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1. Introduction and summary. Free monoids play a central role in the theory of
formal languages. Their endomorphisms appear naturally in the context of deterministic
OL-schemes which trace their origin to biology. Closely related to such a scheme is a
DOL-system which consists of a triple (X, <p, w) where A" is a finite set, <t> is an
endomorphism of the free monoid X* and w eX. The associated language is defined as
the set {w, <pw, <j>2w, . . .} called a DOL-language. For a full discussion of this subject, we
recommend the book [2] by Herman and Rozenberg.

The monoid of endomorphisms of the free monoid X* on an arbitrary alphabet X has
a certain interest in its own right. It ought to have a structure which bears some
resemblance to the monoid of all transformations on a set, or the monoid of all linear
transformations on a vector space. The underlying spaces in these two cases are: (1) a set
without further structure, hence simpler than X*, and (2) a vector space, hence a
structure richer than a free monoid on a set. We may thus expect that the endomorphism
monoid of X* harbours interesting structural complexity.

Semigroups of transformations, partial transformations, partial one-to-one transfor-
mations, linear transformations on a vector space, binary relations on a set and numerous
others have a densely embedded ideal which is a completely O-simple semigroup (except
for the first one in which it is a left zero semigroup if the functions are written on the left),
see [3]. An ideal / of a semigroup 5 is densely embedded if (1) the only congruence on 5
whose restriction to / is equality is the equality relation on S and (2) S is maximal with
this property relative to / under set theoretical inclusion.

We call an endomorphism a of X* monogenic if its range is contained in a
monogenic submonoid of X*. The monogenic endomorphisms form a semigroup 2ft with
many remarkable properties.

We study the structure of 3ft as well as its position in the monoid of all
transformations 2T(X*) on X* (functions written on the left). Section 2 contains a
construction of a Rees matrix semigroup 5 over the multiplicative semigroup of positive
integers. It is then proved that this Rees matrix semigroup is isomorphic to 3ft, thereby
providing 3ft with a Rees matrix representation. Hence this case bears strong similarity
with the instances mentioned above with the notable difference that we now have a Rees
matrix semigroup over a semigroup which is not a group. The left and the right idealizers
of 3ft in ZT(X*) are identified in Section 4. The elements of the right idealizers are
particularly interesting; they are called here generalized endomorphisms and are further
investigated in Section 5. There is a curious phenomenon here of duality between 9~(X*)
and Nx, the free commutative monoid on X. It is proved in Section 6 that 3ft is a densely
embedded ideal of its idealizer in ST{X*) which means that the isomorphism of S onto 3ft
is a dense embedding of the Rees matrix semigroup 5 into 3~{X*).

Glasgow Math. J. 31 (1989) 87-101.

https://doi.org/10.1017/S0017089500007588 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007588


88 MARIO PETRICH

2. The basic construction. We fix a nonempty set X throughout the paper. By X*
denote the free monoid on X, that is the set of all words over the alphabet X with
concatenation as product. The empty word 1 is the identity of X*. The semigroup X+

consisting of nonempty words over X is the free semigroup on X. A word w e X* is
primitive if w = u" for any u e X* implies n = 1, and thus w = u. Denote by ty the set of
all primitive words in X* (or over X). For w e X* and x e X, let wx denote the number of
occurrences of x in w; let w be the A -̂tuple of nonnegative integers wx. The mapping

%:w—>w = (wx) (weX*)

is called the Parikh mapping. Clearly uv = u + v for all u, v e X*.
For any X-tuple q = (qx) of nonnegative integers and w e X*, define their dot

product by

<? • w = E 1xWx.
xeX

Note that this sum is finite since w has only a finite number of nonzero entries. For
A"-tuples of nonnegative integers, p, q and u, v e X*, one easily verifies that the following
relations hold:

(p + q).u=p.u + q.u, (1)

q.uv = q.(u + i>) = q.u + q. v,

p. u = q. u for all u e X* implies p = q, (2)

q. u = q. v for all q implies u = v, (3)

when the sum of A'-tuples is by components.
Let Si denote the set of all ^-tuples q = (qx) of nonnegative integers such that

gcd{qx | x e X} = 1. We will be interested only in the dot product q. u with q e St and
« e ? . All the relations above remain valid with these restrictions. We will use them
freely without further reference. Denote by 0 the A'-tuple all of whose entries are equal to
zero. We also require that 0 $ 2..

