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1. Introduction and summary. Free monoids play a central role in the theory of
formal languages. Their endomorphisms appear naturally in the context of deterministic
OL-schemes which trace their origin to biology. Closely related to such a scheme is a
DOL-system which consists of a triple (X, ¢, w) where X is a finite set, ¢ is an
endomorphism of the free monoid X* and w € X. The associated language is defined as
the set {w, ¢w, ¢*w, ...} called a DOL-language. For a full discussion of this subject, we
recommend the book [2] by Herman and Rozenberg.

The monoid of endomorphisms of the free monoid X* on an arbitrary alphabet X has
a certain interest in its own right. It ought to have a structure which bears some
resemblance to the monoid of all transformations on a set, or the monoid of all linear
transformations on a vector space. The underlying spaces in these two cases are: (1) a set
without further structure, hence simpler than X*, and (2) a vector space, hence a
structure richer than a free monoid on a set. We may thus expect that the endomorphism
monoid of X* harbours interesting structural complexity.

Semigroups of transformations, partial transformations, partial one-to-one transfor-
mations, linear transformations on a vector space, binary relations on a set and numerous
others have a densely embedded ideal which is a completely O-simple semigroup (except
for the first one in which it is a left zero semigroup if the functions are written on the left),
see [3). An ideal I of a semigroup S is densely embedded if (1) the only congruence on §
whose restriction to [ is equality is the equality relation on S and (2) S is maximal with
this property relative to I under set theoretical inclusion.

We call an endomorphism o of X* monogenic if its range is contained in a
monogenic submonoid of X*. The monogenic endomorphisms form a semigroup IX with
many remarkable properties.

We study the structure of Y as well as its position in the monoid of all
transformations J(X*) on X* (functions written on the left). Section 2 contains a
construction of a Rees matrix semigroup S over the multiplicative semigroup of positive
integers. It is then proved that this Rees matrix semigroup is isomorphic to I, thereby
providing I with a Rees matrix representation. Hence this case bears strong similarity
with the instances mentioned above with the notable difference that we now have a Rees
matrix semigroup over a semigroup which is not a group. The left and the right idealizers
of M in F(X*) are identified in Section 4. The elements of the right idealizers are
particularly interesting; they are called here generalized endomorphisms and are further
investigated in Section 5. There is a curious phenomenon here of duality between J(X*)
and N*, the free commutative monoid on X. It is proved in Section 6 that It is a densely
embedded ideal of its idealizer in (X*) which means that the isomorphism of S onto IR
is a dense embedding of the Rees matrix semigroup S into J(X*).
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2. The basic construction. We fix a nonempty set X throughout the paper. By X*
denote the free monoid on X, that is the set of all words over the alphabet X with
concatenation as product. The empty word 1 is the identity of X*. The semigroup X*
consisting of nonempty words over X is the free semigroup on X. A word we X* is
primitive if w = u" for any u € X* implies n =1, and thus w = u. Denote by 2 the set of
all primitive words in X™* (or over X). For w € X* and x € X, let w, denote the number of
occurrences of x in w; let w be the X-tuple of nonnegative integers w,. The mapping

Ew—ow=(w,) (weX™)

is called the Parikh mapping. Clearly uv =i + v for all u, v e X*.

For any X-tuple g =(q,) of nonnegative integers and w e X*, define their dot
product by

q.9=3 g
xeX

Note that this sum is finite since w has only a finite number of nonzero entries. For
X-tuples of nonnegative integers, p, g and u, v € X*, one easily verifies that the following
relations hold:

(p+q).a=p.a+gq.4q 1)
q.uv=q.(G+v)=q.d+q.7,
p.u=gq.u for all u e X* implies p =gq, (2)
g.u=gq. v for all g implies & = v, 3

when the sum of X-tuples is by components.

