definition 2.1 When � is a set of formulas, we write RFN�(U) for the sentence
stating the �-soundness of U (i.e., reflection for formulas from �):

RFN�(U) ∶= ∀φ ∈ �(PrU(φ) → True�(φ)).
Here, True� is a �-definable truth-predicate for �-formulas. For the complexity
classes that we consider this truth-predicate is available already in the system ACA0.

For � ∈ {Σ1
1 , Π1

1}, we let �̂ be the dual complexity class. The following result is an
immediate consequence of this definition.

Proposition 2.1 Provably in ACA0, for � ∈ {Σ1
1 , Π1

1}, T is �-sound if and only if T + φ
is consistent for every true �̂ sentence φ.
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A classification of incompleteness statements 3

Theorem 2.2 Let � ∈ {Σ1
1 , Π1

1}. For any sound and arithmetically definable theory S,
there is a sound and �-definable extension T of S such that T ⊢ RFN�(T).

Proof We define U ∶= S + Σ1
1-AC0. Then we define

T(φ) ∶= U(φ) ∧ RFN�(U).
That is, φ ∈ T if and only if both φ ∈ U and RFN�(U).

Then Σ1
1-AC0 ⊢ T = ∅ ∨ (T = U ∧ RFN�(U)). Thus, reasoning by cases, Σ1

1-AC0 ⊢
RFN�(T). Since T = U ⊇ Σ1

1-AC0, T ⊢ RFN�(T).
To see that T is �-definable, note that U is �-definable and that RFN�(U) has an

arithmetic antecedent and a � consequent.
Finally, note that T is just U, whence it is sound. ∎

Remark 2.3 In the proof of Theorem 2.2, we use the Σ1
1 choice principle only if

� = Σ1
1. Indeed, to infer that RFNΣ1

1
(U) is Σ1

1, we must pull the positively occurring
existential set quantifier from True�(φ) in front of a universal number quantifier. If
� = Π1

1, it suffices to define U as S +ACA0, since RFNΠ1
1

has a finite axiomatization
in ACA0.

2.2 Intermediate cases

We can resolve two more cases with a subtler version of the proof of Theorem 2.2.
First, we recall the following useful lemma.

Lemma 2.4 For T extending ACA0, RFN�̂(T) does not follow from any consistent
extension of T by � formulas.

Proof Suppose T + γ ⊢ RFN�̂(T) with γ ∈ �. Then T + γ ⊢ PrT(¬γ) → ¬γ.
Hence, T + γ ⊢ ¬PrT(¬γ), i.e., T + γ ⊢ Con(T + γ). So T + γ ⊢ �. ∎

The following theorem adds two more ✗s to our table.

Theorem 2.5 Let � ∈ {Σ1
1 , Π1

1}. For any sound and arithmetically definable theory U,
there is a �̂-sound and �̂-definable extension of U that proves its own �-soundness.

Proof Consider the following formulas:

φ(x) ∶= x = ⌜RFN�(U)⌝ ∨ x = ⌜¬RFN�̂(U + RFN�(U))⌝

τ(x) ∶= U(x) ∨ (RFN�̂(U + RFN�(U)) ∧ φ(x)).

Let T be the theory defined by τ.

Claim T is �̂-definable via τ.

By inspection.

Claim T is �̂-sound.
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4 H. Towsner and J. Walsh

Since U is sound, U + RFN�(U) is sound, so RFN�̂(U + RFN�(U)) holds, and
therefore externally, we see that T is the theory:

U + RFN�(U) + ¬RFN�̂(U + RFN�(U)).
In particular, T has the form U ′ + ¬RFN�̂(U ′) where U ′ is sound. Suppose that
U ′ + ¬RFN�̂(U ′) ⊢ σ where σ is false �̂. Then U ′ + ¬σ ⊢ RFN�̂(U ′). So RFN�̂(U ′)
follows from a consistent extension of U ′ by � formulas, contradicting Lemma 2.4.

