
3 
The harmonic oscillator 
and the quantum field 

3.1 Introduction 

In this and the next chapter we will consider some properties of quantum 
fields. The examples taken will be mostly scalar fields and only when 
necessary will we invoke the complexities stemming from the vector nature 
of the interactions in QED and QeD; there are many good text-books 
devoted to a detailed treatment of the subject. 

We need only intuition and a set of understood formulas for the investi­
gations contained in this book. We start with a discussion of the quantum 
mechanical harmonic oscillator coupled to an external force. There are 
several reasons to dwell on this particular system. Firstly its sine and cosine 
behaviour in time is matched by the corresponding harmonic behaviour 
of the plane wave solutions for the quanta in a field theory. 

It was noted even in the first papers on quantum field theory that 
a free or weakly interacting quantum field is in a rather precise way 
a superposition of an infinite, although enumerable, set of harmonic 
oscillators, one for each degree of freedom. 

A real interacting-field theory does not behave in this way with respect 
to its excitations. There is always, however, at the basis of any experiment 
in high-energy particle physics the idea of a three-act scenario in time. 

1 In the first phase, a long time before the interaction, the initial states 
are prepared with production setups in general arranged so that each 
state is isolated. 

2 After that there will be a more or less violent encounter in the second 
phase. 

3 In the final state the produced quanta are observed by means of 
detectors placed far apart, a long time after the interaction. 
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28 The quantum field 

Therefore the descriptions of the initial and final states are expected 
to correspond to the states of free non-interacting fields. For a confining 
theory like QeD this particular asymptotic before-and-after scenario does 
not hold but there is instead another asymptotics, the asymptotic freedom 
of the theory in which the free-field theories are expected to be relevant. 

The second reason for considering both the free and the interacting 
harmonic oscillator is that from a mathematical point of view they cor­
respond to very well-behaved systems. This is not the case in general for 
interacting quantum fields, which contain many different mathematical 
complications. But it turns out that almost all the things which can be 
done in a simple and precise way for the single harmonic oscillator can 
also, albeit after a large amount of cumbersome mathematics, be done 
for infinite-dimensional quantum fields. It is therefore easier to present 
the methods in a well-behaved manner for those who are not particularly 
interested in the mathematical complexities but nevertheless would like to 
understand what they are doing inside a computable framework. 

After we have rehearsed the properties of interacting harmonic oscilla­
tors from an elementary quantum mechanical point of view we will exhibit 
the corresponding properties for a scalar quantum field. We will in partic­
ular consider quantum states which correspond as closely as possible to 
classical fields (coherent states). At the same time we will introduce the S­
operator, which connects the initial- and final-state free fields, mentioned 
above as phases 1 and 3 in the interaction. 

After that we consider interacting fields. It is then necessary to provide 
a more precise definition of the S -operator. We introduce the Feynman­
Dyson prescription of time-ordering and, for simple cases, show how to 
make calculations in this framework. We consider the Feynman propaga­
tor and show its significance with regard to Heisenberg's indeterminacy 
requirements. We also calculate the scattering cross section in a simple 
situation. Finally we exhibit some features of the lightcone formulation of 
a field theory, often referred to as 'a field theory in the infinite-momentum 
frame'. 

3.2 The quantum field as a sum of harmonic oscillators 

This section will firstly contain a few reminders of the properties of 
the one-dimensional harmonic oscillator. After we have shown how the 
harmonic oscillator reacts to a time-dependent external force we discuss 
the corresponding properties of a scalar quantum field coupled to an 
external current. 

In both cases we obtain a set of states called coherent states. They are 
the closest correspondence to classical behaviour which can be found for 
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3.2 The quantum field as a sum of harmonic oscillators 29 

simple quantum systems. Therefore they are often used as models for 
more complex situations. When we go from the single harmonic oscillator 
to quantum fields it will be necessary to introduce some cutoff procedures, 
which are used repeatedly in connection with the calculation of observables 
such as cross sections later in the book. 

1 The one-dimensional harmonic oscillator 

I The equation of motion. The (classical) equation of motion of a one­
dimensional harmonic oscillator in an external field, j(t) is 

mx + mco2x = j(t) (3.1) 

Here the dot(s) correspond to time derivative(s) and the harmonic oscil­
lator frequency co has been explicitly introduced. 

Equation (3.1) can be derived from Hamilton's equations: 

8H 8H 
x = 8p' P = -~ (3.2) 

where 

(3.3) 

II The commutation relations. Quantum considerations are introduced by 
means of the Heisenberg commutator relations 

[P,x] = -i, [P,p] = [x,x] = 0 (3.4) 

For the harmonic oscillator it is useful to introduce two adjoint operators 
a* and a, usually referred to as the raising and lowering (or in more 
colorful language creation and annihilation) operators: 

a + a* 
X=--

~2mco' 

_ iJiiiW(a* - a) 
p- Ji 

Their commutation relations are obtained from Eq. (3.4): 

[a, a*] = 1, [a, a] = [a*, a*] = 0 

(3.5) 

(3.6) 

III The case of no disturbance. For the case when j = 0 the hamiltonian 
H == Ho can be written as 

Ho = co (a* a + ~), (C(IHolC() ~ ~ == Eo (3.7) 

for any state IC(). There is a lowest energy eigenstate 10) with an x-space 
representation, 1po(x), obtained from the requirement a1po x) = 0, i.e. 

rmw (mcox2) 1po = V h exp --2- (3.8) 
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30 The quantum field 

with 'lpo normalised to 1: f dxl'lpo(x) 12 = 1. It obviously fulfils H 10) = 
Eo 10). 
IV The excited states. All other eigenstates of the hamiltonian are given 
by Nn(a*)n 10) == In); in an x-space representation these are polynomials 
of nth degree in x multiplying 'lpo. Using 

[a, (a*)n] = n(a*)(n-l), [a* a, (a*t] = n(a*)n (3.9) 

the normalisation constant Nn can by iteration be shown to be 

1 
Nn = r::t so that 

'\In! 
In) = (a*)n 10) 

.jnf 
The corresponding eigenvalue is En = (n + 1j2)w. 

(3.10) 

V Normal-ordering. It is useful to introduce the notion of normal-ordering. 
This means that in an operator expression 0 containing both a and a* 
operators the normal-ordered 0, denoted :0:, contains all the a-operators 
to the right of the a* -operators. In particular this means that (01 :0: 10) = 0 
if 0 contains a nonzero number of operators. 
VI The time dependence. The time dependence of the operators a and a* 
is found, in the Heisenberg picture (for j = 0), as follows: 

da '[R]' ( ) ( . ) dt = l o,a = -lwa => at = aexp -lwt 

da* '[R *] . * *( ) * ( ) dt = l 0, a = lwa => a t = a exp iwt 

(3.11) 

We also note that the identification of the canonical momentum p with 
mx is consistent with the time development: 

p = mi[Ho,x] (3.12) 

VII Time-independent disturbance. When j is nonvanishing but independent 
of time the hamiltonian can be rewritten as 

p2 mw2(x - xO)2 mw2xij j 
H = 2m + 2 - 2 ' Xo = mw2 (3.13) 

We can then choose to re-express everything using a new coordinate 
x' = x - Xo and a new hamiltonian H' = H + P j(2mw2) (where we have 
introduced the expression for Xo in the energy change). 

