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Abstract

Microscale propulsion is integral to numerous biomedical systems, including biofilm
formation and human reproduction, where the surrounding fluids comprise suspensions
of polymers. These polymers endow the fluid with non-Newtonian rheological
properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of
non-Newtonian fluids present numerous modelling challenges. Here, we demonstrate
that neglecting ‘out-of-plane’ effects during swimming through a shear-thinning
fluid results in a significant overestimate of fluid viscosity around the undulatory
swimmer Caenorhabditis elegans. This miscalculation of viscosity corresponds with an
overestimate of the power the swimmer expends, a key biophysical quantity important
for understanding the internal mechanics of the swimmer. As experimental flow-tracking
techniques improve, accurate experimental estimates of power consumption in similar
undulatory systems, such as the planar beating of human sperm through cervical mucus,
will be required to probe the interaction between internal power generation, fluid
rheology, and the resulting waveform.
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1. Introduction

Despite a history of mathematical study dating back nearly 70 years to the work of
Taylor [30], microscale propulsion remains an increasingly active topic in applied
mathematics. The diversity and importance of life at the microscopic scale cannot be
overestimated; there are over 1400 known human pathogens alone [1], accounting for
much less than 1% of the total number of microbial species. In many cases, propulsion
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Figure 1. (a) The 1 mm long nematode C. elegans, with centreline and centroid in red and sample outward
normal vector n. (b) Steady rheology curves showing viscosity η versus shear rate γ̇ for shear-thinning
solutions of xanthan gum in buffer; increasing viscosity indicates increasing concentration, which ranges
from 50–3000 ppm by weight. (c)–(d) Snapshot of the streamlines around a freely swimming nematode
in a Newtonian and shear-thinning fluid, respectively. Colour represents fluid speed.

through fluids forms a key part of a microbe’s life cycle, and in a biomedical context,
can be central to disease virulence and mammalian fertility. Motility in Trypanosoma
brucei, the parasite responsible for sleeping sickness, is integral to its development
[12]. In Helicobacter pylori, motility improves initial colonisation and leads to a more
robust infection of gastritis and ulcers [21]. In contrast to the helical propulsion
of many other bacteria, Borrelia burgdorferi, the spirochete responsible for Lyme
disease, produces planar undulations allowing it to propel through the viscoelastic
gel environment of the mammalian dermis [3]. Finally, sperm cells, which also use
an undulatory swimming gait, move through viscoelastic and shear-thinning cervical
mucus [5, 7, 13, 28, 33]. This biomedical relevance, improvements in analytical and
numerical techniques, and recent experimental work towards using artificial [9, 17, 23]
and biological propulsion [22, 26] for disease detection and drug delivery has driven
recent increased interest in modelling swimming at small length scales.

In many systems relevant to medicine, microscale swimmers progress through
polymer suspensions such as mucus [15]. Due to the complexity of non-Newtonian
fluid modelling, analytical and numerical studies must typically make simplifying
assumptions about the underlying system. Examples are two-dimensional (2D) studies
extending Taylor’s small-amplitude analysis to non-Newtonian rheologies [4, 14, 24,
25, 34], 2D non-Newtonian simulations [19, 20, 31, 32], and three-dimensional (3D)
studies with either small-amplitude beating [6] or simplified rheology [7]. Whilst these
studies have proven invaluable in shaping our knowledge, intuition, and understanding
of microscale swimming, there nevertheless remains a critical role for experimental
studies as a means of more closely approximating systems in natura.

Shear-thinning is an important property of polymer suspensions, such as human
cervical mucus, whereby the suspended polymers align with shear flow allowing them
to slip past one another more easily, resulting in regions of lower apparent viscosity.
Swimmers in shear-thinning fluids generate a corridor of thinned fluid surrounding
themselves that can lead to gains in propulsive velocity [11, 16]. Recent experimental
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work has furthermore shown that a low Reynolds number swimmer generates a thinned
fluid envelope extending in all directions approximately one body-length in diameter
[10]. These experiments also suggested that while shear-thinning rheology increases
swimming speed and decreases the cost of swimming relative to a Newtonian fluid of
the same zero-shear viscosity, the kinematics and dynamics of an undulatory swimmer
in a shear-thinning fluid is nearly identical to that of a Newtonian fluid with the same
effective or average viscosity [8, 10].