Claim T ⊢ RFN�(τ).

From our external characterization of T, we see that

T ⊢ ¬RFN�̂(U + RFN�(U)).
Hence, T proves that τ defines the theory U. Again, appealing to our external
characterization of T, T ⊢ RFN�(U). Thus, T ⊢ RFN�(τ). ∎

2.3 Limitations

The presentation τ of theory T defined in Theorem 2.5 is clearly somewhat patho-
logical, in part because T cannot discern the identity of τ. Before continuing to the
final case, we want to illustrate that such pathologies are inevitable. We use a proof
technique suggested at the end of [5].

Proposition 2.6 Let T be a �-definable extension of Σ1
2-AC0 that proves Theorems 1.2

and 2.8. Suppose that there is a � presentation τ of T such that T proves RFN�̂(τ). Then
both of the following hold:
(1) There is a theorem A of T such that T ⊢ ¬τ(A).
(2) There is a � presentation τ⋆ of T such that T proves ¬RFN�̂(τ⋆).

Proof Suppose that each of the following holds:
(1) T is definable by a � formula τ;
(2) T extends Σ1

2-AC0;
(3) T proves Theorems 1.2 and 2.8;
(4) T proves the �̂-soundness of τ.
Let σ be a sentence axiomatizing Σ1

2-AC0. We have assumed T ⊢ σ . We also have that
T ⊢ RFN�̂(τ). Let A1 , . . . , An be the axioms of T that are used in the T-proof of σ ∧
RFN�̂(τ). Thus,

⊢ (A1 ∧ ⋅ ⋅ ⋅ ∧ An) → (σ ∧ RFN�̂(τ)).

Claim T ⊢ τ(A1 ∧ ⋅ ⋅ ⋅ ∧ An) → ¬RFN�̂(τ).

Reason in T. Suppose τ(A1 ∧ ⋅ ⋅ ⋅ ∧ An). Then τ extends Σ1
2-AC0 and τ proves

RFN�̂(τ). Since τ is a � formula, Theorem 1.2 (if � = Σ1
1) or Theorem 2.8 (if � = Π1

1)
entails that τ is not �̂-sound.

Since T ⊢ RFN�̂(τ), the claim implies that T ⊢ ¬τ(A1 ∧ ⋅ ⋅ ⋅ ∧ An).
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On the other hand, consider τ⋆(x) ∶= τ(x) ∨ x = ⌜A1 ∧ ⋅ ⋅ ⋅ ∧ An⌝. Note that τ⋆ is a
� definition of T. Yet, we have just shown that T ⊢ ¬RFN�̂(τ⋆). ∎

Remark 2.7 Note that in the proof, we need only assume that T extends Σ1
2-AC0

if � = Π1
1. If � = Σ1

1, it suffices to assume that T extends Σ1
1-AC0 since Theorem 1.2

applies to extensions of Σ1
1-AC0. Likewise, we need not assume that T proves both

Theorems 1.2 and 2.8. It suffices to assume that T proves Theorem 1.2 (if � = Σ1
1) or

that T proves Theorem 2.8 (if � = Π1
1).

2.4 Hardest case

The only remaining case is the dual form of Theorem 1.2.

Theorem 2.8 No Σ1
1-sound and Π1

1-definable extension of ATR0 proves its own Σ1
1-

soundness.

First, we give a short proof that was discovered by an anonymous referee.