The new ground-state wave function, 'lpOj, obviously corresponds to a 
translation of the old one: 

'lpOj(x) = 'lpo(x - xo) = {exp[-i j(2mw3)]} {exp(xjjw)} 'lpo(x) (3.14) 

and can therefore by a suitable expansion be expressed in terms of the 
the old set In) (this applies, of course, to any other state as well). 
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3.2 The quantumjield as a sum of harmonic oscillators 31 

The exponential of an operator should be interpreted in terms of a 
power series expansion and can be handled in almost the same way as an 
ordinary exponential. 

• We will use two simple properties of the operator T = exp(jx/w) 
expressed in terms of the original operators a and a*. In general 
if A and B are operators and if [A, B] = c, c being an operator­
independent constant (conventionally called a c-number), 

(expA)B exp(-A) = B + [A, B] 

(expA)(expB) exp(-[A, B]/2) = exp(A + B) 
(3.15) 

The first relation in Eq. (3.15) can be obtained from a Taylor series 
expansion of the function f(A) around A = 0, where 

f(A) = exp(AA)B exp( -AA) (3.16) 

Consider the derivatives of f (note the careful ordering!) 
df dnf 
dA = Af(A) - f(A)A = [A,f(A)], dAn = [A, [A, .. " [A, f(A)] ... ]] (3.17) 

As f(A = 0) = B we obtain that all but the first of the derivatives of f 
vanish at A = 0 : 

f(A) = B + A [A, B] (3.18) 

The result in the first line in Eq. (3.15) then corresponds to A = 1. 
For the second equation in (3.15) consider the function g(A), where 

g(A) = exp(AA) exp(AB) exp {-A(A + Bn (3.19) 

Using the first equation in (3.15), we obtain for the derivative of g: 

dg 
dA = A[A, B]g(A) (3.20) 

This is a differential equation with a plain number AC in front of g on the 
right-hand side. We conclude that g, which is equal to 1 for A = 0 from 
its definition, is the following simple function: 

g(A) = exp(d2/2) (3.21) 

which again provides the expected result for A = 1. Note that we have 
extensively used that the commutator of A and B is a plain number. 

Setting A = ja* /( .J2mw3) and B = ja/( .J2mw3) we obtain 

j2 
[A,B] = --2 3 (3.22) 

mw 
so that already expressed in a normal-ordered form the operator T be­
comes 

T = exp [i /(4mw 3)] exp(ja* / .J2mw3) exp(ja/ .J2mw3) (3.23) 
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32 The quantum field 

From Eq. (3.14) this means that 

tpOj = exp [-/ 1(4mw3)] exp(ja* I ~2m(3)tpo (3.24) 

or 

00 ( • )n 1 
IOj) = exp [-/1(4mw3)] L b t':! In) 

n=O 2mw yn: 
(3.25) 

Therefore the application of a constant force j to the harmonic oscillator 
will bring it into a new ground state with the property that the transition 
amplitudes will fulfil 

I (nIOj) 12 = n: exp(-11) 
n. 

(3.26) 

This corresponds to a Poisson distribution with the mean excitation n 
given by 

·2 
- ] n=--

2mw3 
(3.27) 

This is, however, dynamically incorrect: there is no way to change the 
system unless we use a time-dependent scenario so that there is energy 
pumped in or out of the system. 
VIII A time-dependent scenario. In order to describe an actual dynamical 
situation we assume that the force j introduced above is nonvanishing 
and changes in time, t, during a finite period t1 < t < t2 so that we can 
talk about the situation 'before', t ~ t1, and 'after', t 2:: t2 (the 'three-way­
scenario' mentioned before I). Then the hamiltonian will be 

H = w(a* a + 1/2) - g(t)a - g*(t)a* == Ho + HI 

HI = -j(t)x = -g(t)a - g*(t)a* 
(3.28) 

where we have written j ~ g(t) = g* = j(t)1 ~2mw in anticipation of a 
more general situation, when g is a complex function. 

The equations of motion become 

da 
dt = i[H,a] = -iwa + ig*(t), da* '[H *] . * . () (3 29) dt = I , a = lwa - 19 t . 

We will assume that there are initial-state operators ai(t), a~(t), which, like 
the operators in Eq. (3.11), describe the undisturbed system before t = t1 
(when g(t) = g*(t) = 0 so that the equations of motion coincide) and 
likewise final-state operators aj(t), aj(t), which describe the system after 
t = t2. 

Then the equations (3.29) can be solved in a general way by means of 
the Green's function method. We define the functions GR(t) and GA(t) as 
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3.2 The quantum field as a sum of harmonic oscillators 33 

the solutions of the equation 

with boundary conditions 

~~ + iwG = (j(t) 

GR(t) = 0 if t < 0 

GA(t) = 0 if t > 0 

(3.30) 

(3.31) 

They are called the retarded and the advanced Green's function, respec­
tively, and are in this case rather easily constructed: 

GR(t) = 0(t)exp(-iwt), GA(t) = -0(-t)exp(-iwt) (3.32) 

where 0 is the Heaviside distribution, which is equal to 1 for a positive 
argument and vanishes elsewhere. 

The fact that the solutions of Eq. (3.30) should correspond to step­
functions at t = 0 can be understood from an integration of the equation 
from t = -E to t = +E when E --+ +0: 

lim [G(E) - G(-E) + iw Ie dtG(t)] = 1 
e-+O -e 

(3.33) 

Here we have used the following property of the (j-distribution: f dt(j(t) = 
1, if the integration region includes t = O. The fact that the contribution 
from the integral in Eq. (3.33) vanishes as E is left for the reader to prove. 

In this way we obtain the following solutions for a(t): 

a(t) = aj(t) + i [00 dt' g*(t') exp [-iw(t - t')] 

a(t) = at(t) - i 100 dt'g*(t')exp [-iw(t - t')] 

(3.34) 

Therefore the final-state operators can be expressed in terms of the initial­
state ones by a translation (noting that they all have the trivial time 
dependence exp(±iwt), which can be divided away): 

at = aj + i i: dt'g*(t')exp(iwt') == aj + ig"(w) (3.35) 

Consequently the final-state operators, at, ai, in a similar way to VII 
above have been translated with respect to the initial ones, aj, a;, this time, 
however, by the Fourier transform of the force! 
IX The S-operator. It is possible to construct a unitary operator S, which 
transforms the initial states into the final states in this simple situation: 

S*S = 1 ~ S-1 = S*, 

S* 10i) = 10j) 

at = S"ajS = aj + ig*(w) 

~ S 10j) = 10i) 
(3.36) 
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34 The quantum field 

(note that this also fixes the relation between aj and a~ I). The operator S 
provides a complete mapping of the eigenstates of the final system onto 
the initial eigenstates: 

Inf) = S' Ini) (3.37) 

It is easy to find by means of the results we have obtained in VII and 
VIII: 

S = exp {ilf(w)a; + g(w)aiJ} (3.38) 

The expression in the exponent can be neatly reformulated by noting that L: dtj(t)x(t) = L: dt[g(t)ai(t) + g*(t)a;(t)] 

= L: dt[aig(t) exp( -iwt) + a; g*(t) exp(iwt)] 

= g(w)ai + f(w)a; (3.39) 

Then the S-operator can be expressed as 

S = exp {i L: dt[g(t)ai(t) + g*(t)a;(t)]} = expi L: dtj(t)x(t) (3.40) 

This is a general result in the perturbative treatments of quantum field 
theory, which holds also when j is an operator-valued function. We obtain 
the (negative) difference between the operator H in Eq. (3.28) and the 'free' 
harmonic oscillator hamiltonian Ho in Eq. (3.2), integrated over time, as 
the exponent in the expression for the S -operator. 

