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Abstract

A simple probabilistic argument shows that every r-uniform hypergraph with m edges
contains an r-partite subhypergraph with at least (r!/rr)m edges. The celebrated result of
Edwards states that in the case of graphs, that is r = 2, the resulting bound m/2 can be
improved to m/2 + �(m1/2), and this is sharp. We prove that if r ≥ 3, then there is an r-
partite subhypergraph with at least (r!/rr)m + m3/5−o(1) edges. Moreover, if the hypergraph
is linear, this can be improved to (r!/rr)m + m3/4−o(1), which is tight up to the o(1) term.
These improve results of Conlon, Fox, Kwan and Sudakov. Our proof is based on a com-
bination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite
programming.

A key part of our argument is relating the energy E(G) of a graph G (i.e. the sum of
absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that
every m edge multigraph G has a cut of size at least m/2 + �(E(G)/log m), which might be
of independent interest.

2020 Mathematics Subject Classification: 05C35 (Primary); 05C65, 05C50 (Secondary)

1. Introduction

Given a graph G, a cut in G is a partition of the vertices into two parts, together with all
the edges having exactly one vertex in each of the parts. The size of the cut is the number of
its edges. The MaxCut problem asks for the maximum size of a cut, denoted by mc(G), and
it is a central problem both in discrete mathematics and theoretical computer science [1, 2, 4,
7, 8, 11, 12]. If G has m edges, a simple probabilistic argument shows that the maximum cut
is always at least m/2, so it is natural to study the surplus, defined as sp(G) = mc(G) − m/2.
A fundamental result in the area is due to Edwards [7, 8] stating that every graph G with m
edges satisfies sp(G) ≥ (

√
8m + 1 − 1)/8 = �(m1/2) and this is tight when G is the complete

graph on an odd number of vertices. The study of MaxCut in graphs avoiding a fixed graph
H as a subgraph was initiated by Erdős and Lovász (see [9]) in the 70’s, and substantial
amount of research was devoted to this problem since then, see e.g. [1, 2, 4, 11, 12].
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46 EERO RÄTY AND ISTVÁN TOMON

The MaxCut problem can be naturally extended to hypergraphs. If H is an r-uniform
hypergraph (or r-graph, for short), a k-cut in H is a partition of the vertex set into k parts,
together with all the edges having at least one vertex in each part. Similarly as before,
mck(H) denotes the maximum number of edges in a k-cut. This notion was first considered
by Erdös and Kleitman [10] in 1968, and they observed that if H has m edges, then a random
k-cut (i.e., where every vertex is assigned to any of the parts independently with probability
1/k) has (S(r, k)k!/kr)m edges in expectation, where S(r, k) is the Stirling number of the
second kind, i.e. the number of unlabelled partitions of {1, . . . , r} into k non-empty parts.
In computer science, the problem of computing the 2-cut is known as max set splitting, or
Er-set splitting if the hypergraph is r-uniform, see e.g. [14, 15].

Similarly as before, we define the k-surplus of an r-graph H as

spk(H): = mck(H) − S(r, k)k!
kr

m,

that is, the size of the maximum k-cut of H above the expectation of the random cut. A
simple extension of the methods used for graphs shows that Edwards’ lower bound holds for
hypergraphs as well, that is, spk(H) = �r(m1/2). However, as proved by Conlon, Fox, Kwan
and Sudakov [6], this can be significantly improved, unless (r, k) = (3, 2).

Consider the case r = 3 and k = 2. Let H be a 3-graph and let G be the underlying multi-
graph of H, that is, we connect every pair of vertices in G by an edge as many times as it
appears in an edge of H. It is easy to see that if X ∪ Y is a partition of V(H), then H has
half the number of edges in the 2-cut (X, Y) as G. Hence, the problem of 2-cuts in 3-graphs
reduces to a problem about cuts in multi-graphs, and thus not much of an interest from the
perspective of hypergraphs. In particular, in case H is a Steiner triple system, then G is the
complete graph, thus sp2(H) = �(

√
m). Therefore, the bound of Edwards is sharp in this

case. However, as it was proved by Conlon, Fox, Kwan and Sudakov [6], in the case of
3-cuts, we are guaranteed much larger surplus, in particular sp3(H) = �r(m5/9). We further
improve this in the following theorem.

THEOREM 1·1. Let H be a 3-graph with m edges. Then H has a 3-cut of size at least

2

9
m + �

(
m3/5

( log m)2

)
.

If H is the complete 3-graph on n vertices, then m = (n
3

)
and sp3(H) = O(n2), so sp3(H)

might be as small as O(m2/3). It is conjectured by Conlon, Fox, Kwan, and Sudakov [6] that
this upper bound is sharp. A hypergraph is linear if any two of its edges intersect in at most
one vertex. We prove the following stronger bound for linear 3-graphs.

THEOREM 1·2. Let H be a linear 3-graph with m edges. Then H has a 3-cut of size at least

2

9
m + �

(
m3/4

( log m)2

)
.

In case the edges of the n vertex 3-graph H are included independently with probability
n−1, then H is close to being linear in the sense that no pair of vertices is contained in
more than O( log n) edges with positive probability. Also, it is not hard to show that sp(H) =
O(m3/4) with high probability, see Section 2·2 for a detailed argument. We believe that
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more sophisticated random 3-graph models can produce linear hypergraphs with similar
parameters, however, we do not pursue this direction.

