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Abstract In this work we present a generalization of an exact sequence of normal bordism groups given
in a paper by H. A. Salomonsen (Math. Scand. 32 (1973), 87-111). This is applied to prove that if
h:M"™ - X"tk 5 < n < 2k, is a continuous map between two manifolds and g : M™ — BO is the
classifying map of the stable normal bundle of h such that (h, g)« : H;(M,Z2) — H;(X x BO,Z3) is an
isomorphism for ¢ < n — k and an epimorphism for ¢ = n — k, then h bordant to an immersion implies
that h is homotopic to an immersion. The second remark complements the result of C. Biasi, D. L.
Gongalves and A. K. M. Libardi ( Topology Applic. 116 (2001), 293-303) and it concerns conditions for
which there exist immersions in the metastable dimension range. Some applications and examples for
the main results are also given.
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1. Introduction

Let h : M™ — X™** be a continuous map from a closed smooth connected n-manifold
into a smooth connected (n + k)-manifold, 5 < n < 2k. Let us assume that h is bordant
to an immersion, in the sense of Conner and Floyd [4], and let g : M — BO be the
classifying map of the stable normal bundle, h*(7x) @ vas, of h, where Tx denotes the
tangent bundle of X and vp; = —(7p7). One may ask on which conditions of (h,g) is h
homotopic to an immersion?

Let f : M — N be a continuous map between two closed smooth connected
n-dimensional manifolds and suppose that N immerses in R*** for some k, with
5 < n < 2k. Under which conditions on f does M immerse in R"**? The case when
M immerses in R"** and in which one is looking for conditions on f such that N also
immerses in R"T* has been considered in [2] and [5-7].

For both problems, we use a normal bordism approach [9], and give an answer in terms
of the induced maps of Zs-homology groups.
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We prove the following main results.

Theorem A. Let h : M™ — X"** be a continuous map from a closed smooth
connected n-manifold into a smooth connected (n + k)-manifold, 5 < n < 2k, and let
g : M — BO be the classifying map of the stable normal bundle of h. Given

(h,g) : M - X x BO,
suppose that the induced map
(h,g)* : HI(M, Zg) — Hl(X X BO,ZQ)

is an isomorphism for i < n — k and an epimorphism for i =n — k.
Then if h is bordant to an immersion, h is homotopic to an immersion.

Theorem B. Let M and N be closed connected n-manifolds and let f : M — N be
a continuous map such that

f* : Hi(M7 Zg) — Hi(N, Zz)

is an isomorphism for i > 0.
Then if N immerses in R"** for 5 < n < 2k, so does M.

The paper is divided into four sections. In § 2 we present two exact sequences of bordism
groups. One of them is a generalization of the exact sequence of normal bordism groups
given by Salomonsen [13]; it will be applied to prove Theorem A.

In §3 we prove Theorems A and B and in §4 we present an application of Theorem B
by using a non-standard obstruction theory, and we give some examples for Theorem A.

In this work, C will denote the class of all torsion groups where the torsion is odd.

2. Exact sequences of bordism groups

In this section we generalize an exact sequence given in [13], by using identifications of
some normal bordism groups.

Given a topological space X and a virtual bundle ¢ over X (i.e. an ordered pair of
vector bundles ¢+ and ¢~ over X, written ¢* — ¢~), the nth normal bordism group of
X with coefficient ¢, denoted by £2,,(X, ¢), is the bordism group of pairs (h: M — X, g),
where ¢ is the stable bundle isomorphism 73 ® g*(¢~) =~ e" ® g*(¢™) and €™ denotes the
trivial bundle of dimension n. We recall that £2,,(X, ¢) = 2,(X, ¢+ "), and if ¢ can be
expressed in the form ¢ = &' — (¢7)!, there is an isomorphism 2, (X, ¢) ~ 75 (T (¢7)),
where T'(¢™) is the disjoint union of the (total space) ¢~ and a point co. For more details
see [13] or [9]. We adopt the Salomonsen convention.