In this more general case the exponential must be treated with care 
because operators for different times have complicated commutation re­
lations. One cannot without a prescription for ordering use the ordinary 
exponential property that the exponent of a sum is equal to the product 
of the exponents of the terms in the sum. 
X The transition probabilities. For the case when j is an external 'nice' 
function 'real' transitions are possible. An original state such as the initial 
ground state, 10i), will afterwards become some outgoing, possibly excited, 
state: 

(nfIOi) = (nilS 10i) = [exp ( _Igt) 1 ~ (3.41) 

In VII we presented the transition probabilities I (nfIOi) 12 as a Poisson 
distribution in the free harmonic oscillator states. This is evidently still 
true and the mean excitation level, n, for the Poissonian will be for the 
general case: 

n = 2~W I J dtj(t) eXP(iwtf (3.42) 
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3.2 The quantum field as a sum of harmonic oscillators 35 

The result in the case (3.27) is characteristic for a single sudden change 
in the force. A suitable force (corresponding to a limiting situation when 
E > 0 approaches 0 after the integral has been performed) would be 

j(t) = j exp( -Et)E>(t). (3.43) 

Before we go over to quantum fields we note another property of the 
states. The state 10i) is actually an eigenstate of the operator af: 

af 10i) = afS 10f) = af E [exp ( _lg~2) 1 ~ Inf) 

= g* S 10j) = g* 10i) (3.44) 

This also implies that the expectation value in the initial ground state of 
the final-state operator xf(t) = [af exp( -iwt) + aj exp(iwt)]/( .j2mw) is 

x(t) = (Oilxf(t)IOi) = g" exp(-iwt) + g exp(iwt) 
.j2mw 

100 1 
= dt'-j(t' ) COS[W(t' - t)] 

-00 mw 
(3.45) 

This is the final-state harmonic motion in a classical mechanics situation 
when one starts out with a harmonic oscillator at rest and then applies 
the external force j(t) over a finite time interval t1 < t' < t2. Evidently the 
integrand in Eq. (3.45) is only non vanishing over this time region and we 
consider t> t2. 

In order to prove (3.45) it should be noted that the equations of motion 
in Eqs. (3.2) and (3.29) also work classically for the quantities a, a" defined 
in Eqs. (3.5). The whole formalism involving Green's functions that relate 
the initial-state and final-state quantities ai, a7 and af, aj is just as valid 
when the a's and a"'s are classical c-numbers! 

2 A scalar quantum field coupled to an external current 

We will now consider the corresponding situation for a scalar quantum 
field </>(x). We will firstly show that it has the same behaviour as a 
superposition of an infinite number of independent harmonic oscillators. 
It will then follow that we can take over everything we have done in I to 
X when we treat </>(x). Every time one introduces an infinity, however, it 
is necessary to worry a little about convergence problems. We will soon 
find that there are plenty of such things to worry about when we go to 
interacting quantum fields! 
XI The Klein-Gordon equation. A scalar field, </>(x, t), which fulfils the 
Klein-Gordon equation 

(3.46) 
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36 The quantum field 

where stated earlier the Laplacian Ll = V2 is given by 

82 82 82 
Ll=-8 2+-8 2+-8 2 

Xl X2 X3 
(3.47) 

will, in momentum space, 4> - ¢(t) exp(ix . k), fulfil the equation 

(3.48) 

This essentially coincides with Eq. (3.1) for the single harmonic oscillator 
with frequency w _ w(k) = .Jk2 + M2. 

In order to facilitate this transfer to momentum space we assume that 
the whole system is enclosed in a large box with three space dimensions 
and volume V, and that only those waves that fit into the box with 
periodic boundary conditions are included. This means that instead of 
a field 4> defined at every space point we obtain an enumerable set of 
amplitude fields for the momentum-space waves. 

The allowed momenta, e.g. in the I-direction with a large box-length 
L1, are, for any integer n1, 

(3.49) 

A sum over n1 can be made into an integral over dk1 by the formal 
exchange (which is valid when we sum and integrate over 'nice' functions) 

With this construction we have the following identities 

Iv d3xexp [i(k - k/) . x] = V l5k,k' 

L exp(ik . x) = V l5(x) 
k 

(3.50) 

(3.51) 

In the first equation the symbol on the right-hand side is equal to 1 when 
the two arguments coincide and vanishes elsewhere. The second equation 
contains the usual l5-distribution in three dimensions. 

The results in Eq. (3.51) stem directly from Fourier analysis and corre­
spond to the orthonormality and completeness relations of Fourier waves. 
We will later see that in all formulas describing physical observables the 
volume V will disappear. 
XII The hamiltonian formulation. The field equation can also be described 
by a variation of the hamiltonian H in which 4>(x), II(x) are the canonical 
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3.2 The quantum field as a sum of harmonic oscillators 37 

coordinates at every space point x: 

with 

Ho = 1 fv d3x[IT2 + (V¢)2 + M2¢2] 

H=Ho+HI 
(3.52) 

(3.53) 

The fields IT and ¢ can be decomposed as sums over the different mo­
mentum components similar to the single harmonic oscillator in Eq. (3.5): 

1 
¢ = L (k) (a(k) exp[ik' x) + a*(k) exp( -ik . x)] 

k ~2Vw 

IT = L i~ [-a(k) exp(ik . x) + a* (k) exp( -ik . x)] 
k 2V 

(3.54) 

We note that the field ¢ in this way is written as a set of harmonic 
oscillators (cf. Eq. (3.5)) x = 2:/1/ ~2mw )(aj+aj)ej, although this time the 
(euclidean) vectors ej (with ejem = c5km) are exchanged for the normalised 
eigenfunctions exp(±ik . x)/ JV, which are vectors in a Hilbert space, 
i.e. an infinite-dimensional generalisation of a euclidean space. This also 
implies that the field ¢ has energy dimension dim ¢ = 1 (corresponding 
to a negative length dimension -1). We will use similar dimensional 
arguments many times later in the book. 

This dimensional assignment for ¢ is necessary in order that the hamilto­
nian Ho in Eq. (3.52) should also have energy dimension 1 (dimd3x = -3, 
dimM2 = 2 and dim V = 1). In the same way we conclude that for HI to 
have energy dimension 1 the current j must have dimj = 3. 

It is straightforward to prove that the commutation relations 

[a(k), a*(k/)] = c5k,k" [a(k), a(k/)] = [a*(k), a*(k/)] = 0 (3.55) 

imply 

[IT(x), ¢(x/)] = -ic5(x - x'), [¢(x), ¢(x/)] = [IT (x), IT(x/)] = 0 (3.56) 

if we use Eqs. (3.55), (3.50) and (3.51). The sets of commutation relations in 
Eqs. (3.55) and (3.56) are thus equivalent and are obvious generalisations 
of the harmonic oscillator relations in Eqs. (3.6) and (3.4). 
XIII The ground-state energy. For an undisturbed set of harmonic oscilla­
tors the hamiltonian in terms of operators is 

Ho = L w(k)[a*(k)a(k)] + C 
k 

(3.57) 
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The constant C corresponds to the sum of the energies of all the zero­
point modes of the oscillators, i.e. C = 2.:k w(k)j2. In that way it is simply 
the energy of the vacuum and is consequently not an observable quantity. 