Theorems 1·1 and 1·2 can be deduced, after a bit of work, from the following general
bound on the surplus of 3-graphs, which takes into account the maximum degree, and
maximum co-degree.

THEOREM 1·3. Let H be a 3-uniform multi-hypergraph. If H contains an induced subhy-
pergraph with m edges, maximum degree � and maximum co-degree D, then

sp3(H) ≥ �

(
m√

�D( log m)2

)
.

Consider the random 3-graph on n vertices, in which each edge is chosen independently
with probability p, where log n/n2 � p � 1/n. With positive probability, this hypergraph
satisfies � = �(pn2), D = O( log n), m = �(pn3) and sp3(H) = O(

√
pn2), see Section 2·2

for a detailed argument. The upper bound on the surplus of this 3-graph coincides with the
lower bound of Theorem 1·3 up to logarithmic factors, showing that our theorem is tight for
a large family of parameters.

Now let us consider k-cuts in r-graphs for r ≥ 4 and 2 ≤ k ≤ r. In this case, Conlon, Fox,
Kwan, and Sudakov [6] established the same lower bound spk(H) = �r(m5/9). From above,
they showed that if H is the random r-graph on n vertices, where each edge is included with
probability p = 1

2 n−(r−3), then spk(H) = Or(m2/3) with high probability. This disproved the
conjecture of Scott [18] that complete r-graphs minimize the maximum 2-cut. Moreover, it
is shown in [6] that any general lower bound one gets for the 3-cut problem for 3-graphs
extends for the k-cut problem for r-graphs if k = r − 1 or r. In particular, we achieve the
following improvements in these cases.

THEOREM 1·4. Let r ≥ 4 and k ∈ {r − 1, r}. Let H be an r-graph with m edges. Then

spk(H) = �r

(
m3/5

( log m)2

)
.

Moreover, if H is linear, then

spk(H) = �r

(
m3/4

( log m)2

)
.

Proof overview. Let us give a brief outline of the proof of Theorem 1·3, from which all other
theorems are deduced. Our approach is fairly different from that of Conlon, Fox, Kwan and
Sudakov [6], which is based on probabilistic and combinatorial ideas. We use a combination
of probabilistic and spectral techniques to bound the surplus.

First, we show that the surplus in a (multi-)graph can be lower bounded by the energy
of the graph, i.e. the sum of absolute values of eigenvalues of the adjacency matrix. This
quantity is extensively studied in spectral graph theory, originally introduced in theoretical
chemistry. We follow the ideas of Räty, Sudakov and Tomon [17] to relate the surplus to the
energy of the graph. Then, we construct a positive semidefinite matrix based on the spectral
decomposition of the adjacency matrix of the graph to show that the energy is a lower bound
for the corresponding program. This can be found in Section 3. See also the recent result of
Sudakov and Tomon [19] on the Log-rank conjecture for a similar idea executed.
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Now let H be a 3-uniform hypergraph for which we wish to find a large 3-cut. First, we
sample a third of the vertices randomly, and write X for the set of sampled vertices. For each
e ∈ E(H) that contains exactly one element of X, we remove this one element, and set G∗
to be the multi-graph on the vertex-set V(H) \ X of such edges. We argue that the expected
energy of G∗ is large. In order to do this, we view H as a coloured multi-graph G, in which
each pair of vertices {u, v} is included as many times as it appears in an edge {u, v, w} of H,
and whose colour is the third vertex w. Let G∗

1 be the subgraph of G in which we keep those
edges whose colour is in X. Then G∗ is an induced subgraph of G∗

1, so by interlacing, it
inherits certain spectral properties of G∗

1. Using matrix concentration inequalities, we show
that if we randomly sample the colours in a coloured multi-graph G, the resulting graph G∗

1
is a good spectral approximation of the original graph, assuming each colour class is a low-
degree graph. This, surprisingly, ensures that the energy of G∗

1 is large with high probability,
even if G had small energy. An explanation for this and the detailed argument can be found
in Section 4.

Now if G∗ has large energy, it has a large cut Y ∪ Z as well. We conclude that X ∪ Y ∪ Z
is a partition of the vertex set of H with the required number of edges. We unite all parts of
our argument and prove Theorems 1·1, 1·2, 1·3 and 1·4 in Section 5.

2. Preliminaries

In this section, we introduce the notation used throughout our paper, which is mostly
conventional, and present some basic results.

Given a vector x ∈R
n, we write ||x|| = ||x||2 for the Euclidean norm. If A ∈R

n×n is a
symmetric matrix, let λi(A) denote the i-th largest eigenvalue of A. The spectral radius of A
is denoted by ||A||, and it can be defined in a number of equivalent ways:

||A|| = max{|λ1(A)|, |λn(A)|} = max
x∈Rn,||x||=1

||Ax||.

The Frobenius norm of A is defined as

||A||2F: = 〈A, A〉 = tr(A2) =
n∑

i=1

λi(A)2,

where 〈A, B〉 =∑
i,j A(i, j)B(i, j) is the entrywise scalar product on the space of matrices.