Let 2 denote the set of all X-tuples ¢ =(g,) of nonnegative integers such that
ged{q, | x e X} =1. We will be interested only in the dot product q. i with g € 2 and
ueP. All the relations above remain valid with these restrictions. We will use them
freely without further reference. Denote by 0 the X-tuple all of whose entries are equal to
zero. We also require that 0 ¢ 2.

Denote by N the multiplicative semigroup of nonnegative integers and by N* its
subsemigroup of positive integers. We may now define a Rees matrix semigroup in the
usual way

§=M(P,N*, Q;(q.p))
with index sets ? and 2 over N* with sandwich matrix denoted by (q. p). Clearly, in
every row and in every column (g . p) has at least one nonzero entry.
For each nonzero element (p, n, q) of S define a mapping
Opmay:w—=p" ™ (weX®)
and
Op:w—1 (w e X*).

We will generally write functions as left operators. Let 7(X*) denote the semigroup
of all transformations on X™* written and composed as left operators. Denote by € its
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subsemigroup of endomorphisms of X*. For each w € X*, let w* stand for the submonoid
of X* generated by w. Finally let

M={6€%|0X* cw* for some w e X*}

and call its elements monogenic endomorphisms of X*. Denote by ¢ the trivial
endomorphism {:w—1 for all w € X*.

Obviously I is a subsemigroup of &. It represents the main subject of our study. In
the succeeding sections, we will give a Rees matrix representation for it, its translational
hull, its left and right idealizer in J(X*) and finally, by means of it, construct a dense
embedding of S into J(X*). :

For any y € X, let 1, = (g,) where

_ {1 ifx=y,
9= 0 otherwise.

For any we X%, let w=(aw)® where w is the primitive word which raised to the
exponent ew gives w. By definition, 71=1, e1=1.

3. A Rees representation for J8. The principal result here is the existence of an
isomorphism of S onto IR, giving a Rees representation for IN. A few properties of S are
then investigated, providing a further clue as to the structure of .

THEOREM 3.1. The mapping

6:5— 0, (ses)
is an isomorphism of S onto IN.
Proof. First, for s =(p, n, q) € S and u, v € X*, we obtain
(gsu)(gsv) =pn(q- ﬁ)pn(q- v) .__pn(q~ i+q. D)
= pn@- G+9) = pnle. T) = 6,(uv)
an_d thus 6, is an endomorphism of X*. Trivially o= eI so 8:5— IN.

Next let u € I and suppose that u # . Then uX* c w* for some w € X*. There is a
unique primitive word p for which w =p’ for some ¢=1. For each x € X, define ¢, by

t, .
px =p“. Let n=gcd{t, |x € X} and let g, == for each x € X. Then with g = (q,), we
obtain for any x € X, n X
px=ph=pri=p"@- D=9, x
Therefore u = 6,,,, 4 and thus 6 maps S onto IN.
Assume next that 6, , ., = 0, ..)- Applied to any x € X, this gives

pnqx _ pn(q LX) = rm(l. x) —_ rmtx.
Since both p and r are primitive words, it follows that p = r and nq, = mt, for all x € X.

Let g = gcd{m, n}. Then n = gd with (d, m) = 1. Also d divides mt,, so that d divides ¢,.
This is true for all xe€X, and by hypothesis ged{t,|xeX}=1, whence d=1.
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Consequently, n =g, so that n divides m. By symmetry, we conclude that m = n. But
then q.=t, for all x€X, whence g=t Therefore (p,n,q)=(r,m,t) and 6 is
one-to-one.
Further, if £. w #0, then

0(p.n.)0¢.mW = e(p:mq)rmo' M =pra- 2y

=p @ =00, 0 5, oW
= 0na)rmaWs

and if . w =0, then 9(p,n,q)0(,,m,,)14'1 =1= 0(1,,,,,q)(‘,,,.,,)w. Consequently 6,6, = 6. for s, s’
nonzero elements of S. This equation can be easily verified to be true if one or both of s
and s’ is equal to zero. Therefore 6 is a homomorphism and thus an isomorphism of S
onto I.