There are, however, situations when the difference in energy between 
the 'total' vacuum fluctuations in C and those from a particular boundary 
configuration can be measured, [41]. This effect is outside the scope of this 
book. It is, nevertheless, of great interest because it exhibits experimentally 
the existence of quantum field fluctuations in the vacuum state. 
XIV The time dependence. To obtain the time dependence we use the same 
relations as in Eqs. (3.11) and (3.12): 

dak. . Tt = l[Ho, ak] = -lw(k)ak ~ ak(t) = ak exp[-iw(k)t] 
(3.58) 

II(x) = (p = i[Ho, ¢(x)] 

In this way ¢(x) ~ ¢(x, t) by including the time dependence of the 
a- and a* -operators. We note in passing that this will result in Lorentz­
invariant exponential factors exp ±(ik ·x-wt) = exp +(ik"x") == exp(+ikx) 
multiplying the a- and a* -operators. 

When the current j is nonvanishing the time dependences will take on 
the form of Eqs. (3.29): 

d;tk = i[H, ak] = -iw(k)ak + ig*(k, t) 

d;tk = i[H, ak] = iw(k)ak - ig(k, t) 

g(k,t) = r d3x 1 (k/(x,t)exp(ik.x) 
Jv ~2Vw 

(3.59) 

(3.60) 

Thus here g(t) ~ g(k, t), the Fourier transform of the external current. 
This means that the numbers g(k, t) are in general complex but for a 
real-valued current j(x) they fulfil g* (k, t) = g( -k, t). 

All these steps from the definition of the Green's functions to the 
resulting equation for the S-operator in Eqs. (3.30) to (3.40) can then be 
performed separately for each wavenumber k. The final S -operator is a 
product over all components and can be written as 

S = exp [-i i: dtHli(t)] = exp [i J d4X¢i(X)j(X)] (3.61) 

The index i is introduced in order to stress that we are using the initial­
state fields, i.e. those that describe the state a long time before the in­
teraction is turned on. The time dependence in Hli(t) contains also the 
free-field time dependence of the oscillators so that ai(k) is changed into 
ai(k) exp( -iw(k)t). The integration symbol I d4x = Iv d3x I~ dt. 

An interesting observable is the probability that the vacuum before the 
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interaction is turned on (the no-quanta state) is still the vacuum after the 
interaction, i.e. the probability that there has been no excitation due to 
the onset of the current j 

I (OfIOi) 12 = I (OiISIOi) 12 = exp(-U) 
(3.62) 

U = ~ 2W(~)V [ fv d3xdtj(x, t) exp[iw(k)t - kx] [2 

The quantity U is the sum over all the mean excitations for the Poisson­
distributed oscillators (cf. Eq. (3.42)). It can be rearranged by changing 
the sum over k to an integral, see Eq. (3.50); we then arrive at (with the 
vector <5x = (t - t', X - x')) 

U = J 2(2~33~(k) J d4xd4x' j(x)j(x' ) exp{i[w(k)(M) - k(<5x)]} 

= J dxdx' j(x)I1+(<5x)j(x' ) (3.63) 

1 J d3k 11±(x) = (2n)3 2w(k) exp{i[±w(k)t - k . xl} (3.64) 

We firstly note that the volume V has vanished from these expressions 
(when we have taken the limit V ---4 CIJ we use the symbol dx instead of 
d4x). Secondly we note that the functions 11± defined in the last line of Eq. 
(3.63) are Lorentz-invariant. In order to show that we use the following 
property of the <5-distribution: 

J dadb0(±a)<5(a2 - b2)f(a, b) 

= J dadb0(±a) [<5 (a -Ibl) + ~I~ + Ibl)]f(a, b) 

= J dbf(±lbl, b) (3.65) 
21bl 

For Eq. (3.64) we have 

J d3k J + 2 2 2w(k/(k, ±w(k)) = dk<5-(k - M )f(k, ko) (3.66) 

where the symbols dk == d3kdko and 0(±ko)<5(k5-k2-M2) == <5±(k2-M2) 
will be used from now on. (Note that the prescription ko > 0 is Lorentz­
invariant together with the <5-distribution!) 

Thus the functions 11± become (changing k to -k for 11_): 

(3.67) 
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The distribution ~+(x) actually corresponds to the matrix element 

(Oil¢i(Xt}¢i(X2)IOi) = (Oil¢i(xt}¢t(X2)IOi) 

_ '" exp[ik(X2 - xt}] _ ~ ( _ ) (3.68) 
- ~ 2Vw(k) - + X2 Xl 

We have here introduced the notation ¢ = ¢- + ¢+ where we include 
the sum of all the a-operators (a* -operators) in ¢- (¢+). The second line 
stems from the fact that the only (nonvanishing) intermediate state is a 
single quantum, which can be created by ¢t and annihilated by ¢i. For 
the third and fourth lines we have used Eqs. (3.63) and (3.64). 

We also note that the (in-)vacuum expectation value of the field ¢f(x) 
1S 

(3.69) 

which in the same way as for Eq. (3.45) is the classical solution to the 
field equation in Eq. (3.46) after the interaction. 

In conclusion we have shown the following: 

• quantum fields, including that of the single harmonic oscillator, 
which are coupled to an external current contain excitations of a 
Poissonian nature, the mean number of quanta being determined 
from the Fourier components of the current; 

• they also have vacuum expectation values that coincide with the 
classical c-number solutions for the interaction; 

• the phases of the states, called coherent states, are well defined by 
the Fourier components of the external current. 

3.3 Feynman's time-ordering prescription 

In this section we will generalise the expression we have derived for the 
S-operator in Eqs. (3.40) and (3.61) from the simple case when the current 
j is an external c-number function to the general case when j is operator­
valued. This will lead us to ways to calculate high-energy multiparticle 
production amplitudes in perturbation theory. 

It is necessary to provide an ordering prescription for the S -operator in 
Eq. (3.61) when the current j is operator-valued. The right prescription 
(first introduced by Feynman and Dyson) is that all expressions should 
be time-ordered. If we would like to express the S -operator solely in the 
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initial-state fields then 

with the time-ordering symbol .07 implying that all operators should be 
written so that those with a later time are to the left of those with an 
earlier time. 

Intuitively the prescription is rather easy to understand. The free initial 
quantum fields get distorted as time goes by. Each new distortion evidently 
follows the earlier ones and must therefore be applied after one has applied 
the previous interactions. (If we would like for some reason to write 
everything in terms of the final-state fields then we must anti-time-order 
everything, i.e. all operators should be arranged so that those with a later 
time are to the right of the others.) 

As an example of the time-ordering procedure consider the second-order 
term in Eq. (3.70): 

.07 {Hli(tt}Hli(t2)} = 8(t1 - t2)Hli(tt}Hli(t2) + 8(t2 - tt}Hli(t2)Hli(tt} 

(3.71) 

We have now defined two different ordering prescriptions, normal-ordering 
where all annihilation operators a are to the right of all creation operators 
a* and time-ordering where all earlier-time operators are to the right of all 
the later-time operators. There is a mathematical manipulation theorem, 
Wick's theorem, which provides a connection between these orderings; 
you will find it described in great detail in many text-books. 