Let us now consider X, an (n + k)-manifold, and let 4 = —(7x) be the stable
normal bundle of X, with p large enough. If ¢pPtF =Ptk _ vy x ~*, an element of
2,(X x BO(k), ¢?**) can be considered as [(h,g) : M™ — X x BO(k), H|, where

H:my@h*(h) @ g*(vF) — ePth g en
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is a stable bundle isomorphism and g is the classifying map of the stable normal bundle
of h. This is equivalent to the isomorphism vy ~ h* (V%) @ g*(v*) and, since vx @ 7x is
trivial, h*(7x) ® var =~ g* (%) @ ePT™. In this case, the stable normal bundle of i has an
O(k)-structure and then, by Hirsch [8], h is homotopic to an immersion. Let us denote
2,(X x BO(k), ¢***) by I,,(X) and let F : I,(X) — 1,(X) be the forgetful map. We
remark that if [M, f] € 1,(X) is an element of F(I,,(X)), then f is homotopic to an
immersion.

Let ¢ = ™ — ¢~ be a virtual bundle over X. We note that the geometric dimension
gdim(y) < k if and only if there exists a k-dimensional vector bundle p* such that
pk @™ =¥ @ ypt. We recall that if we consider f: M™ — X"** to be a continuous
map between two closed smooth manifolds and 1 = f*7x — ¥ @ 77, then gdim(¢y) < k
if there exists a vector bundle ﬂk such that uk dekdry ~F o f*7x. This isomorphism
is equivalent to u* @ 7ps ~ f*7x, and then, by [8], f is homotopic to an immersion.

In order to study whether gdim(y)) < k we need to define a fibre bundle V;(19)
over X. Consider the bundle Iso(e¥ @ ~,e¥ @+) — X, whose fibre consists of Iso(R* @
(¥ )z, R¥ @ (¢7),). The linear group Gl;, acts freely on the right and then we define
Vi (1) = Iso(e* @ 1=, % @ 1) /Gy, which is a fibre bundle over X with fibre homotopy
equivalent to a Stiefel manifold. For each ¢ we can construct Vi (¢ @ e’ — ¢~ @ ') over
X whose fibre is also (k — 1)-connected. Then we define

Vi) = Vet @' -y~ @)
t=0
over X with (k — 1)-connected fibre. Since Gl}, acts freely on Iso(e* @ ¢~, ¥ @ 1) and
effectively on Rk~7 we have that Iso(e* @ ¢, e* @ ) x ¢, RF is a k-dimensional vector
bundle p* over Vi (¢) [13]. In this paper we will consider
Vi(¥) = X x BO(q),

with ¢ = 9 — 7 a virtual bundle over X x BO(q) and where ¢ denotes the pull-back
of the universal vector bundle over BO(q), by the second projection m5 : X x BO(q) —
BO(q). N

Let us consider ¢’ : Vi (1)) — BO(k), the classifying map of the vector bundle p*, which
is a high homotopy equivalence, for k large enough.

Let a? be an arbitrary p-dimensional vector bundle over X, and, for each ¢, consider
¢PT9 = gPTe — (aP x 47), a virtual bundle over X x BO(q). We note that, for ¢ large,

2,(X x BO,¢P*9) =7 (T(c) A MO),

where T'(«) is the Thom space [9] and, since T'(«) is (p — 1)-connected, we conclude that
N (X) = 2,(X x BO, ¢?*%) and then this normal bordism group does not depend on .
The following diagram is commutative:

20 (Vi (), ¢PFF) ————— 02, (Vi (1), $PF9)

Nl "

2,(X x BO(k), pP**) ——= 02,,(X x BO(q), #**9)

where 6,, induced by ¢’, is an isomorphism for ¢ large, from remarks above.
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Let us suppose that n < 2k+ 2. These identifications and Diagram (I) fit in a sequence
of Salomonsen [13] yielding the following exact sequence:

(I1) — 2,_k(X x BO(q) x P, I};) — I(X) 2= n(X)

Ty i1 (X % BO(q) x P®, Th_y) — -,

where
I, = Vg( X v1 @ (qunJrk —Y) @\ — gbta—n+k

and A is the canonical bundle over the real projective space P>°.
Next we take 1) a virtual vector bundle over M and suppose that 5 < n < 2k. Then
from the exact sequence of Salomonsen [13], we have the following exact sequence:

(IID) — 2, (Ve (), Tag —€") —s (M, 7pp —€") 25 Q1 (M X P®, &) — -+ |

where @ = —(n—k—1)A = A®@¢ + 7y — €™ and s is defined in the construction of the
sequence (see Theorem 6.1 in [13]).