In view of the above theorem, the semigroup § plays a central role in our

investigation. It is thus worth having a closer look at its structure. To this end, we
characterise Green’s relations, idempotents, inverses, regular elements and an embedding

into a completely O-simple semigroup as an order. It will be convenient to introduce the
following concepts.

DeriNmmioN 3.2. A word w in X™* is monic if there is a letter x in X which occurs in w
only once. An element g of Q is monic if some component of g is equal to 1.

ProposiTION 3.3. Let s=(p, n, q) and t=(z, m, r) be distinct (nonzero) elements
" (i) sL & p and z are monic, n =m, qg=r.
(ii) SRt p =2z, n=m, q and r are monic.
either p and z are monic or p =z,
(i) sPtyn=m,
either q and r are monic or q =r.

(iv) sgtn=m, p, z, q and r are monic.
(v) & is the equality relation.

Proof. (i) Indeed,

(p’ n’ q) = (u’ k’ 'x)(z’ m’ r)’ (Z’ m’ r) = (v’ l’ y)(p’ n’ q)
Op=un=k(x.2)mq=r,z=v,m=Il(y.p)n,r=gq
op=un=mkx.z)=y.p)=1,z=v,r=gq,

- whence the assertion concerning £.
(ii) The argument here is dual.
(iii) This follows directly from items (i) and (ii).
(iv) The assertion follows directly from the calculation
(P, n, q) = (u, k, x)(z, m, r)(v, 1, y)
op=u,n=k(x.zZ)m(r.v)l,q=y.
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(v) This is a direct consequence of items (i) and (ii).
Comparing parts (iii) and (iv), we conclude that @ # £ in S.

ProrosiTion 3.4. Let s =(p, n, q) and t = (z, m, r) be elements of S.
(i) s is idempotent if and only if q.p. =1 for some x€ X and q,p,=0 if y #x
and n=1.
(ii) s and t are mutually inverse if and only if g. Z=r.p=1land n=m = 1.
(iii) s is regular if and only if both p and q are monic and n = 1.
(iv) {(x,1, 1) |x,y € X} U{0} is a combinatorial Brandt semigroup.

Proof. Straightforward verification.

Simple verification also shows that § is an order in the completely 0-simple semigroup
MY(P, QF, 2;(q. p)) where Q™ is the multiplicative group of positive rationals. For a full
discussion of these concepts, we refer the reader to [1].

4. The left and the right idealizer of I in J(X*). The (left, right) idealizer of a
subsemigroup T of a semigroup S is the greatest subsemigroup is(T)(lis(T), rig(T)) of S
in which T is a (left, right) ideal. For these, we have the following simple expressions:

is(TY={seS|sT, Tsc T},
lig(T)={seS|sT<T},
and analogously for rig(T). It follows that is(T) = lig(T) N rig(T).
We start with the left idealizer. Recall the notation mw and ew from Section 2.
PROPOSITION 4.1.
ligix () = {0 € T(X*) | o(w") = (ow)" for all w e X*, n=1).

Proof. First let o €ligx+(M). Let we X* and n=1. By the above formula and
Theorem 3.1, o6, is an endomorphism of X* for any s € S. Hence, for any x € X,

ow" = oe(nw.(ew)n,l,)x = oe(nw.ew.l,)xn
= (ae(nw_w, 1x)x)" = (UW)n.
Conversely, let o be in the set on the right hand side in the statement of the
proposition. Then for any (p, n, g) € S and w € X*, we obtain
oe(P:",q)w = opn(q. ® = (O,p)n(q. *) = e(nop,(eop)n,q)w’

which proves that 660, .. 4) = O(zop,ic(o(p)n.q)- Furthermore, for any w e X* and n =1, we
have
00yw = olw = 01 = 01" = (01)",

which evidently implies that 01=1. Hence 66,=6,. Consequently o € lig+ (), as
required.

