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1. Introduction. The problem of solving the equation of thermal conduction for cases in
which heat is generated in the interior of the medium under consideration arises frequently in
physics and engineering. It occurs, for instance, when we consider the diffusion of heat in a
solid undergoing radioactive decay (1) or which is absorbing radiation (2). Complications of a
similar nature arise when there is a generation or absorption of heat in the solid as a result of a
chemical change—for example, the hydration of cement (3). The particular case in which the
rate of generation of heat is independent of the temperature arises in the theory of the ripening
of apples and has been discussed by Awberry (4).

In many cases of practical interest the rate of generation of heat may be taken to be a
linear function of the temperature. Explicit solutions of a very general kind have been stated
by Paterson (5) for this case with the additional assumption that the solid has constant thermal
conductivity. No proofs are given by Paterson but he indicates that the results may be ob-
tained by the method of sources, an account of which has resently been given by Carslaw and
Jaeger (6). The object of this note is to show how the solutions may be derived by the use of
the theory of Fourier transforms.

2. The Differential Equation. The equation governing the variation with time of the
temperature, 8, in a homogeneous isotropic solid within which heat is absorbed or generated is

^d + 0(x, e, t), (i)
=

where K denotes the thermal conductivity, here assumed constant, and © is a known function
of position, of the temperature 9, and the time t. We assume that the function & is of the form

0(T,e,t) =</>(!, t)+9t(t), , (2)
where <j> (r, t) is a function of the coordinates and the time and ifi (t) is a function of the time
only. If we now substitute from equation (2) into equation (1) and make the transformations

x(r, t)=<f>(i, t) exp < - ifi(T)dr{
( (3)

I Jo J
we find that equation (1) assumes the form

-5- = /cV2M + Y(r, t) (4)
ot

We suppose that the initial distribution of temperature is known that is, that 0 = 90 (r) when
( = 0 ; the initial condition on the function u is therefore U = 90(T).

3. Infinite solid. To solve equation (4) subject to the initial condition u — 80 (r), we reduce
it to an ordinary differential equation by the introduction of the Fourier transform of the
function u (r, t) defined by the equation

(5)
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Multiplying both sides of equation (4) by exp {i (gx+yy + £z)} and integrating with respect to
x, y and z over the entire range - oo ^.x, y, zsgoo , we have after a little reduction

+K(P+v + ?)U = X(£,r,,t,t), .(6)

where X(g, 17, £ ; £) is the Fourier transform of x(x> y> z> t)-
Since the initial condition on u is known, it follows that at t = 0,

U=U0((, 7,, £) = Q^j2 J ^ J ^ J ^ 00(x, y, z)e«t*+»v+Mdx dy dz,

so that the solution of equation (6) is

Jo
Inverting this result by means of the formula (7)

( J ^ ^ ^ ^ (7)
we have

u(x,y,z; * ) = ( ^ ) J o o J ^ f^ Uotf,V, J)e-rf<«1+^+P)-«<f-+^»+f>df A, dt,

( i -Y r r r r X & , , ?; ;)e-«<«-*»«H"i+p
Now the function

is the Fourier transform of the function

g(x, y, z) = (^-Y {X r
V^7 7/ J -00 J - 0

1 \f
_ l p-(x*+V*+Z*)liKt

Substituting this result in the resultant theorem (7)

r r r u^.v.t^a.v.o
J —00 J —00 J —00

= T r P u(x,Py)g(x + Or,y-p,z-y)d<xdpdy, (9)
J —00 J —00 J —00

which relates the functions u(x, y, z), g(x,y,z) to their Fourier transforms U(£,t],t,) and
$, TJ, £), we find that the first integral on the right-hand side of equation (8) has the value

- j - 00 L
The second integral can be evaluated in an exactly similar way. Performing this integration
and reverting to the original variable defined by the equations (3) we have finally

6(x, „,,;,)-(-L)* exp ( j ; * M * ) £ J " J ^ ».(«, A y) exp { - ^ - 2 } <fa dfi dy

(10)
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If we take the functions <f> and */< to be identically zero we get the solution corresponding to the
case in which there is no generation of heat in the medium. Substituting j> = ifi = 0,

in equation (10) we get Fourier's well-known solution (8),
3

V V J -00 J -00 J -00

The general formula (10) was obtained by Paterson (5) by the method of sources.
The solution of the partial differential equation

subject to the initial condition u = 8g (z, y) is similarly found to be

(ft •)
exp -M iLMdr} .