Experimental data acquisition of flow fields driven by microswimmers is typically
limited to a 2D slice at a swimmer’s midplane; the flow shear rate depends upon
velocity derivatives, and as such a highly-resolved differentiable flow field is required
to probe the effects of shear-thinning rheology. However, while 2D data are sufficient
to accurately measure the flow field around a planar swimmer, the shear rate and
therefore the flow dynamics are dependent upon out-of-plane flow derivatives, which
must be properly incorporated into the analysis [18]. Ignoring these effects results in
relative errors in the shear rate of 25% to 40% for C. elegans in a Newtonian fluid [18].

This relative error in shear rate indicates that non-Newtonian effects on both
locomotion and the resulting flow field in complex fluids may be larger than
anticipated. Examples in which underestimating the local shear rate may yield
significant errors include the impact of elastic stretching on locomotion, measured
by the Weissenberg number Wi = λE γ̇ where λE is the longest relaxation time of the
fluid, and the effects of swimming through a generalised Newtonian fluid, whose shear-
thinning or shear-thickening behaviour is indicated by the Carreau number Cr = λCrγ̇
where λCr is a timescale that represents the onset of shear-thinning effects [18].

In this study, we experimentally quantify the errors introduced when estimating the
cost of swimming in shear-thinning fluids from 2D data without accounting for out-of-
plane effects around the low Reynolds number swimmer C. elegans. We then derive
a scaling argument to show that this error depends approximately linearly upon the
power-index of the fluid. We begin with a discussion of the experimental protocols
and the equations underlying the flow dynamics.

2. Methods

2.1. Experimental techniques To quantify the impact of out-of-plane factors, we
examine the flow fields generated by C. elegans using image processing and particle
tracking velocimetry techniques. C. elegans, a 1 mm long nematode (see Figure 1(a)),
swims with a predominantly planar sinusoidal swimming gait [29]. We seed shear-
thinning fluids with tracer particles, which are dilute and do not affect the fluid
properties. We then measure the time-periodic flow fields over six to ten beat cycles,
and use a least-squares fitting algorithm to phase match each cycle by comparing
instantaneous body shapes. In this way, successive cycles can be folded into one single
master cycle, greatly improving our spatial resolution and allowing for the calculation
of smooth spatial derivatives of velocity.

In our previous work, we have experimentally explored the differences in the
resulting flow fields generated by swimming C. elegans as a function of the
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shear-thinning behaviour; we observed: (i) an increase in the magnitude of vorticity
(also predicted theoretically via the waving sheet model by Vélez-Cordero and Lauga
[34]), (ii) a redistribution of fluid velocities from head to tail, and (iii) kinematics (for
example, swimming speed U and frequency f ) and mechanical power that scale with
a shear-thinning fluid’s effective viscosity. We note that effective viscosity is defined
as the average viscosity experienced by a nematode using the characteristic shear rates
of its swimming gait, 0.35 . γ̇ . 15 s−1 [8, 10].

In this study, we focus on measurements of the cost of swimming, or mechanical
power, expended by C. elegans in shear-thinning fluids. We experimentally obtain
three components to compute the mechanical power of C. elegans: (i) the
instantaneous position of the fluid–worm interface S via image processing, (ii) a
spatially differentiable flow field u from particle tracking techniques, and (iii) a
constitutive model for the fluid stresses σ from rheology and the Carreau–Yasuda
model (see Section 2.2). To estimate S , we multiply the observed body contours by
the diameter of the nematode’s body (80 µm) to form a thin surface area. Figure 1(c,d)
shows the streamlines at a particular phase of the nematode beating cycle generated
experimentally from particle tracking velocimetry in a Newtonian and a representative
shear-thinning fluid, respectively. We note that the body shapes are approximate (for
more details on the techniques and data, see [8, 10, 18]).