2·1. Basics of cuts

In this section, we present some basic results and definitions about cuts.
It will be convenient to work with r-uniform multi-hypergraphs H (or r-multigraph for

short). That is, we allow multiple edges on the same r vertices. A k-cut in H is partition of
V(H) into k parts V1, . . . , Vk, together with all the edges that have at least one vertex in each
of the parts. We denote by e(V1, . . . , Vk) the number of such edges.

Definition 2·1. The Max-k-Cut of H is the maximum size of a k-cut, and it is denoted by
mck(H).

In case we consider a random partition, i.e. when each vertex of H is assigned to one of
Vi independently with probability 1/k, the expected size of a cut is (S(r, k)k!/kr)e(H), where
S(r, k) is the number of unlabelled partitions of {1, . . . , r} into k non-empty parts.
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Definition 2·2. The k-surplus of H is

spk(H) = mck(H) − S(r, k)k!
kr

e(H).

Clearly, spk(H) is always nonnegative. Next, we recall several basic facts from [6].

LEMMA 2·3 (Corollary 3·2 in [6]). Let H be an r-multigraph on n vertices. Then for every
2 ≤ k ≤ r,

spk(H) = �r

(
e(H)

n

)
.

LEMMA 2·4 (Theorem 1·4 in [6]). Let H be an r-multigraph on n vertices with no isolated
vertices. Then for every 2 ≤ k ≤ r,

spk(H) = �r(n).

In the case of multi-graphs G, we write simply mc(G) and sp(G) instead of mc2(G) and
sp2(G). We also need the following multi-graph analogue of a well-known observation,
which together with its variants has been used extensively, see e.g. [2, 11].

LEMMA 2·5. Let G be a multi-graph and let V1, . . . , Vk ⊂ V(G) be disjoint sets. Then

sp(G) ≥
k∑

i=1

sp(G[Vi]).

Proof. By adding singleton sets, we may assume that the sets Vi partition V(G). Let (Ai, Bi)
be a partition of Vi such that the number of edges between Ai and Bi is e(G[Vi])/2 +
sp(G[Vi]). Define the random partition (X, Y) of V(G) as follows: for i ∈ [k], let either
(Xi, Yi) = (Ai, Bi) or (Xi, Yi) = (Bi, Ai) independently with probability 1/2, and let X =⋃k

i=1 Xi and Y =⋃k
i=1 Yi. It is straightforward to show that the expected number of edges

in the cut given by (X, Y) is exactly e(G)/2 +∑k
i=1 sp(G[Vi]), finishing the proof.

Given an r-multigraph H, for every q ≤ r, the underlying q-multigraph is the q-multigraph
on vertex set V(H), in which each q-tuple is added as an edge as many times as it is contained
in an edge of H. The final lemma in this section is used to deduce Theorem 1·4 from our
results about 3-graphs.

LEMMA 2·6. Let H be an r-multigraph, and let H’ be the underlying (r − 1)-multigraph.
Then

2rspr(H) ≥ spr−1(H) ≥ 1

2
spr−1(H′).

Proof. We start with the first inequality. Let U1, . . . , Ur−1 be a partition of V(H) such that
eH(U1, . . . , Ur−1) = mcr−1(H). Let Vr be a random subset of V(H), each element chosen
independently with probability 1/r, and let Vi = Ui \ Vr for i = 1, . . . , r − 1. Note that if
an edge e of H contains at least one element of each U1, . . . , Ur−1, then exactly one of
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these sets contains two vertices of e. Hence, the probability that e is cut by V1, . . . , Vr is
cr = 2(1 − 1

r )r−1(1/r) ≥ (1/2r). Hence,

E(eH(V1, . . . , Vr)) = crmcr−1(H) = crspr−1(H) + cr
r!/2

(r − 1)r−1
e(H)

= crspr−1(H) + r!
rr

e(H),

so spr(H) ≥ crspr−1(H).

Now let us prove the second inequality. Let V1, . . . , Vr−1 be a partition of V(H) such that
eH′(V1, . . . , Vr−1) = mcr−1(H′). If e is an edge of H cut by V1, . . . , Vr−1, then among the
(r − 1)-element subsets of e, exactly two are cut by V1, . . . , Vr−1. Thus, eH(V1, . . . , Vr−1) =
(1/2)eH′(V1, . . . , Vr−1). Therefore,

mcr−1(H) ≥ 1

2
mcr−1(H′) = 1

2
spr−1(H′) + (r − 1)!/2

(r − 1)r−1
e(H′)

= 1

2
spr−1(H′) + r!/2

(r − 1)r−1
e(H).

Hence, spr−1(H) ≥ (1/2)spr−1(H′).

2·2. Probabilistic constructions

In this section, we verify our claims about the surplus of random 3-graphs.

LEMMA 2·7. For every 10 log n/n2 ≤ p ≤ 1/n, there exists a 3-graph H on n vertices such
that H has �(pn3) edges, the maximum degree of H is O(pn2), the maximum co-degree of H
is O( log n), and sp3(H) = O(

√
pn2).

Proof. Let p be such that 10 log n/n2 ≤ p ≤ 1/n, and let H be the 3-graph on n vertices,
in which each of the

(n
3

)
potential edges are included independently with probability p.

We assume that n is sufficiently large. By the Chernoff–Hoeffding theorem, for every
x ∈ (0, 1/2), we have

P

(
|e(H)/

(
n

3

)
− p| ≥ x

)
≤ 2 exp

(
−x2

(n
3

)
4p

)
.