Denote by N the multiplicative semigroup of nonnegative integers and by N+ its
subsemigroup of positive integers. We may now define a Rees matrix semigroup in the
usual way

with index sets 9 and 3. over W+ with sandwich matrix denoted by (q. p). Clearly, in
every row and in every column (q. p) has at least one nonzero entry.

For each nonzero element (p, n, q) of 5 define a mapping

d(p,n,q):w^p^^ (weX*)

and
do:w-»l (weX*).

We will generally write functions as left operators. Let 3~{X*) denote the semigroup
of all transformations on X* written and composed as left operators. Denote by % its
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subsemigroup of endomorphisms of X*. For each w eX*, let w* stand for the submonoid
of X* generated by w. Finally let

2ft = {6 e % | 6X* c w* for some w eX*}

and call its elements monogenic endomorphisms of X*. Denote by £ the trivial
endomorphism £: w—* 1 for all w e X*.

Obviously 3ft is a subsemigroup of %. It represents the main subject of our study. In
the succeeding sections, we will give a Rees matrix representation for it, its translational
hull, its left and right idealizer in 3~(X*) and finally, by means of it, construct a dense
embedding of 5 into ST{X*).

For any y e X, let ly - (qx) where

fl VLx=y,
o otherwise.t

For any weX+, let w = (jiw)ew where w is the primitive word which raised to the
exponent ew gives w. By definition, ;rl = 1, el = 1.

3. A Rees representation for 3ft. The principal result here is the existence of an
isomorphism of 5 onto 3ft, giving a Rees representation for 3ft. A few properties of S are
then investigated, providing a further clue as to the structure of 3ft.

THEOREM 3.1. The mapping

6:s-^ds (seS)

is an isomorphism of S onto 3ft.

Proof. First, for s = {p, n, q)eS and u, v € X*, we obtain

(dsu)(dsv) =p"(i-^p»(i- °) =p"(i- "+i °)

= pn{q. (fi + O)) =pn(q. SB) = Q ^

and thus 9S is an endomorphism of X*. Trivially 80 = £ e 3R so 6 : S—* 2W.
Next let fi e W and suppose that /x ^ £. Then juZ* c w* for some w e X+. There is a

unique primitive word p for which w=p' for some f ss 1. For each x eX, define f* by

fix =p'x. Let n = gcd{^ | x eX} and let qx = — for each x eX. Then with ^ = (qx), we
obtain for any x e X, n

Therefore fi = 0(pnq) and thus 0 maps 5 onto 3ft.
Assume next that 6{pn^ = 6(rmtt). Applied to any x eX, this gives

nqx _ n(q . x) _ ^m(/ . x) _ ^

Since both p and r are primitive words, it follows that p = r and nqx = m^ for all x eX.
Let g = gcd{m, n}. Then n=gd with (d, m) = 1. Also d divides mtx, so that d divides tx.
This is true for all xeX, and by hypothesis gcd{^ | x e X) = 1, whence d = \.
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Consequently, n = g, so that n divides m. By symmetry, we conclude that m = n. But
then qx = tx for all xeX, whence g = t. Therefore (p, n, q) = [r, m, t) and 0 is
one-to-one.

Further, if t. w # 0, then

= n"(q .?)(». * ) _ fl x

and if f. »v = 0, then 6iPin>q)d^mJ)w = 1 = dip,n,q)(r.n.i)W. Consequently 6S6S. = 6SS. for s, 5'
nonzero elements of S. This equation can be easily verified to be true if one or both of s
and s' is equal to zero. Therefore 6 is a homomorphism and thus an isomorphism of 5
onto 3ft.

In view of the above theorem, the semigroup 5 plays a central role in our
investigation. It is thus worth having a closer look at its structure. To this end, we
characterise Green's relations, idempotents, inverses, regular elements and an embedding
into a completely 0-simple semigroup as an order. It will be convenient to introduce the
following concepts.