Proof Let T be a Σ1
1-sound and Π1

1-definable extension of ATR0 that proves its
own Σ1

1-soundness. Let Φ be the (conjunction of) the finitely many statements used
in the proof (assume that a single sentence axiomatizing ATR0 is among them).
The sentence Φ ∈ T is true Π1

1. Hence, Φ +Φ ∈ T is consistent and Φ +Φ ∈ T ⊢
RFNΣ1

1
(T). By running this same argument inside Φ +Φ ∈ T , we conclude that

Φ +Φ ∈ T ⊢ Con(Φ +Φ ∈ T). Yet Φ +Φ ∈ T is a consistent and finitely axiomatized
extension of ATR0, which contradicts Gödel’s second incompleteness theorem. ∎

Note that a dual version of this proof also establishes Theorem 1.2.
For the rest of this section, we will give an alternate proof. In [5], Theorem 1.2

was proved using concepts from ordinal analysis. In short, a connection is forged
between Π1

1-soundness and well-foundedness of proof-theoretic ordinals. Since we
are now interested in Σ1

1-soundness, we forge an analogous connection between Σ1
1-

soundness and pseudo-well-foundedness, where an order is pseudo-well-founded if it
lacks hyperarithmetic descending sequences.

For the rest of this section, assume that T is a Σ1
1-sound and Π1

1-definable extension
of ATR0. In what follows, PWF(x) is a predicate stating that x encodes a recursive
pseudo-well-founded order (that is, a linear order with no hyperarithmetic decreasing
sequence). A universal quantifier over Hyp can be transformed into an existential set
quantifier in the theory ATR0 [4, Theorem VIII.3.20]. It follows that the statement
PWF(x) is T-provably equivalent to a Σ1

1 formula.
We will define ≺T to hold on pairs (e , α) where e ∈ Rec and α ∈ dom(≺e). We

define (e , α) ≺T (e′ , β) to hold if

there is some f ∈ Hyp so that Emb( f , ≺e↾ α + 1, ≺e′↾ β) and T ⊢ PWF(≺e′).

Here, we write ≺e↾ α + 1 for the restriction of the relation ≺e to {γ ∈ dom(≺e) ∣
γ ⪯e α}.

To prove that T ⊬ RFNΣ1
1
(T), it suffices to check that T ⊢ RFNΣ1

1
(T) → PWF(≺T)

and that T ⊬ PWF(≺T). Let’s take these one at a time.
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Claim T ⊢ RFNΣ1
1
(T) → PWF(≺T).

Proof Reason in T. Suppose ¬PWF(≺T). That is, there is a hyp descending
sequence f in ≺T . Let f (n) = (en , βn). Thus, we have

∀n (en+1 , βn+1) ≺T (en , βn).

By the definition of ≺T , this is just to say:

∀n ∃g ∈ Hyp Emb(g , f (n + 1), f (n)),

where we abuse notation to write Emb(g , f (n + 1), f (n)) for Emb(g , ≺en+1↾ βn+1 +
1, ≺en↾ βn) to emphasize the role of f in the statement.

The formulaEmb(g , f (n + 1), f (n)) is Σ1
1 in the parameter f ; this is an application

of Σ1
1-AC0, which is a consequence of ATR0 [4, Theorem V.8.3].
ATR0 proves that Hyp satisfies Σ1

1 choice, and therefore proves

∃g ∈ Hyp ∀n Emb(gn , f (n + 1), f (n)).

Note that g is technically a set encoding the graphs of the countably many functions
gn in the usual way.

Using arithmetic comprehension, we form the composition g⋆ of the functions
encoded in g—g⋆(0) = g0(β1), g⋆(1) = g0(g1(β2)) and so on. The function g⋆ is a
hyp descending sequence in ≺e0 , so ≺e0 is not pseudo-well-founded. Since f (1) ≺T
f (0), we also have T ⊢ PWF(≺e0). Recall that PWF(≺e0) is a Σ1

1 claim. Hence,
¬RFNΣ1

1
(T). ∎

Before addressing the second claim, let’s record a dual form of Rathjen’s formalized
version of Σ1

1 bounding [3, Lemma 1.1].

Lemma 2.9 Suppose H(x) is a Π1
1 formula, such that

ATR0 ⊢ ∀x(H(x) → PWF(x)).

Then for some e ∈ Rec, ATR0 ⊢ PWF(e) ∧ ¬H(e).