Hence, setting x = 20
√

pn−3/2,

P

(
|e(H) − p

(
n

3

)
| ≥ 20

√
pn3/2

)
≤ 0.1.

Also, by similar concentration arguments, the maximum degree of H is at most 2p
(n

2

)
with

probability 0.9 by our assumption pn2 ≥ 10 log n. Moreover, the maximum co-degree is at
most 10 log n with probability 0.9 by our assumption that p ≤ 1/n.

Let X, Y , Z be a partition of the vertex set into three parts, and let N = (n/3)3 ≥ |X||Y||Z| =
T . For every x > 0,
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P (e(X, Y , Z) ≥ N(p + x)) ≤ P

(
e(X, Y , Z)

T
≥ p + x

N

T

)

≤ exp

(
− (xN/T)2 · T

4p

)
≤ exp

(
−x2N

4p

)
,

where the second inequality is due to the Chernoff-Hoeffding theorem. Set x = 20
√

p/n. The
number of partitions of V(H) into three sets is at most 3n, so

P(∃X, Y , Z:e(X, Y , Z) ≥ N(p + x)) ≤ 3n exp

(
−x2N

4p

)
< 0.1.

Hence, with probability 0.9, mc3(H) ≤ N(p + x) ≤ pN + 3
√

pn2.
In conclusion, with positive probability, there exists a 3-graph H on n vertices such that

|e(H) − p
(n

3

)| ≤ O(
√

pn3/2), the maximum degree of H is at most pn2, the maximum co-
degree is at most 10 log n, and mc3(H) ≤ p(n3/27) + O(

√
pn2). For such a 3-graph H, we

have

sp3(H) = mc3(H) − 2

9
e(H) ≤ p

n3

27
+ O(

√
pn2) − 2

9
p

(
n

3

)
+ O(

√
pn3/2) = O(

√
pn2).

In the last equality, we used that p · n3

27 − 2
9 p
(n

3

)= O(pn2).
If one chooses p = 1/n, we have m = e(H) = �(n2), every co-degree in H is O( log n), and

sp3(H) = O(n3/2) = O(m3/4), showing the almost tightness of Theorem 1·2.

3. Surplus and Energy

In this section, we prove a lower bound on the surplus in terms of the energy of the graph.
Let G be a multi-graph on vertex set V , and let |V| = n. The adjacency matrix of G is the
matrix A ∈R

V×V defined as A(u, v) = k, where k is the number of edges between u and v.
Recall that mc(G) = e(G)/2 + sp(G). Next, we claim that

sp(G) = max
x∈{−1,1}V

−1

2

∑
uv∈E(G)

x(u)x(v).

Indeed, every x ∈ {−1, 1}V corresponds to a partition X, Y of V(G), where X = {v ∈
V(G):x(v) = 1}, and then

e(X, Y) − m

2
= 1

2
(e(X, Y) − e(X) − e(Y)) = −1

2

∑
uv∈E(G)

x(u)x(v).

We define the surplus of arbitrary symmetric matrices A ∈R
n×n as well. We restrict our

attention to symmetric matrices, whose every diagonal entry is 0. Let

sp(A) = max
x∈{−1,1}n

−1

2

∑
i,j∈[n]

A(i, j)x(i)x(j). (3·1)

Then sp(G) = sp(A) if A is the adjacency matrix of G. Observe that by the condition that
every diagonal entry of A is zero,

∑
i,j A(i, j)x(i)x(j) is a multilinear function, so its minimum

on [−1, 1]n is attained by one of the extremal points. Therefore, (3·1) remains true if the
maximum is taken over all x ∈ [−1, 1]n. We introduce the semidefinite relaxation of sp(A).
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Let

sp∗(A) = max −1

2

∑
i,j

A(i, j)〈zi, zj〉, (3·2)

where the maximum is taken over all z1, . . . , zn ∈R
n such that ||zi|| ≤ 1 for i ∈ [n]. Clearly,

sp∗(A) ≥ sp(A). On the other hand, we can use the following symmetric analogue of
Grothendieck’s inequality [13] to show that sp∗(A) also cannot be much larger than sp(A).

LEMMA 3·1 ([3, 5]). There exists a universal constant C > 0 such that the following holds.
Let M ∈R

n×n be symmetric. Let

β = sup
x∈[−1,1]n

∑
Mi,jx(i)x(j),

and let

β∗ = sup
v1,...,vn∈Rn,||vi||≤1

∑
Mi,j〈vi, vj〉.

Then β ≤ β∗ ≤ Cβ log n.

Applying this lemma with the matrix M = −(1/2)A, we get that

sp∗(A) ≤ C sp(A) log n.

Finally, it is convenient to rewrite equation (3·2) as

sp∗(A) = max −1

2
〈A, X〉, (3·3)

where the maximum is taken over all positive semidefinite symmetric matrices X ∈R
n×n

which satisfy X(i, i) ≤ 1 for every i ∈ [n]. Indeed, (3·2) and (3·3) are equivalent, as if
z1, . . . , zn ∈R

n such that ||zi|| ≤ 1, then the matrix X defined as X(i, j) = 〈zi, zj〉 is positive
semidefinite and satisfies X(i, i) = ||zi||2 ≤ 1. Also, every positive semidefinite matrix X such
that X(i, i) ≤ 1 is the Gram matrix of some vectors z1, . . . , zn ∈R

n satisfying ||zi|| ≤ 1.
In the next lemma, we connect the spectral properties of A to the surplus. Let λ1 ≥ · · · ≥ λn

be the eigenvalues of A.