DEFINITION 3.2. A word w in X* is monk if there is a letter x in X which occurs in w
only once. An element q of Q is monic if some component of q is equal to 1.

PROPOSITION 3.3. Let s = (p, n, q) and t = (z, m, r) be distinct (nonzero) elements
ofS.

(i) sZ£t&p and z are monic, n = m, q = r.
(ii) s9lt <^>p = z, n = m, q and r are monic.

{ either p and z are monic or p = z,
n = m,
either q and r are monic or q = r.

(iv) s$t<£>n = m, p, z, q and r are monic.
(v) 3€ is the equality relation.

Proof, (i) Indeed,

(p, n, q) = (u, k, x)(z, m, r), (z, m, r) = (v, I, y)(p, n, q)

= u,n = k(x. z)m, q = r,z = v,m = l(y. p)n, r = q

= u, n = m, k(x. z) = l(y. p) = 1, 2 = v, r = q,

whence the assertion concerning X.
(ii) The argument here is dual,
(iii) This follows directly from items (i) and (ii).
(iv) The assertion follows directly from the calculation

(p, n, q) = («, k, x)(z, m, r)(y, I, y)

= u, n = k(x. z)m(r. v)l, q=y.
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(v) This is a direct consequence of items (i) and (ii).

Comparing parts (iii) and (iv), we conclude that 3) ¥=£ in 5.

PROPOSITION 3.4. Let s = (p, n, q) and t = (z, m, r) be elements of S.
(i) s is idempotent if and only if qxpx = 1 for some x e X and qypy = 0 if y^x

and n = 1.
(ii) s and t are mutually inverse if and only ifq.z = r.p = l and n = m = 1.
(iii) s is regular if and only if both p and q are monic and n = 1.
(iv) {{x, 1, \y) | x, y 6 X} U {0} is a combinatorial Brandt semigroup.

Proof. Straightforward verification.

Simple verification also shows that 5 is an order in the completely 0-simple semigroup
M°(8P, Q+, Q; (q. p)) where Q+ is the multiplicative group of positive rationals. For a full
discussion of these concepts, we refer the reader to [1].

4. The left and the right idealizer of W in 2T{X*). The {left, right) idealizer of a
subsemigroup T of a semigroup 5 is the greatest subsemigroup is(T)(lis(T), ris(T)) of S
in which T is a (left, right) ideal. For these, we have the following simple expressions:

is(T) = {seS\sT,Ts<=, T},
Us(T)={seS\sT^T},

and analogously for ris(T). It follows that is(T) = lis(T) n ris(T).

We start with the left idealizer. Recall the notation KW and ew from Section 2.

PROPOSITION 4.1.

/ijr(jr.)(2R) = {a e ST{X*) \ o(wn) = {ow)n for all w e X*, n > 1}.

Proof. First let a e /iV(x*)(3W)- Let w eX* and n 3= 1. By the above formula and
Theorem 3.1, o0s is an endomorphism of X* for any s eS. Hence, for any x e X,

Conversely, let a be in the set on the right hand side in the statement of the
proposition. Then for any (p, n, q)eS and w e X*, we obtain

«- *> = e(

which proves that od{pnq) = 8(jiapAe(a(p))]nq). Furthermore, for any weX* and n 3= 1, we
have

od0w = at,w = o\ = ol" = (al)",

which evidently implies that ol = 1. Hence od0 = d0. Consequently o e liw^W), as
required.

We now consider the right idealizer. Recall the definition of the Parikh mapping £
and the notation ly from Section 2.
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Denote by Mx the semigroup of all Z-tuples of nonnegative integers with only a finite
number of nonzero entries under componentwise addition. For any set Y, denote by
ST{Y) the semigroup of all transformations on Y written and composed as operators on
the right. We say that a e 3~(X*) and x e T(NX) are adjoints of each other if

r. CTVV = rx. w ( re Nx, w e X*).

THEOREM 4.2.

nV(A")(3TC) = {a e ST{X) \ £a: X*^> Nx is a homomorphism}

= {oe 3~(X) | a has an adjoint in Nx).