Remark 2.10 Note that the dual form of Lemma 2.9 has a diagonalization-free
proof (with ACA0 in place of ATR0) [5, Lemma 4.22]. Kreisel noted (as discussed by
Harrison [2, pp. 527–529]) that when a proof can be formalized in Σ1

1-AC0, then the
proof of the dual result (where all quantifiers are restricted to Hyp ) is also valid. This
is a proof in ATR0 since ATR0 proves that Hyp satisfies Σ1

1-AC0. Since the proof of
[5, Lemma 4.22] is somewhat involved, we produce here an alternate proof of Lemma
2.9 that incorporates some diagonalization, though we emphasize that diagonalization
is not strictly necessary.

Proof [2, Theorem 1.3] implies thatPWF (the set of pseduo-well-founded recursive
linear orders) is Σ1

1-complete; note that Harrison does not use self-reference or
any other form of diagonalization in his proof, which is the mere application of
Kreisel’s aforementioned trick (Remark 2.10) to the proof that well-foundedness is

Downloaded from https://www.cambridge.org/core. 12 Sep 2025 at 16:28:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


A classification of incompleteness statements 7

Π1
1-complete for recursive linear orders. Hence, there is a total recursive function {k}

such that:

¬H(n) ⇐⇒ PWF({k}(n)).

Since the reduction of Π1
1 predicates to O can be carried out in ACA0, a fortiori

it can be carried out in Σ1
1-AC0. When we restrict all quantifiers to Hyp, we thereby

get a proof of the dual result for O⋆, which is the set of notations for recursive linear
orderings with no hyperarithmetic descending sequences introduced in [1]. Hence,

ATR0 ⊢ ¬H(x) ↔ PWF({k}(x)).

By the recursion theorem and the S-m-n theorem, there is an integer e so that
ATR0 proves that ∀i[{e}(i) ≃ {{k}(e)}(i)] (where ≃ means that if either side
converges then both sides converge and are equal). Working in ATR0, ¬PWF(e)
implies ¬PWF({k}(e)), which implies H(e), which implies PWF(e), which is a
contradiction. So ATR0 ⊢ PWF(e). (Not that this implies e ∈ Rec by the definition
of PWF(e).)

Similarly, H(e) implies ¬PWF({k}(e)), which is equivalent to ¬PWF(e), which
we have already ruled out. So ATR0 ⊢ ¬H(e). ∎

Claim T ⊬ PWF(≺T).

Proof Suppose that T proves PWF(≺T). From the definition of ≺T , it follows that:

T ⊢ (∃ f ∈ Hyp Emb( f , ≺x , ≺T)) → PWF(≺x).

The formula ∃ f ∈ Hyp Emb( f , ≺x , ≺T) consists of an existential hyp quantifier before
a Π1

1 matrix (the matrix is Π1
1 since ≺T refers to provability in T and T is Π1

1-definable).
Hence, there exists a Π1

1 formula π(x) such that:

ATR0 ⊢ π(x) ↔ ∃ f ∈ Hyp Emb( f , ≺x , ≺T).

By Lemma 2.9, there is some e so that

ATR0 ⊢ PWF(≺e) ∧ ¬π(e).

Hence, ATR0 ⊢ ¬∃ f ∈ Hyp Emb( f , ≺e , ≺T). Moreover, since ATR0 is sound, we infer
that ¬∃ f ∈ Hyp Emb( f , ≺e , ≺T) is true.

On the other hand, since T extends ATR0, we infer that T ⊢ PWF(≺e). Hence,
the map α ↦ (e , α) is a canonical hyp embedding of ≺e into ≺T . So ¬∃ f ∈ Hyp Emb
( f , ≺e , ≺T) is false after all. Contradiction. ∎

It follows from the claims that T ⊬ RFNΣ1
1
(T), which completes the proof of

Theorem 2.8.
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