Definition 3·2. The energy of A ∈R
n×n is defined as

E(A) =
n∑

i=1

|λi|,

and if A is the adjacency matrix of a graph G, then the energy of G is E(G) = E(A).

Usually, the energy of G is denoted by E(G), but we use the notation E(G) to not confuse
with the edge set of G, or with the expectation E. In a certain weak sense, the energy mea-
sures how random-like a graph is. Indeed, if G is a d-regular graph on n vertices, then the
energy of G is at most O(

√
dn), and this bound is attained by the random d-regular graph.

Next, we show that the energy is a lower bound (up to a constant factor) for sp∗(G).
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LEMMA 3·3. If tr(A) = 0, then sp∗(A) ≥ (1/4)E(A).

Proof. Let v1, . . . , vn be an orthonormal set of eigenvectors of A such that λi is the
eigenvalue corresponding to vi. Let

X =
∑

i:λi<0

vi · vT
i .

Then X is positive semidefinite. Also, for j = 1, . . . , n,

X(j, j) =
∑

i:λi<0

vi(j)
2 ≤

n∑
i=1

vi(j)
2 = 1.

Hence, by (3·3),

sp∗(A) ≥ −1

2
〈X, A〉.

Observe that A =∑n
i=1 λi(vi · vT

i ). Hence,

−1

2
〈X, A〉 = −1

2

〈 ∑
i:λi<0

viv
T
i ,

n∑
i=1

λiviv
T
i

〉

= −1

2

∑
i:λi<0

n∑
j=1

λj〈vi, vj〉2 = −1

2

∑
i:λi<0

λi.

As
∑n

i=1 λi = tr(A) = 0, we have
∑

i:λi<0 λi = − 1
2E(A). This finishes the proof.

COROLLARY 3·4. If A has only zeros in the diagonal, then sp(A) = �(E(A)/log n).

Finally, we note that the energy is a norm on the space of n × n symmetric matrices. On
this space, the energy coincides with the Schatten 1-norm, also known as trace norm, or
nuclear norm. In particular, it follows that the energy is subadditive.

LEMMA 3·5. Let A, B ∈R
n×n be symmetric matrices. Then

E(A + B) ≤ E(A) + E(B).

4. Sampling coloured multi-graphs

This section is concerned with edge-coloured multi-graphs. Our goal is to show that if
one randomly samples the colours in such a graph, then the resulting graph has large cuts.
We use bold letters to distinguish random variables from deterministic ones. In the rest of
this section, we work with the following setup.

Setup. Let G be a multi-graph with n vertices and m edges, and let φ:E(G) →N be a colour-
ing of its edges. Let A be the adjacency matrix of G. Let � be the maximum degree of G,
and assume that every colour appears at most D times at every vertex for some D ≤ �. Let
p ∈ (100/m, 0.9), and sample the colours appearing in G independently with probability p.
Let H be the sub-multi-graph of G of the sampled colours, and let B be the adjacency matrix
of H.

https://doi.org/10.1017/S0305004125000362 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000362


54 EERO RÄTY AND ISTVÁN TOMON

In our first lemma, we show that pA is a good spectral approximation of B. In order to
do this, we use a result of Oliviera [16] on the concentration of matrix martingales. More
precisely, we use the following direct consequence of Theorem 1·2 in [16].

LEMMA 4·1 (Theorem 1·2 in [16]). Let M1, . . . , Mm be independent random n × n sym-
metric matrices, and let P = M1 + · · · + Mm. Assume that ||Mi|| ≤ D for i = 1, . . . , m, and
define

W =
m∑

i=1

E(M2
i ).

Then for all t > 0,

P(||P −E(P)|| ≥ t) ≤ 2n exp

(
− t2

8||W|| + 4Dt

)
.

LEMMA 4·2. For every t ≥ 0,

P (||pA − B|| ≥ t) ≤ 2n exp

(
− t2

8p�D + 4Dt

)
.

Proof. Let 1, . . . , m be the colours of G, let Ai be the adjacency matrix of colour i, and let
Ii ∈ {0, 1} be the indicator random variable that colour i is sampled. Then setting Mi = IiAi,
we have B = M1 + · · · + Mn. Moreover, ||Mi|| ≤ ||Ai|| ≤ D, as the spectral radius is upper
bounded by the maximum �1-norm of the row vectors, which in turn is the maximum degree
of the graph of colour i. Now let us bound ||W||, where

W =
m∑

i=1

E(M2
i ) = p

m∑
i=1

A2
i .

Let μ1 ≥ · · · ≥ μn ≥ 0 be the eigenvalues of W. Then for every k,

n∑
i=1

μk
i = tr(Wk) =

∑
v1,...,vk∈V(G)

W(v1, v2) . . . W(vk−1, vk)W(vk, v1).