1 Time-ordered products and the Feynman propagator, causality and 
locality 

In order to understand some features of quantum fields we will show how 
Wick's theorem works in connection with the time-ordered product of a 
free field ¢ at two different space-time points. Again using the notation 
¢± from Eq. (3.68) we obtain 

.07 {¢i(Xt}¢i(X2)} = ¢i(xt}¢i(X2) + ¢i(xt}¢i(X2) 

+8(t1 - t2) {([¢i(xt), ¢i(X2)] 

+¢i(X2)¢i(xt} + ¢i(xt}¢i(X2)} 

+8(t2 - tt} {([¢i(X2),¢i(xt)] 

+¢i(xt}¢i(X2) + ¢i(X2)¢i(xt}} (3.72) 
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We have thus item by item brought the time-ordered operators into nor­
malordering. The result is evidently 

ff {¢i(Xt)(l>i(x2)} = : ¢i(Xt)¢i(X2):+0(tl - t2) [¢i(xt),¢i(X2)] 

+0(t2 - tt) [¢i(X2), ¢i(xt)] 
(3.73) 

The function I1F (F stands for Feynman) could have been constructed 
directly from the fact that the normal-ordered product : ¢i(Xt)¢i(X2): has 
a vanishing vacuum expectation value. We then obtain 

(3.74) 

Using the result from Eq. (3.68) in Eq. (3.74) we may write the following 
expression for I1F : 

(Note the order of the arguments in the 11+ distributions. For each this is 
related to the time dependence of the creation and annihilation operators.) 

Before we construct an expression for I1F we note from the result in 
Eq. (3.68) the following result for the general commutator: 

[¢i(Xt), ¢i(X2)] = 11+(X2 - xt) -11-(X2 - xt) == -il1(X2 - xt) (3.76) 

The notation is conventional and the factor i introduced to make 11 real. 
The general commutator 11, just like the I1r distributions, can be com­

puted by straightforward means. We will give 11 in detail because it has 
two properties of direct interest for what follows: 

l1(x) = - €i~) [b(X2) - 2~Jl(M y9)0(x2)] . (3.77) 

We have used the conventional sign-distribution €(x) == €(xo) = 0(xo) -
0(-xo) and the Bessel function of the first rank It in Eq. (3.77). 

Firstly note that the commutator distribution 11 vanishes for space like 
vectors x. This is our first encounter with practical causality. There is no 
possible signal connecting two space-time points with a spacelike differ­
ence. Therefore two local field operators taken at two such points commute. 
They are independent and a measurement of the observable correponding to 
one of the operators at one point cannot influence a measurement of the 
observable corresponding to the other operator at another point separated 
from the first by a space like difference. 

The word local is essential, however. All the field operators are singular 
from a strict function-definition point of view (note the occurrence of 
the b- and €-distributions in Eq. (3.77)). Mathematically such expressions 
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should be defined by means of a test function f, [31]: 

cfJ(f) = J dxcfJ(x)f(x) 

43 

(3.78) 

A local operator is such that if we choose the test function f to be strongly 
localised around a point x (i.e. vanishing outside a suitably small region 
around x) then also all the matrix elements of the operator cfJ(f) should 
have this property. 

If we consider the definition of f1F from Eq. (3.73) we find that this 
function can also be defined by means of commutators. But these are 
commutators of field operators which are not local. None of the cfJ± is local 
because they contain only positive or negative frequencies, respectively. 
There is no way to localise anything in time by means of a function 
containing only frequencies of a definite sign. 

The distribution f1F can instead, according to the result in Eq. (3.75), 
be written e.g. as 

f1F(X) = -i8(-x)f1(x) + f1+(x) (3.79) 

and only the first term on the right-hand side is local in the sense used 
above. 

Secondly we note from Eq. (3.77) that the commutator is highly singular 
along the lightcones. Although the quanta have mass M and therefore 
always move with a velocity below c = 1 the corresponding quantum 
fields can influence each other in principle at infinite distances along 
the lightcones. It is also worthwhile to note that the principal singularity 
(the second term inside the large parentheses of Eq. (3.77) approaches a 
constant for x2 ~ 0) is independent of the mass-value M. 

2 The formula for the Feynman propagator, the lightcone singularities 

We will next provide a formula for f1F using a distribution-valued integral 
we have referred to in Eq. (3.43): 

. J -idko . , 
8(x) == 8(xo) = hm 2 (k' .) exp(zkoxo) 

0 ..... 0 n 0 - ZE 
(3.80) 

From Eq. (3.75) we may then use the result in Eq. (3.80) to obtain an 
integral representation for f1F. We will subsequently not write out the limit 
sign but we will keep E as a small but arbitrary number. 

i J d3k ( dk' 
f1F(X) = (2n)4 2w(k) ko +oiE exp(i(w + ko)xo - k· x) 

dk' ) - k' o. exp[i( -w + ko)xo + k . x] 
o -ZE 
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=_i_Jd3kdkoeXP(ikx) ( 1 _ 1 ) 
(2n)42w ko-w+iE ko+w-iE 

i J dkexp(ikx) 
= (2n)4 k2 _ M2 + iE (3.81) 

Here we have introduced the result of Eq. (3.80) together with the corre­
sponding result for 8(-x) and then changed the integration variable kb 
to ko = kb ± w (as well as replacing k by -k in the second term). In the 
last line we have gathered the two denominators into one. 

The final result corresponds to the limiting situation when the number 
E approaches O. This means that I1F is actually singular for all values of 
the vector k which correspond to a 'real' particle with mass M. 

When we want to consider a physical observable that is sensitive to the 
limit then it is necessary to be more precise in the definition of the size of 
E. An example of this is provided in Chapter 14. 

From a mathematical point of view I1F is a distribution, which must be 
defined by means of integration over suitable test functions, as mentioned 
above. It is also the Fourier transform of the boundary value E ~ 0 of an 
analytic function defined on complex-valued vectors k with Imk2 > O. In 
that case it can be described as analytic and Lorentz-invariant with poles 
whenever k2 = M2. 

In Chapter 6 we will provide a formula for the behaviour of the 
Feynman propagator for spacelike arguments. That formula will be based 
upon the property that I1F satisfies the Klein-Gordon equation 

(3.82) 

everywhere outside the origin, x = O. 
For the investigations in Chapter 19 it is also of interest to know 

the space-time singularities of both the Feynman propagator I1F and the 
function 11+. We will not give the formulas for the general case but only 
for the case when the mass M = 0 because just as for the function 11 in 
Eq. (3.77) the main singularities of all the functions are independent of the 
mass. 

The following formal development may be used in such a derivation. 
We firstly note that 

(3.83) 

(the integral on the right-hand side converges when we add a small positive 
imaginary part to k2). If we introduce this result into the formula for the 
Feynman propagator given in Eq. (3.81) we obtain gaussian integrals 
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(which due to the imaginary parts are called Fresnel integrals): 

.6.F (x,M2 = 0) = (2~)4! dlX ! dkexp(ilXk2 + ikx) 

= 4(;n)2 ! ~~ exp ( _;:2) = (2n)2(~2 _ ie) 

45 

(3.84) 

In the second line we have made the change of integration variable 
1/1X -+ IX; performing the integral shows that x2 must contain a small 
negative imaginary part, which ensures convergence. 

If we perform the integrals for the function .6.+(x) with the mass M = 0 
(which is straightforward) we obtain the same result as in Eq. (3.84) but 
with the boundary value x2 -+ x2 + iexo. This means that the imaginary 
part depends upon the sign of the time-component of the vector x. 