Proof. Let a e rig-^x.)(3Jt). Then for s = (p, n, q) e 5, we have 0sa e 9Jt and hence for
any u, v e X*, we get

6sa(uv) = (6,ou){e,ov),

so that _ _ _
n(?. a(uv)) _ p"(q . au) n(q . cm) _ „"(<? • ( « + ou)) ^ r»"(« • ("")(<w))

whence ^ . a(uu) = </. (ow)(ot>). Since this holds for all q e Si, by (3) we deduce that
o(uv) = (ou)(av). It follows that

%o(uv) = o(uv) = (ou)(ov) = ou + ov = %ou + %ov

and £a is a homomorphism.
Now assume that §a is a homomorphism. We define x on Nx as follows. For any

x, y e X, let (lyx)x = ~oxy, that is, the xth component of the value of x at ly is equal to the
vth component of ax. This defines x on the set {l^lyeA"}. Since Nx is the free
commutative monoid on X, we may extend x uniquely to an endomorphism of Nx, again
denoted by x. We will now show that x is an adjoint of a in 3~'(NX).

Any r e Nx can be written as r = r2ll2l + r22l22 + . . . + rzlZn so that

rx = r2l(l2lr) + r22(l22r) + . . . + rZn(lzj)

•Jxex + •• •+ rzSpxzX*x

+ . . . + rZn(ox)Zn)Xex,

whence for w = Xi''x%*2... x%m, we get

rx. w = 2 (^.(ox);, + rz£ox)z2 + • ••+ rZm(ox)Zn)wx
xeX

i"=l

v^). (4)
;=i

On the other hand,

r.aw = rz£ow)Zl + rz£ow)Z2 + . ..+ rZn(ow)Zn. (5)
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For equality of (4) and (5), it thus suffices to prove that

(&l)z,wXl + (mdz/Wxi + ••• + (oxZ):WXm = (aw)Zj, (6)

for j = 1, 2, . . . , n. Indeed, using the hypothesis that %o is a homomorphism, we obtain

)z. + wX2(axdz. + • • • + wXm(

j = 1, 2, . . . , n. This proves (6) and hence equality of (4) and (5) follows.
We have shown the equality r. ~ow = rx. w in the special case when w =

x™"lX2"2 • • • •*„"•. However, for any w e X*, we have w = u where u =x™x<x%*2. . . x^m with
xx,x2,.. . ,xm distinct elements of X occurring in w. In fact, u = x^x^• • .*„"•.
Moreover — = | ( W = ^ — + ^ — + + w^—

= t;ou = ~ou.

We may thus conclude that
r • mv = r. ~oii = rx. u = rx. w,

that is a and x are adjoints.
Finally assume that a has an adjoint x in Nx. For any 5 = (p, n, q)eS and u, v e X*,

we obtmn
6SO(UV) =p"(<7' *(""» =pt(,qr.Ui) _ n(gz.(u + v))

_ pi(qT. u+qx. 0) _ p"(qr. u) n(qz. 0)
= pn(q • m)pn(<> • 5 5 » = (dsou)(dsm>),

which proves that 6sa is an endomorphism of X*. Clearly (8so)X* cp* and thus
6so e 3W. Trivially d0o = 60. Therefore a e «V(A-)(3K), as required.

5. Generalized endomorphisms. We will now elaborate upon the transformations
on A'* which appear in Theorem 4.2. As a motivation, we first prove the following simple
result.

PROPOSITION 5.1. A transformation a e ST(X*) has an adjoint in Nx if and only if %o is
a homomorphism. If x is such an adjoint, then r is an endomorphism of Nx and is unique.
For any s = (p, n, q) e S, the adjoint of 8S, again denoted by 6S, is given by

rds = (r.p)nq (reNx),
and d0 = 0.

Proof. The first assertion is part of Theorem 4.2. Let x be an adjoint of a, let
r, r' e Nx and w e X*. Then, using (1),

(r + r')x • w = (r + r') . ow = r • ~ow + r' • ow

= rx. w + r'x. w = (rx + r'x) . w;
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since w is arbitrary, (2) implies that (r + r')x = rx + r'x. Therefore x is an endomorphism
of N*.