Observe that A2
i (a, b) is the number of walks of length 2 between a and b using edges of

colour i, so W(a, b)/p =∑m
i=1 A2

i (a, b) is the number of monochromatic walks of length 2
between a and b in G. Hence, tr(Wk/pk) is the number of closed walks (vi, ei, wi, fi)i=1,...,k,
where vi, wi are vertices, ei, fi are edges, vi, wi are endpoints of ei, wi, vi+1 are endpoints
of fi (where the indices are meant modulo k), and ei and fi has the same colour. The total
number of such closed walks is upper bounded by n�kDk, as there are n choices for v1, if
vi is already known there are at most � choices for ei and wi, and as the colour of fi is the
same as of ei, there are at most D choices for fi and vi+1. Hence, we get

μk
1/pk ≤ n�kDk.

As this holds for every k, we deduce that ||W|| = μ1 ≤ p�D. But then the inequality

P (||pA − B|| ≥ t) ≤ 2n exp

(
− t2

8p�D + 4Dt

)

is a straightforward consequence of Lemma 4·1.
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Next, we use the previous lemma to show that the expected energy of pA − B is large. This
is somewhat counter-intuitive, as the previous lemma implies that none of the eigenvalues
of pA − B is large. However, we show that the Frobenius norm of pA − B must be large in
expectation, which tells us that the sum of the squares of the eigenvalues is large. Given
none of the eigenvalues is large, this is only possible if the energy of pA − B is large as well.

LEMMA 4·3.

E(E(pA − B)) = �

(
pm√

�D log m

)
.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of pA − B, let λ = ||pA − B||, and t =
20 log m

√
�D. Without loss of generality, we may assume that G has no isolated vertices,

so m ≥ 2n. But then, by the previous lemma, |λi| ≤ λ ≤ t with probability at least

1 − 2n exp

(
− t2

8p�D + 4Dt

)
.

Here,

t2

8p�D + 4Dt
= 400( log m)2�D

8p�D + 80D( log m)
√

�D
≥ 400( log m)2�D

8p�D + 80( log m)�D
> 4 log m.

Thus, we conclude

P(λ > t) ≤ 2nm−4 < m−2.

Consider the Frobenius norm of pA − B. We have

||pA − B||2F =
n∑

i=1

λ2
i ≤ λ

n∑
i=1

|λi| = λ · E(pA − B). (4·4)

Let Y = ||pA − B||2F. If u, v ∈ V(G), then B(u, v) = z1I1 + · · · + zrIr, where I1, . . . , Ir are
the independent indicator random variables of colours appearing between u and v in G,
and z1, . . . , zr are the multiplicities of colours. Note that zi ≥ 1 and z1 + · · · + zr = A(u, v).
Hence,

E((pA(u, v) − B(u, v))2) = Var(B(u, v)) =
r∑

i=1

Var(ziIr)

=
r∑

i=1

(p − p2)z2
i ≥ (p − p2)A(u, v).

Therefore,

E(Y) ≥
∑

u,v∈V(G)

(p − p2)A(u, v) = 2(p − p2)m = �(pm).

By (4·4), we can write

E(E(pA − B)) ≥E

(
Y
λ

)
.
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In order to bound the right-hand side, we condition on the event (λ ≤ t):

E

(
Y
λ

)
≥ P(λ ≤ t) ·E

(
Y
λ

|λ ≤ t

)
≥ 1

t
P(λ ≤ t) ·E(Y|λ ≤ t).

Here, using that P(λ > t) ≤ m−2 and max (Y) ≤ m2, we can further write

P(λ ≤ t) ·E(Y|λ ≤ t) =E(Y) − P(λ > t) ·E(Y|λ > t)

≥E(Y) − P(λ > t) · max (Y) ≥ �(pm).

Thus, E(E(pA − B)) ≥ �(pm/t), finishing the proof.

Our final technical lemma shows that M + B has large expected surplus for any fixed
matrix M.

LEMMA 4·4. Let M ∈R
V(G)×V(G) be symmetric with only zeros in the diagonal. Then

E(sp(M + B)) = �

(
pm√

�D( log m)2

)
.

Proof. Again, we may assume that G does not contain isolated vertices. Let

t = εpm√
�D log m

,

where ε > 0 is the constant hidden by the �(.) notation in Lemma 4·3. Thus,

E(E(B − pA)) ≥ t.

First, assume that E(M + pA) > t/8. Then by Corollary 3·4, we have sp(M + pA) =
�(t/log n). This means that there exists a vector x ∈ {−1, 1}V(G) such that

sp(M + pA) = −1

2

∑
u,v∈V(G)

(M(u, v) + pA(u, v))x(u)x(v) = �

(
t

log n

)
.

But then

E(sp(M + B)) ≥E

⎡
⎣−1

2

∑
u,v∈V(G)

(M(u, v) + B(u, v))x(u)x(v)

⎤
⎦

= −1

2

∑
u,v∈V(G)

(M(u, v) + pA(u, v))x(u)x(v) = sp(M + pA).

so we are done.

Hence, we may assume that E(M + pA) ≤ t/8. Writing (B − pA) = (M + B) + ( − pA −
M), we can use the additivity of the energy (Lemma 3·3) to deduce that E(B − pA) ≤ E(M +
B) + E(M + pA). From this,

E(E(M + B)) ≥E (E(B − pA) − E(M + pA)) ≥ t

2
.
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Therefore, by Corollary 3·4,

E(sp(M + B)) ≥ �

(
E

(E(M + B)

log n

))
= �

(
pm√

�D( log m)2

)
.