ii i l l r tec X) ( P t/j 1
6 = I I 6Q (a, B) exp -! J- doc d

rkTTKl J —oo J —CO V 4 /C l J

exp | f xj, (T) dr\ f 0 W $

The solution for the case in which there is axial symmetry about the z-axis so that the functions
9, 60, and </> are functions of p and t only (p2=x2 +y2) can be deduced readily from this last
equation. If the initial value of 6 is

00(x,y) = e0(p),

we obtain the expression for the temperature at a subsequent time t by substituting the values

x=p, y = 0, a. = zn cos <£', (8=arsin<£', 80(«, fi) =0o(cr), <j>(<x, /3, r)=<f>(m, T)

into equation (12). Making use of the result (9)

we then have

rtor

Jo

r ro90 (w) e-"*liKiI0 {wpl2Kf) dm
Jo

exp exp { - --^_- - f ^(A)rfA}

Jo < - T Jo (13)

It is of interest to note that this result can also be established directly from the equation of
axially symmetrical radial flow

du /d2u ldu\
oi \3p'! p dp)

by means of the Hankel transform. If we denote by u (£, t) the Hankel transform of u (p, t) so
that

u(i, t) = f pu(p, t)J0(ZP)dp, (15)
Jo
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then, as a result of a pair of integrations by parts,

J>(f?+J £)'•«>>*--<*<*•« (16)

Multiplying equation (14) throughout by pJ0(£p) and integrating with respect to p over the
range (0, oo ) we find that u(£, t) is determined by the solution of the ordinary differential equa-
tion

-j7 + Kt?u = x(£, t), (17)

where "x(£, t) denotes the Hankel transform of the function x(p> t). The solution of equation
(17) is similar to that of equation (6), namely,

X\±> ~/e "" ^±o/
o

The expression for u (p, t) is now found from this equation by using the Hankel inversion
theorem (10)

u{P, t) = f £u($, t)J0(£P)d£ (19)
Jo

In this way we get two terms for u (p, t) the first of which is
/•OO (•OO

Jo Jo
which on interchange of the order of the integrations becomes

|>O0 (•»

Jo ° Jo
The inner integral may be evaluated by Weber's formula (11)

to give

for the value of the first term. In a similar fashion we find

P
J

e X P { P / 4 < ^ T ) } f ) exp { -

for the second term. Substituting for the original variables from equation (3) we recover the
formula (13). The difficulties involved in the changes of the order of the integrations can be
overcome by using the analogue for Hankel transforms (12) of the resultant theorem.

4. Conduction in a semi-infinite solid. We now consider the conduction of heat in a
medium which is bounded by the plane x = 0 but is otherwise of unlimited extent. The medium
which is taken to be isotropic and homogeneous will be supposed to occupy the half-space x^O.
Since the range of variation of a; is now restricted to (0, oo ) it is no longer permissible to employ
the exponential form of the Fourier transform.

(i) No surface loss. The problem here is to solve the partial differential equation (1)—
with <9(r, 6, t) given by equation (2)—-subject to the initial condition 9 = 60(x, y, z) at <=0 and
the boundary condition d8jdx = 0 at x = 0. This is then reduced to the solution of (4) with

u = 0o(x, y, z) a t* = O
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and

£-0, *-0.
dx

To solve this boundary value problem let

V(x, v, C, *) = ^ 1 " ^ r u(x> V> z' t)e^v+il)dy dz ; (20)

then equation (4) reduces to

d-^^K{^-r)i-i2)U+X{X'7]'Lt) <21>
subject to the conditions

U = 0o(z,v,O,t = O; | ^ = 0 , x = 0 (22)

If we now introduce the Fourier cosine transform defined by
/•«

U (i, rj, £, t) = U (X, 7], I, t) COS xt; dx,
Jo

then

-x-g- cos gxdx = \-~— cos x£ + £U sin a;| - | 2 f7 .
Jo ox Loa; Jo

The expression in the square bracket vanishes because of the boundary conditions. We then
obtain as before

(0

so that

;, 17, £, <) = - e-("2+«"* f°° 0 o (a , T?, ^, «)da f°° e-«*C cos af cos a;f dg
V Jo Jo

+ 1 f' e-«(«-T) ( i W ) rfT f°° Z ( a , 17, f, T) da f°° e-"<*-T> f2 COS af COS xf df (23)