Let x' be also an adjoint of a. Then for any r e Nx and w e X*, we get

rx. w = r. aw = rx'. w.

Again, w being arbitrary, (2) yields rx = rx'. Consequently x = x', establishing
uniqueness.

With the notation in the statement of the proposition and r e Nx, w e X*, we have

rds. w = (r. p)nq . w = (r. p)n{q. w) = r. pn(q . w)

this holds trivially for s = 0.

We now consider the dual situation: which transformations on Nx have an adjoint in
X*l This is answered in the theorem below. It will be convenient to first prove an
auxiliary statement of some independent interest.

LEMMA 5.2. Let 5 be a homomorphism of X* into Nx. For each xeX, let
ox = x?x%. . . x"i; if dx = rx\Xi + r2lX2 + . . . + rn\Xn{in some ordering ofx/s). Extend a to an
endomorphism of X*, again denoted by o. Then %o = <5.

Proof. With the notation introduced, we have

lax = §(x?x2. . . xj) = r,l,, + r2l,2 + . . . + rn\Xm = dx,

so that for w =yly2- .. ym with yu y2, . . . , ym e X, we obtain

f<nv = g((oyi)(oh).. • (oyj)
= (Zo)yl + (£o)y2 + ...+(Zo)ym

= dy1 + dy2 + ...+ 6ym = dw.

Therefore | a = 6, as asserted.

The claim of the lemma can be expressed by saying that every homomorphism of X*
into Nx can be "lifted" by § to an endomorphism of X*.

THEOREM 5.3.-4 transformation x e 5"'(^J*) has an adjoint in X* if and only if x is an
endomorphism of Nx. If a is such an adjoint, then %o is a homomorphism and is unique;
in addition, x has an adjoint which is an endomorphism ofX*.

Proof. If a transformation x e 3~'(NX) has an adjoint a in X*, then by Proposition
5.1, T is an endomorphism of Nx. Conversely, assume that x is an endomorphism of Nx.
We first define a function 6 mapping X* into Nx as follows. For any x, y eX, let
(6y)x = (lxx)y, that is, the xth component of the value of 6 at y is equal to the _yth
component of the value of x at lx. This defines 8 on the set X. Now extend 6 to a
homomorphism from X* into Nx, again denoted by 6. We show next that

r. dw = rx. w (r e Nx, w e X*). (7)
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For w = yxy2 . . . yn, we get for any x eX,

(8w)x = (6yi + 6y2 + ...+ 6yn) = (6yi)x + (8y2)x + ...+ (dyn)x

For r e Hx, say rXllXl + rX2lX2 + . . . + rXm\Xm, we then obtain on the one hand,

r. 8w = (rXllXl + rX2\X2 + ...+ rxJxJ((dw)XllXl + (dw)X2lX2 + . . . + (6w)

+ r*Xhj)yi + rX2(lX2T)w + . . • + rXm(lxj)yi

+ . . .

+ r , , ( l , ,T) y n + rX2(\X2r)yn + ...+ rXm(lXmT)ym, (8)

and on the o the r h a n d ,

rx.w = (rX l lX l + rX2lX2 + . . . + r X m l X m )r . y ^ y 2 . . . yn

= [rX l( l , ,T) + rX2(lX2r) + ...+ r , m ( l , m r ) ] . ( l y i + ly2 + . . . + 1J

= ( r X l ( lx , t ) + rX2(lX2r) + ...+ ^ ( I ^ T ) ) , ,

+ ((rXl(lXlr) + rX2(lX2r) + ...+ rXm(lXmr))y2

+ . . .

+ (rXl(lXlr) + rX2(lXlT) + . . . + ^ ( l ^ r ) ) ^ . (9)

We now see that expressions (8) and (9) are equal, which then proves relation (7).
Since 8 is a homomorphism of X* into Nx, Lemma 5.2 yields that for some

endomorphism a of X* we have fa = 6. Substitution in (7) gives r. ~dw = rx. w for all
r e Nx and w e X*, which shows that a is an adjoint of x. This establishes the converse
part of the first assertion and the last assertion of the theorem.