At this point we will consider a particular distribution-valued boundary 
value. Suppose that we have a (test)function, f(x), of a single real variable 
x and that we consider the result of integrating it together with the 
boundary value 1/(x - ie). We may then start by using the following 
formal manipulation: 

x+ie R ·1 -- = = +1 
X - ie x2 + e2 

1 
(3.85) 

If we start with the imaginary part then we obtain the result for 1 : 

! dxf(x) 2 e 2 = !dYf(eY)+-1 
x +e y + 

-+ f(O)n == ! dxf(x)nb(x) 

(3.86) 

We have assumed that the function f vanishes sufficiently fast that we may 
take the limit f(ye) -+ f(O) outside the integral; then as is well known, 
f dy/(y2 + 1) = n. 

We have in this way obtained a representation of the b-distribution 
which is very useful. It is the difference between the boundary values: 

1 1 --. - --. = 2inb(x) 
x -le x + 1e 

(3.87) 

For the real part, R, in Eq. (3.85) we may use the trick of adding and 
subtracting the quantity 

l ex f(O) xdx = 0 
-ex x2 + e2 

(3.88) 

This result is obviously valid for any (finite) positive number IX because 
the integrand is an odd function. For values outside -IX < x < IX we 
now have no problem in taking the limit e -+ 0 for R in Eq. (3.88) for a 
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well-behaved function f (we again use the Heaviside function 0): 

R(f) = J {0(x2 - ( 2)f(x) + 0(a2 - x2)[f(x) - f(O)]} d: (3.89) 

If afterwards we let a -+ 0 we find that we always have a well-defined inte­
gral, called the principal part of f and defined so that in the neighborhood 
of the singular point x = 0 we make the change f(x) -+ f(x) - f(O). 

As a simple example for this limiting situation consider the relationship 
between the commutator distribution Ll and Ll+. If we take the indicated 
difference in Eq. (3.76) we obtain just the lightcone c)-distribution in Eq. 
(3.77) from the result in Eq. (3.87) and the limiting behaviour of Ll+ we 
mentioned above. 

We have in this section stressed the following facts: 

• a local quantum field must contain both positive and negative fre­
quencIes; 

• the S -operator must be defined by means of time-ordering. 

These are the origins of the Feynman propagator distribution. 
It is, of course, possible to interpret the two parts of the time-ordering 

process in Eq. (3.75) as respectively 'forwards' and 'backwards' transmis­
sion in time for the quanta involved (the former would be 'particles' and 
the latter 'antiparticles'). There is, however, no reason to inflict nonsense 
upon one's physical intuition and we prefer to consider the propagator as 
a unity. 

In the last section of this chapter we will show that in a lightcone 
dynamical scenario it makes sense to talk about the propagator in terms 
of old-fashioned energy denominators. 

In the next subsection we will discuss the Fierz [61] interpretation 
of the Feynman propagator, which is how the physicists working with 
Stlickelberg thought about it. This is done in order to convince the 
reader that the way in which it works is not only in accordance with the 
Heisenberg indeterminacy principle. The Feynman propagator is actually 
as causal as it can be when the principle is fulfilled. 

3 An interpretation of the Feynman propagator 

For a simple and intuitively useful example we will consider the case when 
HI = g4>(x):1p2(x): (with 4> and 1p free independent scalar quantum fields), 
an interaction which we will discuss later in the book. This is meant to be 
a simplified version of the current-vector-potential interaction in a gauge 
theory. 
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(a) (b) 

Fig. 3.1. Two simple examples of Feynman graphs. The situation in (a) cor­
responds to the annihilation of two 1p-particles; the state then propagates as a 
virtual <jJ and finally two outgoing particles appear. In (b) there is scattering with 
the exchange of energy-momentum. The straight lines symbolise 1p-quanta and 
the wavy lines the <jJ-propagator. 

For this case we will need the fact that R2 = (1/2).'1 {.1t'li(Xt}.1t'li(X2)} 
(cf. Eq. (3.71)) contains among many others the term 

2 

R;" = ~ : lPr(Xt}lPr(X2): dF(X2 - Xl, Met» (3.90) 

The result in Eq. (3.90) corresponds to the scattering of two lP-particles 
which come in, interact at the point Xl and are either annihilated into a 
virtual cP (Fig. 3.1(a)) and afterwards reappear as outgoing lP-particles at 
X2 or exchange energy-momentum between points Xl and X2 through a 
virtual cP (Fig. 3.1(b)). 

In this subsection we will simplify the working by assuming that there 
are two kinds of lP-particle, which we call p- and e-flavored, which may 
interact via the common cp-field. This assumption does not change the 
argument in the least but makes it easier to discuss. 

Any kind of interpretation of a physical quantity is always defined by 
means of a measurement that is at least theoretically possible. We will 
show that a measurement made in accordance with quantum mechanical 
requirements will preserve all causality and energy-momentum conserva­
tion properties and that this is due to the properties of the Feynman 
propagator. 

In order to further simplify the problem we will assume that there are 
regions of space-time Rj within which we can measure what is going on 
in connection with the scattering. As always in a measurement process 
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we expect these regions to be determined by some some size parameters. 
We will solely be interested in the time slices of the regions, i.e. the time 
intervals they span; these we will call T j • Thus we assume that there is 
in anyone of the space-time regions an ideal detector (but working in 
accordance with quantum mechanics, of course!) recording what is going 
on as time passes. 

We then consider the case when an ei-particle scatters against a P2-
particle and goes out after the process as an e3-particle while the P4-particle 
recoils. This corresponds to the situation described diagrammatically in 
Fig. 3.l(b). We assume that their energy-momenta are k j j = 1, ... ,4 and 
we will now write the transition matrix element as 

vi{ = J dXidx2g2 (k41 : tp;(xd :1 k2) .1F (X2 - xd (k31: tp;(X2) 1 ki). (3.91) 

We then change the integral over all space-time into an integral over the 
regions where we have the detectors: 

J dXidx2 = 2: 1 dXil dX2 (3.92) 
j,k Rj Ri< 

The only argument of which we are going to make use is related to the 
energies so it is not necessary that we expand the .1r function in plane 
waves; energy harmonics exp(±iwxo) are sufficient. The next thing is to 
go back to the definition of .1F , Eq. (3.75), and rewrite vi{ in Eq. (3;91) as 
(note that we must include both time-orderings!) 

g22:1dxil dX2(k41:tp;(xd :lk2)(k31:tp;(X2)lki) 
j,k R, Ri< 

X [0(Xi - X2).1+(X2 - xd + 0(X2 - xd.1+(Xi - X2)] (3.93) 

If we write out the time dependence of the first term we will find for 
regions Ri and R2 (spreading over the times Tj , j = 1,2; note that ko must 
be positive as it corresponds to the argument in the .1+-distribution) 

exp[-i(W2 - (4)XOl - i(Wi - (3)X02]0(XOl - x02)dko exp[iko(X02 - xod 
(3.94) 

Now we gather the terms containing XOi and X02, respectively, and assume 
that the time slices Tj for the detector configuration are such that 

Tilw2 - w41 ~ 1 and T21wi - w31 ~ 1 (3.95) 

This is what Heisenberg would require in order that we should be able 
to measure the energies in each of the detectors so precisely that we can 
distinguish between the energies of P2 and P4 and between those of Pi 
and P3. It is necessary to have sufficiently long times available for such 
measurements, at least several frequency periods. But we note that there 
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is then little to work on if we are to obtain a non vanishing value for the 
integrals. The only possibility is to choose the value of ko such that 

(3.96) 

This requirement is a direct result of the properties of the Fourier integrals, 
for which it is necessary not to have strongly fluctuating integrands if we 
want nonvanishing results. 