•"•Jo JO JO

Using the result (13),

i r i ^ e - w 4 * * , (24)
t)

77 JO

inverting by the rule for two-dimensional exponential transforms and making use of the cor-
responding resultant theorem we have on returning to the original variables

eJ><T)<2r rr<e~J"^(T)dT r f r° *(*-«>'
0 = \ —dr <f> (a, /S, y, T) e 4K<(-T> [1 + e ^ M - ' ) ] rfa rfj8 rfy

(4TTK)2 U O ( « - T ) 2 JO J-=0 J-CO

+4 r r r eo{*, p, V)& ^~ [i+e—/«*]da ^ &y\ (25)
(sJO J-coJ-00 J

in agreement with Paterson's result.
If we substitute i/t = <j> = 0 in equation (25) and take for 60 the function

60(x, y,z)=*8(z-a)8(y)8(z),

where, as before, the 8's are Dirac delta-functions, we obtain the elementary solution
z.-(!/2+«a)/4/t*

Q _ Ye-(a-x)*/4Kt

( 4 < ) *
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(ii) Prescribed surface temperature. When the temperature is prescribed over the surface
x = 0, the problem is that of solving equation (1) subject to the initial condition 6 — 90 (x, y, z) at
t = 0 and the boundary condition 6 = 80 (y, z, t) when x = 0. The corresponding conditions on u
are

u = 90(x,y,z), t = 0; u = 92(y,z,t)=01(y,z,t)e-l°*iT)dr, x = 0.

Proceeding as in the case of no surface loss we have to solve the equation (21) subject now to
the conditions

u=eo(x,r,,o, «=o; & = ei(r,,i,t), x=o.
If we now introduce the Fourier sine transform

U{£, ri, £, t) = P U(x, 7], t, t) sin x£,
Jo

: dx
J n

and make use of the result

>d2U .

we find that equation (23) is replaced by

2
U(x, 7], £, t) = - e~W+&Kt r ©0(a, r), I, t)da. P e-Kt? sin af sin x£ d

77 Jo Jo

- f ©2(71, £, ^e-^-^+WdT r Ze-^-^ sin x£
"•Jo Jo

- P e-'b-Mi'+ndr [X X(a, r,, £, r)dr f"
"•Jo Jo Jo

+

e-K\l-T)i' COg ,

' 0

Using the result (24) and

- T
77 Jo

sin a;| ^ =

inverting by means of the exponential form of the Fourier transform theorem and proceeding
as before, we obtain finally

( ! J 0 J —00 J —
[ l-e

(477-Kp

+ » dr 61(l3,y,T)e~{xi+(-y~®*-i

JO (£~~T) J-OoJ-M

+ \ r dr\ \ 4(*,p,y,-
Jo (t-r)* JOJ-OOJ-OD

REFERENCES
(1) Lowan, A. N., Pfo/,s. i?eu., (2), 44, 769 (1933).
(2) Brown, G. H., Proc. Inst. Radio Engrs., 31, 537 (1943).
(3) Davey, J. and Fox, E. N., Building Research Technical Report (H.M.S.O., London, 1933).
(4) Awberiy, J. EL, Phil. Mag. (vii), 4, 629 (1927).
(5) Paterson, S., Phil. Mag. (vii), 32, 384 (1941).
(6) Carslaw, H. S., and Jaeger, J. C, Conduction of heat in solids (Oxford, 1947), Chapter X.

https://doi.org/10.1017/S2040618500032895 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500032895


DIFFUSION EQUATION FOB A MEDIUM GENERATING HEAT 27

(7) Bochner, S., Vorlesungen uder Fouriersche Integrate (Leipzig, 1932).
(8) Fourier, M., La theorie analytique de la chaleur (Paris, 1822), § 372.
(9) MacRobert, T. M., Functions of a complex variable (2nd ed., London, 1933), p. 268.

(10) Titchmarsh, E. C, An introduction to the theory of Fourier integrals (Oxford, 1937), p. 240.
(11) Watson, G. N., The theory of Bessel functions (2nd ed., Cambridge, 1944), p. 393.
(12) Macauley-Owen, P., Proc. London Math. Soc, 45, 458 (1939).
(13) MacRobert, T. M., loc. cit:, p. 73.

UNIVERSITY COLLEGE OF NOETH STAFFORDSHIRE

https://doi.org/10.1017/S2040618500032895 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500032895