Now let a be any adjoint of T. Then for any u, v e X* and r e Nx, we obtain

r. o(uv) = rx. uv = rx. (u + v) = rx. u + rx. v

= r.oM + r.OTJ=r. (ow + ~ov).

Since r is arbitrary, (3) implies that a{uv) = ou + ov and \a is indeed a homomorphism.
Assume, in addition, that a' is also an adjoint of x. Then for any reNx and weX*,

we have

r. ~5w = rx. w = r. a'iv,

so again by (3), we conclude that ovv = a'w. It follows that §a is unique.
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Motivated by the above theorem, we introduce the following concept.

DEFINITION 5.4. A transformation a of X* is a generalized endomorphism if £ajis a
homomorphism.

In the notation employed above, this means that o{uv) = (ou)(ov) for all u, v eX*.
According to Proposition 5.1, oe 3~(X*) is a generalized endomorphism if and only if it
has an adjoint in Nx. Generalized endomorphisms of X* may be constructed in a similar
fashion, as the following simple result shows.

PROPOSITION 5.5. Let a:X—*X* be any mapping. For w = xxx2 .. . xn e X* let aw be
any word in X* satisfying

ow = (oxx)(ox2) . . . (oxn).

Then a is a generalized endomorphism of X*. Also, every generalized endomorphism of
X* can be so constructed.

Proof. Let u = xxx2 • • • xm and v = v, y2 • • • yn be words in X*. Then

au + av = (0*1X0*2) • • • (oxm) + (oyi){oy2). .. (oyn)

= ~ox\ + ~ox~2 + . . . + axm + ~oy[ + ~dy~2 + . . . + 0%

= (oxl)(ox2). . . (axm)(oy1)(oy2). . . (oyn)

= (o(uv),
as required.

Conversely, let a be a generalized endomorphism of X*. Then for all w = x,x2 .. . xm

in X*. we have — —7 r -.—-r-. r -. r-
ow = o(xlx2 ...xn) = (oxx)(ox2). . . (oxm),

as required.
It should now be clear how much generalized endomorphisms are indeed more

general than endomorphisms. Nevertheless, we have the following statement.

PROPOSITION 5.6. Let a be a generalized endomorphism of X* such that oX* c w* for
some w e X*. Then 0 is an endomorphism.

Proof. If w = 1, the assertion is trivial. Assume that w ± 1. For every x e X, we have
ox = wr' for a positive integer rx. Hence

a{xxx2 ...xn) = oxl + ox2 + ...+oxn

= rXxw + rX2w + . . . + rxw

= (rXl + rX2 + ...+ rXn)w,

so that a{xxx2 • • -xn) = w W + \ . But this implies that

o(xx... xny, ...ym) = wr"+- • - + % ^ . + - + ^

= CT(X, . . . xn)o{ v , . . . ym),

which gives o(uv) = (ou)(ov) for all u, v e X*. Therefore a is an endomorphism.
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The following examples illustrate the nature of some of the transformations studied.

EXAMPLE 5.7. Let \X\ > 1 and fix a eX+. For every w e X*, let ow = a™ where ew
was defined in Section 2. For any w e X* and n s= 1, we obtain

ow" = a
EW" = aniEw) = {a™)" = {ow)n.

For any x, y e X, x i= y, we further get

a{xy) = a±a2 = {ax){oy)

and o is not an endomorphism. Hence Proposition 5.7 is not valid under the hypothesis
that ow" = (ow)" for all w e X* and all n s= 1 instead of a being a generalized
endomorphism.

EXAMPLE 5.8. Let X = {a, b) and define a by:

ow = w if »v $ (ab)* (w e X*),

o(ab)" = {ba)n (n 3= 1).

For m,nsz\, we get ow" = (ow)" trivially if w $ (ab)* and

o((ab)m)n = o(ab)m" = (ba)mn = ((ba)m)" = (o(ab)m)".