We conclude that, as the time in region R2 is earlier than the time in 
region RI, according to the E)-distribution, and as ko is positive: 

• the energy of the e-flavor particle decreases from WI to W3 by emission 
of the (virtual) <f>-quantum in the region R2; 

• then the p-flavor particle absorbs the <f>-quantum in the region RI 
and so increases its energy from W2 to W4; 

• in both cases it is necessary to have time slices T j large enough 
to measure the energy loss and energy increase, respectively, with 
sufficient precision. 

In the other term in Eq. (3.93) the region RI is before the region 
R2 in time; this correponds to the opposite process. The basic point is 
that the Feynman propagator describes emission and absorption (within the 
requirements of Heisenberg) in a causal way. 

3.4 The method for calculating the scattering cross sections 

Here we consider the steps that are necessary to get from the transition 
amplitude to the scattering cross section for a multiparticle interaction. The 
reasons for doing this are two-fold. On the one hand we have introduced 
a cutoff procedure with the box V and we want to show why it does not 
appear in our final formulas. On the other hand, in the last section, at 
Eq. (3.90) and Fig. 3.1, we considered a particular scattering process. To 
understand the physics of that process we will calculate its properties in 
some detail. The result will serve as an example of other formulas that we 
will meet later on. 

We will consider the matrix element .A between two incoming lp­
particles (energy-momentum kl' k2) and two outgoing lp-particles (k3 and 
k4) interacting via the field <f> according to the interaction term 

J HI(t)dt = J dxg : lp2(x) : <f>(x) (3.97) 
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From Eq. (3.90) we know the term responsible for the transition and so 
we obtain for the matrix element At(k3, k4; kl' k2) 

J d4xd4x'(k3, k4 1!g2 :lp2(x) ::lp2(x') :~F(x'-x)lkl,k2) 

= J d4xd4x' 2g2 X 
4V2 .jOJ IOJ2OJ3OJ4 

{exp[ix(k3 - kr) + ix'(k4 - k2)] + exp[ix(k4 - kr) + ix'(k3 - k2)] 

+ exp[-ix(kl + k2) + ix'(k3 + k4)]} ~F(X' - x) 

2g2 8 i 
4V2 (2n) (j(k1 +k2-k3-k4)(2 )4 

,JOJIOJ2OJ3OJ4 n 

x [(k, - k3~2 - M?i + (k, - k.t~2 - M?i + (k, + k2~2 - M;j 1 
== AB (3.98) 

We have here introduced in the second line of the equation the wave func­
tions for the incoming and outgoing particles, i.e. the factors multiplying 
the necessary annihilation and creation operators in the representation of 
the operators lp. In the third line we have, after the introduction of the 
Fourier representation of the Feynman propagator, performed the space­
time integrals. In the last line we re-express the three terms inside the 
square bracket as B and the remaining factors as A. We note in particular 
that the energy-momentum conserving (j-distribution appears in A. 

The cross section, according to Fermi's Golden Rule, is obtained by 
multiplying the transition rate per unit time by the inverse of the incoming 
particle flux and by the final-state density. We are going to introduce and 
discuss these factors in turn. 

The transition rate is obtained from the square of the matrix element At 
and we immediately encounter the difficulty of squaring a (j-distribution 
in the factor A. If we go back to Eq. (3.51) we note that the distribution 
for a finite box V is, for the momentum part, 

(2n)\5(k - k') ~ V (jk,k' (3.99) 

Consequently the square of the space-momentum part is, formally, 

[(j(k - k')]2 ~ (2:)3 (j(k - k') (3.100) 

For the energy part we note that the (j-distribution stems from an integral 

(j(~E) = ~ [lim 1to dteXp(it~E)] = lim [Sin(to~E)] (3.101) 
2n to~co -to to~co n~E 

The last expression is a well-known representation of the (j-distribution. 
We always have in mind the physical picture that there should be a finite 
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time overlap for the interaction; this corresponds to a finite 'effective' value 
of to. Therefore this representation is in accordance with our intuition. If 
we formally square the last line and note the well-known relation 

1. [Sin(XY)] 
1m =Y 

x--->o X 
(3.102) 

we find the following formal definition of the square of the energy part of 
the b-distribution (with M = 2to the 'interaction time'): 

[b(dE)]2 ~ ~~ b(dE) (3.103) 

Thus the transition rate per unit time is 

w (2g2)2 8 V 2 
At - (4 2)2 (2n) (2 )4 b(kl + k2 - k3 - k4)IBI (3.104) 
il V Wl W2W3W4 n 

The incoming flux, i.e. the number of states interacting per unit time 
and unit transverse area, is vr/V, where Vr is the relative velocity of the 
particles. If we divide the formula in Eq. (3.104) by this flux factor we 
notice that we obtain two factors V in the numerator, one from the (space­
momentum) b-distribution and one from the flux. These two compensate 
the two factors V in the denominator stemming from the two incoming 
particle wave functions. 

The remaining factors from the incoming wave functions, 4WlW2, com­
bine in the denominator with the velocity Vr so that we have 

4WlW2Vr = 4WlW21vl - v21 = 411kllw2 -lk2lwll 

= 4MlM2lsinh(Yl - Y2)1 = 4MlM2V'-co-s-h-2(-Yl---Y-2)---1 

(3.105) 

2V(s - Mr - Mi)2 - 4Mr Mi == 2VA(s, M~, M~) ~ 2s 

with s the squared cms energy s = (kl +k2)2. Here we have first introduced 
the relative velocity and used that each particle velocity is Vj = Ikjl/wj 
and that energies and momenta can be written in terms of rapidities 
Wj = Mj coshYj, Ikjl = Mj sinhYj. The rest is simple manipulation and 
we note that the function A( a, b, c) is totally symmetric: 

A(a, b, c) = a2 + b2 + c2 - 2ab - 2ac - 2bc (3.106) 

The quantity A is very useful for quick calculations of Lorentz boosts. 
Thus the cms momenta of two particles (indexed 1 and 2) with a common 
cms energy .JS has the common cms momentum 

VA(S, Mr,Mi) 
Ikj,cmsl = 2.JS (3.107) 
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while in the rest frame of particle 1, particle 2 has momentum 

VA(s,Mr,Mi) 
Ik 2,/abl = 2Ml (3.108) 

In the rest frame of 2 we simply exchange exchange the indices. 
The third factor in the cross section, the final-state density is the number 

of momentum states available and is given by Eq. (3.50). We note that 
it will contain in the numerator as many V -factors as particles. This will 
compensate the corresponding denominator V -factors from the final state 
particle wave functions. All in all this final-state density therefore combines 
with the wave function factors into 

II d3kh II dkjf + 2 2 
2(0' (2n)3 = . (2n)3 <5 (kjf - Mh ) 

jf 1J 1J 

(3.109) 

where we have used Eq. (3.66). 
The full cross section then will appear as (for nj final-state particles) 

d(J = 2g4 IB 12 
(2n)(3nf-4) V A(S, M~, M~) 

x II dkjf <5+(k]f - M1)<5(kl + k2 - Lkjf ) (3.110) 

The general phase-space factors in Eq. (3.110) will always occur in two­
body to many-body processes but the factor 2g41B 12 (with the matrix 
element B defined in Eq. (3.98)) is specific to the particular process we 
have considered. We will meet the result repeatedly later in the book and 
we note that it is manifestly Lorenz-invariant. 