We now consider the right idealizer. Recall the definition of the Parikh mapping &
and the notation 1, from Section 2.
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Denote by N* the semigroup of all X-tuples of nonnegative integers with only a finite
number of nonzero entries under componentwise addition. For any set Y, denote by
J'(Y) the semigroup of all transformations on Y written and composed as operators on
the right. We say that 0 € 7(X*) and t € 7'(N¥) are adjoints of each other if

rrow=rt.w (reN*, weX*).
THEOREM 4.2.
Tigixe (M) = {0 € T(X) | {o: X*—N* is a homomorphism}
= {0 € 7(X) | 0 has an adjoint in N¥}.

Proof. Let 0 € rig(x+)(M). Then for s =(p, n, q) € S, we have 6,0 € M and hence for
any u, v e X*, we get
0,0(uv) = (6,0u)(6,0v),

so that _ _ _ _
pn(q- o(uv)) — pn(q- au)pn(q- ov) ._.pn(q- (ou + ov)) _ pn(q . (ou)(av))

whence ¢g. a(uv) =gq. (ou)(ov). Since this holds for all g € 2, by (3) we deduce that
o(uv) = (ou)(ov). It follows that

Eo(uv) = o(uv) = (ou)(ov) = ou + ov = Eou + Eov

and &o is a homomorphism.

Now assume that £o is a homomorphism. We define T on N* as follows. For any
x,y € X, let (1,7), = ox,, that is, the xth component of the value of 7 at 1, is equal to the
yth component of ox. This defines 7 on the set {1,|ye X}. Since NX is the free
commutative monoid on X, we may extend 7 uniquely to an endomorphism of N¥, again
denoted by 7. We will now show that 7 is an adjoint of o in J'(N¥).

Any r e N* can be written as r=r, 1, +r,1,,+...+r,1, so that

ri=r,(1,7)+r,1,,0)+...+r,(1,7)
- rz.(an)xeX + rzz(azz)xex +...+ rz,.(az,.)xex
= (rzl(a)z, + rzz(a)zz +...+ rzn(a)zn)xeX;

whence for w = x{x3* . . x;=, we get

rT.w= 2 (r,(ox%),, t r,(ox),,+. .. +r, (0X), )W,

xeX

- i (o (G)s, + 1T+ - - + 1, (T )W,

2 ((0X7) Wy, + (0X5), W, + . . . + (0X,); W, ) 4)
On the other hand,

r.ow=r,(ow), + r,(ow),, +...+r, (ow),,. )
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For equality of (4) and (5), it thus suffices to prove that

(0X1):We, + (0X2) Wi, + - - . + (X)) We,, = (OW),, (6)
forj=1,2,...,n Indeed, using the hypothesis that o is a homomorphism, we obtain

(ow);, = (Eo(xix3=2. . . xpm))z;
= (W, (0%)) + w,(002) + . . . + Wy, (0X,,));;
= wxl(oxl)zi + wx2(0x2)z,« +...+ wxm(m)z,,

j=1,2,..., n This proves (6) and hence equality of (4) and (5) follows.

We have shown the equality r.ow=rt.w in the special case when w=
xPaxye, .. xwm, However, for any w € X*, we have w = ii where u = x{*1x}* . . . x}%= with
X1, X2, ..., X, distinct elements of X occurring in w. In fact, u=x{x%2. .. xlim,

m
ver — —_ —_ _
Moreo ow=Eow =w, 0x, +w,0x, +...+Ww,0x,

= Eou = ou.
We may thus conclude that
r-ow=r.ou=rrt.a=rr.w,

that is o and t are adjoints.
Finally assume that o has an adjoint 7 in N*. For any s =(p, n, q) € S and u, v € X*,

we obtain 8,0(uv) =p,.(q. 5(iD)) = prar av) =pn(q1:. (a+9))

=pn(q1:. a+qt. v) =pn(qt. E)pn(qt. )
= p"@ Tp"@- ™V = (,0u)(6,0v),

which proves that 6,0 is an endomorphism of X*. Clearly (6,0)X* cp* and thus
6,0 € M. Trivially 6,0 = By. Therefore o € rigx+)(IM), as required.