In the last step, we are also using the fact that G does not contain isolated vertices, whence
m = �(n).

5. MaxCut in 3-graphs

In this section, we prove our main theorems. We start with the proof of Theorem 1·3,
which we restate here for the reader’s convenience.

THEOREM 5·1. Let H be a 3-multigraph. Assume that H contains an induced subghyper-
graph with m edges, maximum degree � and maximum co-degree D. Then

sp3(H) ≥ �

(
m√

�D( log m)2

)
.

Proof. Let G be the underlying multi-graph of H. For every edge {u, v, w} ∈ E(H), colour the
copy of {u, v} ∈ E(G) coming from {u, v, w} with colour w. Let S0 ⊂ V(H) be such that H[S0]
has m edges, maximum degree �, and maximum co-degree D. Let Q ⊂ S0 be an arbitrary
set such that there are at least m/3 edges of H[S0] containing exactly one vertex of Q. There
exists such a Q, as for a random set of vertices of S0, sampled with probability 1/3, there are
4m/9 such edges in expectation. Let S = S0 \ Q.

Sample the vertices of H independently with probability p = 1/3, and let X be the set of
sampled vertices. First, we condition on X \ Q, that is, we reveal X outside of Q, and treat
X ∩ Q as the source of randomness. We use bold letters to denote those random variables
that depend on X ∩ Q. Let us introduce some notation, see also Figure 1 for an illustration:

(1) V = S \ X;

(2) G0 is the graph on vertex set V which contains those edges of G, whose colour is
in Q,
A ∈R

V×V is the adjacency matrix of G0;

(3) G∗
0 is the subgraph of G0 in which we keep those edges, whose colour is in X ∩ Q,

B ∈R
V×V is the adjacency matrix of G∗

0;

(4) G∗
1 is the graph on vertex set V which contains those edges of G, whose colour is in

X \ Q;
M ∈R

V×V is the adjacency matrix of G∗
1,

(5) G∗ is the subgraph of G[Xc], whose edges have colour in X. (Here, Xc = V(H) \ X.)

Note that G0 has maximum degree at most 2�, as the degree of every vertex in G0 is at
most two times its degree in H[S0]. Also, every colour in G0 appears at most D times at
every vertex. Indeed, if some colour q ∈ Q appears more than D times at some vertex v ∈ V ,
then the co-degree of qv in H[S0] is more than D, contradicting our choice of S0. Thus, the
matrices A and B fit the Setup of Section 4.

Also, G∗[V] is the edge-disjoint union of G∗
0 and G∗

1, so the adjacency matrix of G∗[V]
is M + B. Hence, sp(G∗) ≥ sp(G∗[V]) = sp(M + B), where the first inequality follows from
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X∩Q

Q

X

S

V

S0

V (H)

Figure 1. An illustration of the different subsets of the vertex set used in the proof of
Theorem 5·1.

Lemma 2·5. Thus, writing f = e(G0), we can apply Lemma 4·4 to get

E(sp(G∗)|X \ Q) ≥E(sp(M + B)|X \ Q) = �

(
f√

�D( log f )2

)
.

As we have f ≤ m,

E(sp(G∗)|X \ Q) = �

(
f√

�D( log m)2

)
.

Furthermore,

E(sp(G∗)) =E(E(sp(G∗)|X \ Q)) ≥ �

(
E(f )√

�D( log m)2

)
.

Note that f is the number of those edges in G[S \ X], whose colour is in Q. For every edge
of G[S], whose colour is in Q, the probability that it survives is (1 − p)2p = �(1). Hence,
E(f ) = �(m). In conclusion,

E(sp(G∗)) =E(E(sp(G∗)|X \ Q)) ≥ �

(
m√

�D( log m)2

)
.

Let Y, Z be a partition of Xc such that eG∗(Y, Z) = (1/2)e(G∗) + sp(G∗). Then
eH(X, Y, Z) = eG∗(Y, Z), so

E(eH(X, Y, Z)) =E(eG∗(Y, Z)) = 1

2
E(e(G∗)) +E(sp(G∗))

= 2

9
e(H) + �

(
m√

�D( log m)2

)
.

Therefore, choosing a partition (X, Y, Z) achieving at least the expectation, we find that

sp3(H) = �

(
m√

�D( log m)2

)
.
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From this, Theorem 1·2 follows almost immediately. In particular, we prove the following
slightly more general result.

THEOREM 5·2. Let H be a 3-graph with m edges and maximum co-degree D. Then

sp3(H) = �

(
m3/4

D3/4( log m)2

)
.

Proof. Let G be the underlying graph of H, then e(G) = 3m. Let � = 100D1/2m1/2, let T be
the set of vertices of G of degree more than �, and let S = V(G) \ T . As 6m = 2e(G) ≥ |T|�,
we get that |T| ≤ 0.1m1/2D−1/2. Hence, as the multiplicity of every edge of G is at most D,
we can write e(G[T]) ≤ (D/2)|T|2 ≤ (1/200)m.

If eG(S, T) ≥ 1.6m, then sp(G) ≥ 0.1m, so we are done as Lemma 2·4 implies sp3(H) ≥
(1/12)sp(G).