We recall that if 1 = h*rx — * @ a7, where h : M — X is a continuous map,
5 < n < 2k, then vy ([M]) is the invariant wy(vy,) defined by Koschorke [10,11], which
is an obstruction to the existence of a monomorphism from M x R into v,. With this
notation, h is homotopic to an immersion if and only if vy, ([M]) = 0.

Here, [M] = [M,1p,t0m] € $2,(M,7as — ™) is the fundamental class of M, ty :
T B e™ — €™ @ Ty being the isomorphism which interchanges factors.

3. Proofs of Theorems A and B

Proof of Theorem A. Let h : M — X be a continuous map from a closed con-
nected smooth n-dimensional manifold M into a smooth connected (n + k)-dimensional
manifold X.

Let us now consider the following commutative diagram, where the left-hand vertical
sequence is (IIT) with 1 = h*7x — &¥ @ 75y, the right-hand vertical sequence is (II) and
(h,g)« and ((h, g) xId), are induced maps of (h, g) in convenient normal bordism groups:

(h,9)«

Qn(M, ™ — 6")

Ym TYe—1

((h,g)x1d).
_—

2n_—1(M x P>, ) On—k—1(X x BO(q) x P>, I;_1)

Suppose that h is bordant to an immersion. Then

0 =Fk-1([M, n]) = ((h, g) x 1d).(yar ([M])).
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Since, by assumption,
(h,g)« : Hi(M,Zs) — H;(X x BO,Zs)
is an isomorphism for ¢ < n — k and an epimorphism for i = n — k, we conclude that
((h,g) x Id), is a C-isomorphism for i =n — k — 1 and then ker((h, g) x Id). € C.

We recall that the order of the elements of the image of vas is a power of 2 [9,13].
Therefore, ya;([M, h]) = 0 and h is homotopic to an immersion [10]. O

Proof of Theorem B. We recall that under the hypotheses of Theorem B,
fo: 2n(M, [ty — ™) = 2,(N, 7y — &™)

is a C-isomorphism and f*(f2) = ag, where a@ = vy, and § = vy are the stable normal
bundles of M and N, and as and [ are the respective 2-localization [2].
Let us consider the following commutative diagram:

2 (Ve(Why), fr7 — ™) 20 (Vi(Yn), T — ™)

(77;»1)* ("N )«
On(M, frry — &™) - (N, Ty — &™)
Yir TN

Qo1 (M x P2, f*(¢n)) — Qu_j_1(N x P=,¢)

where the right-hand sequence is obtained from (III), ¥y = e"** — 7y @ ¥, @), =
etk — f*rn @ eF. The left-hand sequence is induced from the right-hand sequence by f
and by G and F, which are induced by f and are given in [13].

We observe that (7). is the induced map of mp; in normal bordism groups with
virtual bundle f*7rny —e”.

If N immerses in R™*% then (7). is surjective [13] and, since f. : H;(M,Zs) —
H;(N,Zs) is an isomorphism for ¢ > 0, F is a C-monomorphism. Therefore, (7},)« is a
C-epimorphism and since the order of every element of the image of v}, is a power of
2 [13], we conclude that (7)), is an epimorphism.