3.5 The propagators in lightcone physics in the infinite-momentum 
frame 

1 The formalism 

We will in this section provide a different picture of the the Feynman rules 
by exhibiting the properties of perturbation theory when lightcone coordi­
nates are used. The propagator in energy-momentum space will then have 
strong similarities to the old-fashioned energy denominators occurring in 
time-dependent perturbation theory in nonrelativistic dynamics. 

Basically the scenario describes a two-dimensional field theory in trans­
verse dimensions with a varying mass parameter which corresponds to 
one of the lightcone components. The whole idea stems from early in­
vestigations by Weinberg, [111], into the possibility of simplifying the 
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Feynman rules by performing all the integrals in a frame moving very fast 
in some direction. This has been called the 'infinite-momentum frame'. 
The discussion is based upon the development in [87]. 

The formalism is useful to understand intuitively some of the features 
of the parton model which is discussed in Chapter 5. We will use some of 
the results in connection with heavy quark fragmentation in Chapter 13. 

We begin by defining the lightcone components 17, Hand r, C of the 
energy-momentum and space-time operators: 

Po + P3 t + X3 
17= J2 ' r= J2 

Po - P3 t- X3 

H= J2 ' C= J2 
(3.111) 

We will call the 1- and 2-components the transverse components of the 
corresponding four-vector and denote these by Pl. and Xl.. 

According to the ordinary commutation relations we have 

[17,r] = [17,H] = [H,C] = [r,C] = 0 

[17,C] = [H,r] = i 

and all these components commute with the transverse ones. 
The mass-shell condition for a free particle means that 

2 
2 p2 p2 2 HPJ. TT m = 0 - 3 - P 1. => = 217 + "0 

(3.112) 

(3.113) 

where Vo = m2 /217 is similar to a potential term. This is evidently a 
reduction of the problem to the two transverse dimensions using the 
variable 'mass' -parameter 17. 

We next consider the Feynman propagator and rewrite it in terms of 
the variables given above: 

AF(X) = _i_ J dkexp(ikx) 
(2n)4 k2 - M2 + ie 

= (2:)4 J d2pl. J d17 exp i(17C - Pl. . Xl.) 

x J dH exp(iHr)(217H - pi - M2 + ie)-l (3.114) 

We note that by use of the results in Eq. (3.80) we may now write the 
following formula for the Feynman propagator: 

1 J roo d17 AF(X) = 2(2n)3 d2pl. Jo n-[E>(r)exp(-ipx)+E>(-r)exp(iPx)] 

(3.115) 
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Fig. 3.2. One of the possible Feynman diagrams in the process 1jJ1 + 1jJ2 ~ 

1jJ3 + 1jJ4 + CPs and the same diagram ordered according to one of the possible 
orderings along the lightcone. 

where px = HT+1]( -P..L ·X..L and H is defined by the mass-shell condition 
above. 

In order to obtain the result in Eq. (3.115) we have divided the integra­
tion region of 1] into positive and negative parts to obtain the sign of the 
limiting imaginary part and then changed sign for the negative part. This 
provides the signs in the complex exponents. 

We have thus come back to expressions with the properties described 
before. The 'effective' energy H is like a nonrelativistic kinetic energy term 
related to the generalised 'time', i.e. the lightcone coordinate To 

2 An example 

We will next provide an example of how the Feynman rules work when 
lightcone coordinates are used; we consider the Feynman diagram in Fig. 
3.2(a). This corresponds to the g¢: tp2 :-theory we have discussed before 
and contains the scattering of two tp-particles together with the emission 
of a ¢-particle in a bremsstrahlung process. We note that there are several 
more diagrams which will contribute to the process. 

In Fig. 3.2(b) we have drawn a version of the diagram in which there 
is a particular ordering of the T-variables. A little thought will convince 
us that if we have n vertices in the primary Feynman diagram then there 
are n! such ordered diagrams possible. That means six in this case and we 
have considered the one corresponding to the ordering T1 :::;; T2 :::;; T3. 

In the ordered diagram we must perform the T-integrals with this 
ordering requirement, which means that only one of the 8-terms in the 
representation of Eq. (3.115) survives the requirement. 

There are two propagator terms and three T-integrals. Note that all the 
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transverse integrals and the (-integrals can easily be performed to give at 
each vertex a b-distribution contribution 

(3.116) 

where the indices i, f correspond to the 'in' - and 'out' -contributions at that 
vertex. Note that we have directed the vectors in Fig. 3.2(b). 

The T-integrals are given by 

I = J dT1dT2 dT30 (T3 - T2)0(T2 - Tt} exp{ -i[(HI - H3 - H6)Tl 

+(H6 - H4 - H7 )T2 + (H7 + H2 - HS)T3]) (3.117) 

If we introduce the natural variables To = Tl, Tl = T2 - Tl, T2 = T3 - T2 
then the integrals are transformed to give 

1= J dToexp [-i(J'f i - J'ff)To] 1000 dTI exp [-i(J'f1 - J'ff)TI] 

x 1000 dT2 exp [-i(J'f2-J'ff)T2] (3.118) 

where we have introduced the notation 

J'f i =Hl+ H2, J'ff=H3+ H4+ HS 

J'fl = H3 + H6 + H2, J'f2 = H2 + H7 + H4 
(3.119) 

Again the indices i, f correspond to the energies of the incoming and 
outgoing states (this time for the whole diagram, with signs) and the two 
indices 1 and 2 correspond to the intermediate states. If we consider Fig. 
3.2( b) it is obvious what is meant by the intermediate states. They refer to 
those particles which exist at a particular T-slice, for the index 1 the slice 
between Tl and T2, for the index 2 the slice between T2 and T3. 

The To-integral, which is taken over the whole lightcone time, provides 
a b-distribution for overall energy conservation. The Tl- and T2-integrals 
only cover the positive regions and each give 

roo dT exp(iJ'fT) = J'f i . (3.120) 
Jo + IE 

This means that the total result will contain, besides an overall energy­
momentum-conserving b-distribution, 'mass'-conserving , i.e. 1J-conserving, 
and transverse-momentum-conserving b-distributions at each vertex, 
something very similar to old-fashioned energy denominators: 

(3.121 ) 

one for each intermediate state. It is not difficult to see that this structure 
survives for all the different contributions. Further, as one may guess, it 
is possible to do the same for any kind of field theory, although there 
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are often more singular parts of the propagators (for QED cf. [87]) than 
those we encountered in the simple scalar theory. 

It is worthwhile to note that that the 1]-terms we find everywhere are 
nothing other than the quantities 

dPI 
2e 

dy 
2 

(3.122) 

which we met before in the method of virtual quanta in Chapter 2, and 
also will meet later as Feynman's 'wee spectrum' of partons. 

In this way each n-vertex Feynman graph can be reduced to n! old­
fashioned energy denominator integrals. This might not seem to be a 
major achievement. But this formalism often makes it easier to perform 
reasonable approximations among the many diagrammatic contributions 
to a particular scattering situation or bound-state configuration. It also 
provides an intuitively appealing picture of the difference between the 
longitudinal and the transverse dynamics. 
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