2.2. Fluids and rheology Following previous studies [8, 10], we consider the
swimming of C. elegans through sufficiently viscous fluids so that the ratio of viscous
to inertial forces, the Reynolds number, is small: Re . 0.1. In such viscous flows,
the dynamics of the fluid may be modelled via the inertialess generalised Stokes flow
equations

∇ · σ = 0, ∇ · u = 0, (2.1)

where u is the fluid velocity and σ is the stress tensor

σ = −pI + η(γ̇)γ̇,

with γ̇ = |γ̇| ≡
√

(γ̇ : γ̇)/2, the magnitude of the shear rate tensor γ̇ ≡ (∇u + ∇uT) and
p the pressure. For Newtonian fluids, the fluid viscosity η is constant; however for
rate-dependent fluids, the viscosity η(γ̇) depends upon this flow shear rate γ̇. Thus,
the equations governing shear-thinning flow are nonlinear, making 3D analytical and
numerical approaches difficult.

We prepare shear-thinning fluids by adding small amounts of the polymer xanthan
gum (XG, 2.7 × 106 MW, Sigma Aldrich G1253) to water in the presence of salt.
The XG concentration in buffer ranges from 50 to 3000 ppm, and solutions are well-
mixed. These aqueous XG solutions have been well-characterised and have negligible
elasticity [8, 10, 27]. We characterise all fluids (Newtonian and shear-thinning) using
a cone-and-plate rheometer (strain-controlled RFS III, TA Instruments) at a range of
constant shear rates. At the lowest concentration (cXG = 50 ppm), the behaviour of
the XG solutions is approximately Newtonian, while we find strong shear-thinning
behaviour (for example, power-law viscosity) for the most concentrated XG solutions
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(Figure 1(b)); we note that we cannot independently tune shear-thinning behaviour and
bulk viscosity, since both quantities increase with additional polymer. We quantify this
behaviour by fitting the rheological measurements with the Carreau–Yasuda model [2]

η (γ̇) = η∞ + (η0 − η∞)(1 + (λCrγ̇)2)(n−1)/2, (2.2)

where η0 is the zero-shear viscosity, η∞ is the infinite-shear viscosity, and n is the
power-law index. The Carreau time scale λCr is the inverse of the shear rate at which
shear-thinning effects become significant.

3. Results and discussion

3.1. Correcting for out-of-plane contributions Given an experimental planar
flow field u(x, y), v(x, y), we want to calculate the shear rate field to obtain a viscosity
field. In component form, the total shear magnitude is given by

γ̇3D = [2u2
x + (uy + vx)2 + 2v2

y + 2w2
z + (uz + wx)2 + (vz + wy)2]1/2,

which contains nontrivial components in the z-direction that are not captured by
experiment. Under the condition that worm kinematics are planar, vz = uz = 0 by
symmetry. Furthermore, by incompressibility, wz = −ux − vy. Using these conditions,
which are valid for a range of non-Newtonian flows, the 3D formula for shear rate in
the midplane can be written in terms of the available 2D data [18],

γ̇3D = γ̇pl = [2u2
x + 2v2

y + (uy + vx)2 + 2(ux + vy)2]1/2. (3.1)

We can then examine the effect of neglecting these out-of-plane contributions by
calculating the fluid viscosity η3D based upon the full 3D shear rate γ̇3D, and the
viscosity η2D based upon the 2D shear rate γ̇2D,

γ̇2D = [2u2
x + (uy + vx)2 + 2v2

y]1/2. (3.2)

Since the 3D shear rate magnitude must be greater than or equal to the 2D shear rate
magnitude (γ̇3D ≥ γ̇2D), the uncorrected planar (2D) data systematically overestimates
local viscosities (η3D ≤ η2D), and therefore, also overestimates the cost of swimming
(P3D ≤ P2D) in a shear-thinning fluid via the Carreau–Yasuda model (2.2). Figure 2
shows the overestimate in viscosity (η2D − η3D)/η3D ≥ 0 for a variety of fluids at a
particular beat phase.

3.2. Calculating the cost of swimming With knowledge of the velocity, shear rate,
and viscosity fields, the cost of swimming or mechanical power is a simple accounting
of the rate of energy expenditure required to deform a swimmer’s body in a viscous
medium. Here, we estimate the cost of swimming by integrating the viscous and
pressure forces at the swimmer–fluid interface assuming a no-slip boundary condition.