Now, we only to need to show that (mas)« : 2, (Vi (¥ar), Tar — €™) — 2, (M, 7ps — ™)
is a C-epimorphism, where ¥; = ™% — 737 @ €*. For this, we consider the commutative
diagram

o (TQ) — 75 (Tf*(5))

l(T"M)* i(ﬂ';u)*

WfLer(Ta) —_— Wz+p(Tf*ﬁ)

where B and & denote the pull-back of § and o by wn and mys, respectively. The two
horizontal maps are C-isomorphisms [2] and (7). is a C-epimorphism. O
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4. Applications

Let M and N be closed smooth manifolds of dimension n and (n + k), respectively, and
let f: M — N be a continuous map. Define Uy € H¥(N,Zs) to be the image of the
fundamental class [M] € H, (M, Z3) by the composite map

-1
Ho (M, Z) 155 Ho (N, Z0) 225 HY(N,Z,),

where Dy denotes the Poincaré duality isomorphism.
We also consider the following commutative diagram:

HP(N, Z5) — = HPHH(N, Z,)

iDMof* iDN

Hy (M, Z) — = H,,_ (N, Zs)

where ‘U’ denotes the cup product.

Theorem 4.1. Let M and N be closed smooth manifolds of dimension n. Suppose
that
H;(M,Zs) ~ H;(N,Zs), foralliz0,
and there exists f : M — N with deg, f = 1. Then f. : H;(M,Zs) — H;(N,Z2) is an
isomorphism, for i > 0.

Proof. Since the dimension of M and of N is n, we have that Uy € H°(N,Z>) and

Uy = deg, f.
Therefore, UUy is a multiple of deg, f =1, so that

UU; : HP(N,Zs) — HP(N,Z) is the identity map
for p > 0 and
fo: Ho—p(M,Z2) — H,,_,(N, Z2) is onto
for all p > 0. But H;(M,Zs) ~ H;(N,Zs), i > 0, and the result follows. O
Corollary 4.2. Let M and N be closed smooth n-manifolds with isomorphic homology

groups. Suppose that there exists f : M — N with deg, f = 1. Then M immerses in
R™t* 5 < n < 2k, if and only if N does.

Let M and N be closed smooth n-manifolds. Given xg € M™ and yo € N™, let us take
D7 and D¥ discs containing xo and yo, respectively, for which there exists a homeomor-
phism h : DY — D¥ with h(xzg) = yo.

Put A=0D;, M,y =M""1UA where MV is the (n— 1)-skeleton of M,
Y = N —h(Dy), fo = h|a, and let

X2 HY (M Ay 1 (Y)) = HY (M, A, H,y 1 (Y))

be the homomorphism induced in cohomology by the Hurewicz homomorphism.
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Let us suppose that fy extends to M,,_1, Y is (n — 1)-simple and H,,_1(A,Z) is a free
group.

Theorem 4.3. Suppose that M™ and N™ are such that H.(M,Zs) ~ H,(N,Zs).
If x*»~! is a monomorphism and there exists a homomorphism  : H,(M,Z) —

H,(N,Z) such that (fo)s = ¥ o i, with i, : H,(A,Z) — H,(M,Z) induced by the
inclusion, then there exists f : M — N with deg, f = 1.

Proof. Under these conditions, fy extends to f: M — N (see [1]) with f(M —D;) =
N—f(Dy). By excision, H,, (M, Zs) (respectively, H,, (N, Z)) is isomorphic to H,, (M, M—
X0, Za) (respectively, H,(N, N — yo,Z2)), which is isomorphic to H, (D1, D1 — x0,Z2)
(respectively, H,(f(D1), f(D1) — yo,Z2)) and the result follows. O

We finish with some examples which illustrate Theorem A. In these examples, we are
supposing that h : M™ — X"t is bordant to an immersion.

Example 4.4. Let us consider n > 5 and kK = n — 2. In order for
(hag)* : Hl(X7Z2) S Hl(BO,ZQ) — Hl(Ma Z2)

to be an isomorphism, one needs to take M such that wi(M) # 0, because otherwise
(h, 9)*(w1(X) + w1 (7)) = 0. For example, M™ = P" n even, and H'(X,Zs) = 0.

Example 4.5. If n > 7 and £k = n — 3, we take M"™ as the real Grassmannian
manifold Gjya2 with [ > 3 and X sufficiently highly connected that H*(X x BO,Zs) =
H'(BO,Zs). Then, by [12], H (BO,Zs) — H*(Gi12,2,Z>) is an isomorphism for i < 3.
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