Hence, we may assume that eG(S, T) < 1.6m. But then we must have e(G[S]) ≥ 1.3m, as
e(G[T]) + eG(S, T) + e(G[S]) = e(G) = 3m. Moreover,

e(G[S]) ≤ 3e(H[S]) + eH(S, T) = 3e(H[S]) + 1

2
eG(S, T),

from which we conclude that e(H[S]) ≥ 0.1m. The maximum degree of H[S] is less than
the maximum degree of G[S], which is less than � = 100m1/2D1/2. Also, the maximum co-
degree of H[S] is at most D, so applying Theorem 5·1 to the subhypergraph induced by S
finishes the proof.

Next, we prove Theorem 1·1.

Proof of Theorem 1·1. Let G be the underlying graph of H, and consider G as an edge
weighted graph, where the weight of each edge is its multiplicity. We may assume that
sp(G) ≤ m3/5/( log m)2, otherwise we are done by Lemma 2·4. Let D = m1/5. Say that an
edge e of G is D-heavy if its weight is at least D.

Let S be the vertex set of a maximal matching of D-heavy edges.

LEMMA 5·3. |S| < m2/5

Proof. Assume that |S| ≥ m2/5, and let e1, . . . , es be a matching of D-heavy edges, where
s = m2/5/2. By Lemma 2·5, we have

sp(G) ≥
s∑

i=1

sp(G[ei]) ≥ s · D

2
= m3/5

4
,

a contradiction.

Let � = m3/5, and let T be the set of vertices of G of degree more than �. Then 3m =
e(G) ≥ (1/2)|T|�, so |T| ≤ 6m2/5. Let U = S ∪ T , then |U| ≤ 7m2/5.

LEMMA 5·4. e(G[U]) ≤ 0.1m
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Proof. If e(G[U]) > 0.1m, then by Lemmas 2·5 and 2·3, we get

sp(G) ≥ sp(G[U]) = �

(
e(G[U])

|U|
)

= �(m3/5),

a contradiction.

Let W = Uc. Then G[W] contains no D-heavy edges, and the maximum degree of G[W] is
at most �. Also, eG(U, W) ≤ 1.6m, as otherwise sp(G) ≥ 0.1m. This implies that eH(U, W) ≤
0.8m and that e(G[W]) = e(G) − e(G[U]) − eG(U, W) ≥ 1.3m. But then

e(H[W]) ≥ 1

3
(e(G[W]) − eH(U, W)) > 0.1m.

Thus, H[W] is an induced subhypergraph of H with at least 0.1m edges, maximum degree
at most �, and maximum co-degree at most D. Applying Theorem 5·1, we conclude that

sp3(H) ≥ �

(
m√

�D( log m)2

)
= �

(
m3/5

( log m)2

)
.

Finally, we prove Theorem 1·4.

Proof of Theorem 1·4. Let Hr = H, and for i = r − 1, . . . , 3, let Hi be the underly-
ing i-graph of Hi+1. Then by Lemma 2·6, spi+1(Hi+1) ≥ (1/4(i + 1))spi(Hi). From this,
spr(H) ≥ �r(sp3(H3)). But H3 has r(r − 1) . . . 4 · m edges, so sp3(H3) = �r(m3/5/( log m)2)
by Theorem 1·1. Thus, spr(H) = �r(m3/5/( log m)2) as well. Note that we also have
spr−1(Hr−1) = �r(m3/5/( log m)2). Combining this with spr−1(H) ≥ (1/2)spr−1(Hr−1)
guaranteed by Lemma 2·6, we conclude that the statement also holds for k = r − 1.

In case H is linear, the maximum co-degree of H3 is Or(1), so applying Theorem 5·2 gives
the desired result.

6. Concluding remarks

In this paper, we proved that every r-graph with m edges contains an r-partite subhy-
pergraph with at least (r!/rr)m + m3/5−o(1) edges. This is still somewhat smaller than the
conjectured bound (r!/rr)m + �r(m2/3) of Conlon, Fox, Kwan and Sudakov [6]. In order to
prove this conjecture, it is enough to prove the following strengthening of Theorem 1·3.

CONJECTURE 6·1. If H is a 3-multigraph that contains an induced subhypergraph with m
edges and maximum degree �, then sp3(H) = �(m/

√
�).

Indeed, our Theorem 1·3 is sharp (up to logarithmic terms) as long as the maximum co-
degree is O(1). However, we believe the dependence on the co-degree in our lower bound is
not necessary. On another note, we are unable to extend our methods to attack the problem
of k-cuts in r-graphs in case k ≤ r − 2. The following remains an intriguing open problem.

CONJECTURE 6·2 ([6]). Let 2 ≤ k ≤ r be integers such that r ≥ 3 and (r, k) �= (3, 2). If H is
an r-graph with m edges, then spk(H) = �r(m2/3).
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In the case of linear hypergraphs, we proved that spr(H) > m3/4−o(1), which is optimal
up to the o(1) term. It would be interesting to extend this result for k-cuts as well in case
k ≤ r − 2, or to improve the o(1) term.

CONJECTURE 6·3. Let 2 ≤ k ≤ r be integers such that r ≥ 3 and (r, k) �= (3, 2). If H is a
linear r-graph with m edges, then spk(H) = �r(m3/4).
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