For a translating body in the Stokes flow, the differential force dF on a given
element of the swimmer’s surface dS is

dF = n · σ dS ,
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Figure 2. Error in computing local viscosity via the Carreau–Yasuda model (equation (2.2)) using the
‘planar’ shear rate (equation (3.1)) and the experimentally measured 2D shear rate (equation (3.2)) for
three different shear-thinning fluids, from nearly Newtonian (left) to highly shear-thinning (right).

where n is the outward normal vector from the swimmer’s surface. Since a
microorganism is freely swimming with no external forces or torques acting upon its
body, it is instantaneously force-free and the integral of F over the surface S is zero.
Note that the local forces are only dependent on body shape of the swimmer and fluid
stresses from the aforementioned fundamental equations (2.1).

With knowledge of the local forces, we then calculate the local mechanical power
(or rate of work)

dP = −dF · u = −n · σ · u dS ,

where u is the velocity of the surface of the swimmer. Integrating over the full surface
of the swimmer, we obtain the cost of swimming

P = −

∫
S

n · σ · u dS . (3.3)

We then incorporate the flow fields and body geometries obtained via image processing
and particle tracking techniques to find the typical cost of swimming over a full beating
cycle (see [10] for more details). We perform this calculation twice using the same
data. First, we compute P3D using the 3D shear rate (3.1) and second P2D using the 2D
shear rate (3.2). A summary of these data are shown in Figure 3 as a function of the
average or effective viscosity ηeff experienced by the swimmer; increasing effective
viscosity indicates increasing polymer concentration and shear-thinning behaviour.
Since the shear rate magnitude is greater when out-of-plane derivatives are included,
the viscosity of a shear-thinning fluid in 3D is lower than would be expected from
2D calculations; we therefore anticipate our 3D estimate of power to be lower than
that calculated without the out-of-plane correction. Indeed, we find η3D ≤ η2D and
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Figure 3. Cost of swimming (mechanical power, equation (3.3)) calculated via the experimentally
measured 2D shear rate (open circles, (3.2)) and the corrected ‘planar’ shear rate (solid x’s (3.1)). Data
represent calculations in different fluids with varying rheological parameters with 1 > n > 0.3 and are
shown as a function of average or ‘effective’ viscosity ηeff ; increased effective viscosity corresponds to
increased polymer concentration and thus shear-thinning behaviour. Note that with increasing shear-
thinning, the difference between the estimated power grows.

therefore P3D ≤ P2D; furthermore, the discrepancy between P3D and P2D grows with
increasing shear-thinning behaviour.

3.3. Quantifying the out-of-plane error With the cost of swimming in shear-
thinning fluids calculated using both shear rate formulae, we can now determine
the error introduced by considering a 2D flow field without applying an out-of-
plane correction. Since we have planar beating, in the midplane n = [nx, ny, 0] and
u = [u, v, 0] so that out-of-plane components in σ do not play a part when the power
is estimated via the midplane velocity field. The only difference appears in the
calculation of η(γ̇) using the 2D (3.2) versus 3D (3.1) shear rate formulae.

Figure 3 details the difference between power calculated with the 2D (3.2) and 3D
(3.1) formulae, demonstrating that indeed the true cost of swimming is lower than
previously calculated using the 2D estimate of shear rate. How significant is this error,
and can its importance be easily predicted a priori for a given system? Since

P ∝ n · σ · u,

we observe that

P2D ∝ n · (−pI + τ2D) · u = n · (−pI + η2Dγ̇2D) · u,
P3D ∝ n · (−pI + τ3D) · u = n · (−pI + η3Dγ̇2D) · u,
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since in the midplane n · γ̇3D · u = n · γ̇2D · u, which is more clear in the component
form

(
n1, n2, 0

)
·

γ̇11 γ̇12 γ̇13
γ̇21 γ̇22 γ̇23
γ̇31 γ̇32 γ̇33

 ·
u1
u2
0

 = n1(γ̇11u1 + γ̇12u2) + n2(γ̇21u1 + γ̇22u2)

=
(
n1, n2

)
·

(
γ̇11 γ̇12
γ̇21 γ̇22

)
·

(
u1
u2

)
.