Therefore ow" = (ow)" for all w e X*, n s* 1.
Next let M, u e A'*. Then for xeX,

(o(uv))x = (uv)x = ux + vx = (ou)x + (ov)x,

which implies that o(uv) = ou + ov and a is a generalized endomorphism. However,

o(ab) = ba = (ob)(oa)

and o is not an endomorphism. This shows that % is properly contained in IV

6. A dense embedding. Let / be an ideal of a semigroup 5. We say that S is an ideal
extension of /. If the equality relation on S is the only congruence on 5 whose restriction
to / is the equality on /, then S is a dense (ideal) extension of /. If, in addition, S is, under
inclusion, a maximal dense extension of /, then / is a densely embedded ideal of /.

An isomorphism (p of a semigroup 5 into a semigroup T is a dense embedding if S<p is
a densely embedded ideal of its idealizer in T.

Our aim here is to prove that the mapping 6 in Theorem 3.1, considered as an
isomorphism of S into 3~(X*), is a dense embedding. In order to achieve this goal, we will
make use of the following useful tool.

Let 5 be a semigroup. A transformation A (respectively p) written on the left
(respectively right) is a left (respectively right) translation of S if k(xy) = (kx)y
(respectively (xy)p =x(yp)) for all x, y eS; the two translations are linked if (xp)y =
x(ky) for all x,y eS in which case (A,p) is a bitranslation. The set Q(S) of all
bitranslations of 5 under the componentwise multiplication is the translational hull of 5.
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For any aeS, let kax = ax and xpa = xa for all x e 5. Then na = (Aa, pa) is an inner
bitranslation of 5. The mapping Jt:a—*jia (a e 5) is the canonical homomorphism of 5
into Q(5) with image 11(5). Finally, 5 is weakly reductive if n is one-to-one, that is, for
any a, b eS, ax = bx and *a = xb for all x e 5 implies that a = b. The proof of the above
stated goal is based on the following well-known

RESULT 6.1. If a semigroup S is weakly reductive, then 11(5) is a densely embedded
ideal of Q(5).

Since in this case n is an isomorphism of 5 onto 11(5), the proof will be effected by
constructing an isomorphism of the idealizer of 50 onto Q(5) which maps 50 onto 11(5).
For a complete discussion concerning these concepts, consult [4, Chapter II].

As the first part of our program, we prove

LEMMA 6.2. The semigroup 5 is weakly reductive.

Proof. Let (p, n, q), (z, m, r) be nonzero elements of 5 and assume that
(u, k, x)(p, n, q) = (u, k, x){z, m, r),

(p, n, q)(u, k, x) = (z, m, r)(u, k, x)

for all (u,k,x)eS. We can choose xeSt such that x.p^O which gives k(x.p)n =
k(x. z)m ^ 0 and q = r. Also, we can find ue9> such that q. u =£ 0 which implies that
p = z and n(q . u)k = m(r. u)k =£ 0. But q = r then gives n=m. Therefore (p, n, q) =
(z, m, r), as required.

For any set Y, denote by 3F{Y) (respectively &'(Y)) the semigroup of all partial
transformations on the set Y written and composed as left (respectively right) operators.
For <p e &(Y) U &'(Y), denote by d0 the domain of 0.

The following lemma gives a description of left and right translations of the
semigroup 5.

LEMMA 6.3. (i) For a e 9{9) and 0 :da--» N+, the function A defined by

u n\ l(aP>(<t>P)n><!) ifpeda\KP> n> <l) = n ,L • I' ^ ° = °>
10 otherwise)

is a left translation of S. Conversely, every left translation of S has this form.
(ii) For P e &'(£) and y: d/3 - • N+, the function p defined by

r}, oP=o
otherwise)

is a right translation of S. Conversely, every right translation of S has this form.
(iii) With the above notation, X and p are linked if and only if for any p e& and

qeSt,

p eda, q.~api=0^>q ed/J, qfi.p^O
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and if one side holds, then

(q . ap)(<l>P) = (<lV){<lP • PY

Proof. The proofs in [4, V.3] remain valid in any Rees matrix semigroup over a
semigroup with a zero adjoined. The above is an application of this remark to the
semigroup 5 = JP(9, N+, Si; (q . p)).

THEOREM 6.4. Let $ = iV(A")(3K) and define a mapping x by

X:a^{X,p) {oe3>)
where

o6s = eks, 6so=dsp (seS).