When we evaluate the surface integral for power, this midplane line is projected to
the whole surface as a best approximation of what is possible with planar data. Note
also that by incompressibility, components of the form ux + vy are included in the 3D
viscosity calculation via wz = −(ux + vy). Examining the relative error in the power
used by the worm,

P3D − P2D

P3D
≈

n · (η3Dγ̇2D − η2Dγ̇2D) · u
n · η3Dγ̇2D · u

=
η3D − η2D

η3D
.

For ease of notation, we write γ̇3D − γ̇2D = k, for some variable k that may depend
upon the degree of shear-thinning, and write α = n − 1. Then,

η2D = η∞ + (η0 − η∞)(1 + λ2γ̇2
2D)α/2,

η3D = η∞ + (η0 − η∞)(1 + λ2(γ̇2D + k)2)α/2.

Assuming that for most shear-thinning fluids, η0 � η∞ [34], and for worm swimming
λγ̇� 1 [18], we have the ratio

η2D

η3D
≈

η0(λαγ̇α2D)
η0(λα(γ̇2D + k)α)

=
γ̇α2D

(γ̇2D + k)α
=

[
1 +

k
γ̇2D

]−α
.

Since 0 ≤ k/γ̇2D < 1, we thus have the first-order expansion

η2D

η3D
≈ 1 −

|k|
γ̇2D

α,

so that
P3D − P2D

P3D
=
η3D − η2D

η3D
≈ 1 −

[
1 −

k
γ̇2D

α

]
,

and finally, representing (P3D − P2D)/P3D as the power ratio Pr, we see that

Pr ≈ (n − 1)
γ̇3D − γ̇2D

γ̇2D
= (n − 1)

(
γ̇3D

γ̇2D
− 1

)
,

giving

Pr ≈ (n − 1)
(
γ̇3D

γ̇2D
− 1

)
, (3.4)

which for the Newtonian case (n = 1) is zero, as expected.
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Figure 4. Power ratio Pr = (P3D − P2D)/P3D versus shear-thinning index n, calculated with a separate
γ̇3D/γ̇2D for each fluid. The linear scaling (equation (3.5), dashed line) is given for constant average
γ̇3D/γ̇2D = 1.23. The ratio γ̇3D/γ̇2D is inset as a function of n and demonstrates little variation across all
power indices.

For only slightly changing worm kinematics [8], we expect that the shear rate
does not vary appreciably with the degree of shear-thinning [16]. Furthermore,
experiments have suggested that kinematics in shear-thinning and Newtonian fluids
of the same effective viscosity are nearly identical and fairly insensitive to changes
in bulk viscosity. The effective viscosity of a fluid is defined as the average
viscosity experienced by the worm over its range of characteristic shear rates [10].
Because these experimentally measured kinematics seem to be largely independent of
shear-thinning effects, this implies that the swimmer is imposing similar boundary
conditions, and therefore, similar fluid velocities and shear rates despite different
degrees of shear-thinning behaviour [8, 10, 16]. We therefore hypothesise that the
ratio γ̇3D/γ̇2D may be approximately constant across all experiments.

To test this hypothesis, we return to our experimental data and calculate the average
shear rate measured in our flow field over a full beating cycle; to reduce noise, we only
consider shear rates equal to or greater than 2% of the maximum shear rate measured
during the cycle. Indeed, we find that the ratio of the typical time-averaged 3D to 2D
shear rates γ̇3D/γ̇2D has a mean of 1.23 and a standard deviation of just 0.01 (Figure
4, inset), and thus we expect a linear dependence in the relative error in the power
calculation as a function of the power-law index n. Substituting γ̇3D/γ̇2D into equation
(3.4) yields

Pr ≈ (n − 1)
(
γ̇3D

γ̇2D
− 1

)
. (3.5)
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We now compare this linear scaling to our measured power ratio Pr as a function of
power-law index n. With no parameter fitting, we see that this linear scaling shows
good agreement with experimental data (Figure 4). These results suggest that the
inaccuracies introduced by ignoring out-of-plane effects for an undulatory swimming
gait in a generalised Newtonian fluid can be quantified simply with rheological
properties and an estimate of the fluid shear rate normal to the beating plane, which can
be easily obtained via the incompressibility condition and available 2D shear rate data.