Then x is an isomorphism of $ onto Q(S) and the following diagram commutes:

Q(S) 3 n(5)

"I I"
Proof. First note that x is well-defined since a e i so that o3R, Wtoc.3ft and by

Lemma 6.2, dks and 6sp uniquely determine Ks and sp, respectively. Further, for any
s, t eS, we have

0(ju), = 0x,e, = (oe,)o, = o{ese,) = oesl = e^,

so that (As)f = X(st) and analogously s(tp) = (st)p and (sp)t = s(ht). Consequently
(A, p) e Q(S) and hence x maps $ into Q(5).

Let a, x e $ and ax = (A, p), %x = (a, /3). Then for any s e S, we have

ards = odas = BXas, 6sox = 8spx = dspP,

whence
(ax)X = (Aor, pp) = (A, p){oc, P) = (oX)(rx)

and x is a homomorphism.

Before proving that # is one-to-one, we make the following observation. For any
s = (p, n,q)eS and w e X*, we get

o6sw = op"iqA) = (op)n(i *> = [w(op)]le(op)1"(«- *>

which implies

f(p,n,q) - i c. ., (10)
l£ otherwise.
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Now assume that for a . t e i , we have ods = x6s for all s eS. In view of (10), we
conclude that

op = 1 0 xp = 1 (pe@),

and otherwise 8(jt(apUeiap)]r,jq) = d(jl(Tp),[e(zp)]nitl), which yields

op = [n(op)Y^ = [x(rp)Y™ = xp.

This evidently implies that ow = xw for all we A'*, whence o=x. Therefore % is
one-to-one.

In order to show that % is onto, we let (A, p) e Q(5). By Lemma 6.3, to (A, p) is
associated a quadruple (a, (j>, %l>, j8). We thus may define the following two functions. For
w e X+, say w =pm where p e 3P, let

LI otherwise J

For r e Nx, r¥=0, say r = ng where g e S , let

l l otherwise/'

With this notation, we have for k 5= 1,

„ edar "1 , ,
U otherwiseJ ' '

which proves that a e /»V(̂ -«)(3W) by Proposition 4.1. Furthermore,

r aw =
10 otherwise,

rT t,_f(lV)(lP)rnp ifqedp,
— In

1-0 otherwise.

The conditions on the quadruple (a, <p, xp, ft) in Lemma 6.3(iii) imply that r. ow = rx. w.
Since this holds trivially for r = 0 or w = 1, we conclude that a and x are adjoints. By
Theorem 4.2, we have that o e riS{X.)($R). Consequently o e $.

It remains to prove that ox = (A, p). Let s = (p, n,q)eS and w e X*. On the left
we get

odw = a(p"C- *') = (qp)"<* *> = einiap)>Map)]n>q)w

https://doi.org/10.1017/S0017089500007588 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007588


MONOGENIC ENDOMORPHISMS OF A FREE MONOID 101

and thus o8s = 0Aj; this holds trivially if s = 0. On the right, we obtain

r[a(iw)][(*(*MF)K"1') iinwe&a,
esow = eso(jzw)ew = es\\ .

11 otherwise
p ) j f

1 otherwise

- 1 otherwise

(^vv) w i f 9 e d/3.
otherwise

and thus 6so = 0ip; this holds trivially for s = 0. Consequently a^ = (A, p).
Therefore x is an isomorphism of $ onto Q(5). It remains to show that 6 followed by

X equals n, that is 8sx = ns for every s e 5. Indeed, let s,teS. Then

0sfy = 9st = Qxst> 8,6S = 8a = 6,Ps

and hence 8sx = (h> Ps) = ^ . as required.

We can finally deduce the desired result.

COROLLARY 6.5. The mapping

d:s^>8s (seS)

is a dense embedding of S into 2T(X*).

Proof. By Lemma 6.2, 5 is weakly reductive. Hence by Result 6.1, II(S) is a densely
embedded ideal of Q(S). According to Theorem 6.4, x iS a n isomorphism of $ =
<V(A")(3K) onto Q(S) which maps 2ft onto 11(5). Therefore 3ft is a densely embedded ideal
of 3> and hence 6 is a dense embedding of 5 into 5~{X*).
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