4. Conclusion

Microscale swimming via planar undulations through suspensions of polymers
is of direct importance to a number of medically relevant systems, such as human
reproduction and disease. Whilst the nonlinear nature of such fluids can make
analytical and numerical study difficult, experimental studies provide an effective
means of closely approximating these systems in natura, as well as improving
and validating modelling. Experimental flow field data can be used to probe
important biophysical quantities, for instance, power expenditure for locomotion.
Such quantities depend on flow derivatives, and so highly resolved flow fields are
required for accurate estimation, restricting results to 2D data in the swimmer
midplane. However, out-of-plane derivatives can be accounted for via symmetry
arguments [18], and here we show that neglecting to include these components results
in an overestimate of the power expended by a nematode in a shear-thinning fluid.
Under certain approximations [10], this overestimate was shown to depend on the
calculation of the effective viscosity in the swimmer midplane, and for the data
considered could be as high as 16%. By applying a simple scaling argument, we show
that this overestimate varies approximately linearly with the power-law index n of the
shear-thinning fluid, reaching good agreement with experimental data. As imaging
techniques improve, it will become feasible to reconstruct differentiable flow fields
around smaller-scale swimmers, such as human sperm and spirochetes, which exhibit
planar beating to propel through non-Newtonian fluids. It will then be important to
include out-of-plane contributions in the analysis of such studies.

Acknowledgements

D. A. Gagnon and T. D. Montenegro-Johnson contributed equally to this work.
Authors would like to thank P. E. Arratia and E. Lauga for helpful discussions. This
work was supported by NSF-CBET-PMP-1437482. T. D. Montenegro-Johnson was
supported by a Royal Commission for the Exhibition of 1851 Research Fellowship.

References
[1] “Microbiology by numbers, Editorial”, Nat. Rev. Microbiol. 9 (2011) 628–628;

doi:10.1038/nrmicro2644.
[2] P. J. Carreau, D. C. R. DeKee and R. P. Chhabra, Rheology of polymeric systems (Hanser, Munich,

1997).

https://doi.org/10.1017/S1446181118000032 Published online by Cambridge University Press

http://dx.doi.org/10.1038/nrmicro2644
https://doi.org/10.1017/S1446181118000032


[11] Thrifty swimming with shear-thinning 453

[3] N. W. Charon, A. Cockburn, C. Li, J. Liu, K. A. Miller, M. R. Miller, M. A. Motaleb and C. W.
Wolgemuth, “The unique paradigm of spirochete motility and chemotaxis”, Annu. Rev. Microbiol.
66 (2012) 349–370; doi:10.1146/annurev-micro-092611-150145.

[4] G. Cupples, R. J. Dyson and D. J. Smith, “Viscous propulsion in active transversely isotropic
media”, J. Fluid Mech. 812 (2017) 501–524; doi:10.1017/jfm.2016.821.

[5] L. J. Fauci and R. Dillon, “Biofluidmechanics of reproduction”, Annu. Rev. Fluid Mech. 38 (2006)
371–394; doi:10.1146/annurev.fluid.37.061903.175725.

[6] H. C. Fu, C. W. Wolgemuth and T. R. Powers, “Swimming speeds of filaments in nonlinearly
viscoelastic fluids”, Phys. Fluids 21 (2009) 033102–033110; doi:10.1063/1.3086320.

[7] G. R. Fulford, D. F. Katz and R. L. Powell, “Swimming of spermatozoa in a linear viscoelastic
fluid”, Biorheology 35 (1998) 295–309; doi:10.1016/S0006-355X(99)80012-2.

[8] D. A. Gagnon, N. C. Keim and P. E. Arratia, “Undulatory swimming in shear-thinning fluids:
experiments with Caenorhabditis elegans”, J. Fluid Mech. 758 (2014) R3;
doi:10.1017/jfm.2014.539.

[9] D. A. Gagnon, N. C. Keim, X.-N. Shen and P. E. Arratia, “Fluid-induced propulsion of rigid
particles in wormlike micellar solutions”, Phys. Fluids 26 (2014) 103101; doi:10.1063/1.4896598.

[10] D. A. Gagnon and P. E. Arratia, “The cost of swimming in generalized Newtonian fluids:
experiments with C. elegans”, J. Fluid Mech. 800 (2016) 753–765; doi:10.1017/jfm.2016.420.
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