5. Generalized endomorphisms. We will now elaborate upon the transformations
on X* which appear in Theorem 4.2. As a motivation, we first prove the following simple
result.

PROPOSITION 5.1. A transformation o € I(X*) has an adjoint in N* if and only if §o is
a homomorphism. If T is such an adjoint, then t is an endomorphism of N* and is unique.
For any s =(p, n, q) € S, the adjoint of 0, again denoted by 6, is given by

r6,=(r.p)ng  (reN¥),
and 6,=0.

Proof. The first assertion is part of Theorem 4.2. Let T be an adjoint of o, let
r,r' e N* and w € X*. Then, using (1),

(r+r)t-w=(@+r).ow=r-ow+r' -ow

=rt.wtr't.w=(0r+r't). w;
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since w is arbitrary, (2) implies that (r + r')t =rt + r'1. Therefore 7 is an endomorphism
of N*¥.
Let 7' be also an adjoint of 0. Then for any r e N* and w € X*, we get
rc.w=r.ow=rt . w.

Again, w being arbitrary, (2) yields rr=rt’. Consequently 7=71', establishing
uniqueness.
With the notation in the statement of the proposition and r e N*, w € X*, we have

r6,.w=(r.pyng.w=(r.p)n(g. wy=r.pn(q.w)

=r.p"@®=r Qw,

this holds trivially for s = 0.

We now consider the dual situation: which transformations on N* have an adjoint in
X*? This is answered in the theorem below. It will be convenient to first prove an
auxiliary statement of some independent interest.

LEMMA 5.2. Let & be a homomorphism of X* into N*. For each xe X, let
ox=x{x3...xpifox=nl, +nl,+...+r1, (in some ordering of x;’s). Extend o to an
endomorphism of X*, again denoted by 0. Then o = 4.

Proof. With the notation introduced, we have
Eox=Ex1xz...x7)=nl, +nl, +...+r11, =0x,

sothat forw=y;y, ...y, with y;, ¥, . . ., y, € X, we obtain

Eow = &((oy1)(0y2) - - . (0Ywm))
= (o), +(Eo)y +. .. +(E0)ym
=0y, + Oy, +. .. + Oy, = ow.
Therefore Eo = 6, as asserted.

The claim of the lemma can be expressed by saying that every homomorphism of X*
into N* can be “lifted” by & to an endomorphism of X*.

THEOREM 5.3. A transformation t € I'(N¥) has an adjoint in X* if and only if T is an
endomorphism of N*. If o is such an adjoint, then Eq is a homomorphism and is unique;
in addition, t has an adjoint which is an endomorphism of X*.

Proof. If a transformation € J'(N*) has an adjoint ¢ in X*, then by Proposition
5.1, T is an endomorphism of N*. Conversely, assume that 7 is an endomorphism of N*,
We first define a function & mapping X* into N* as follows. For any x,y € X, let
(dy), = (1,7),, that is, the xth component of the value of é at y is equal to the yth
component of the value of 7 at 1,. This defines 6 on the set X. Now extend & to a
homomorphism from X* into N*, again denoted by 6. We show next that

r.dw=rt.w  (reN*, weX*). )
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Forw=y,y,...y, we get for any x € X,
(6w)e=(8y1+ Oy +. .. + 8y,) = (8y1)x + (8y2)c +. . . +(6ya)s
= (1:7),, + (L:7),, +. .. + (L,;7),,.
For reN*, say r, 1, +r,1,,+...+r,1, , we then obtain on the one hand,
rodw=(r,l, +rolg+ .o LO)(0W), 1 + (0w),, 1, +. .+ (0w), 1, )
= 1 [y D+ LoDy + -+ (L, T]
+r.,[(1,7)y, + (1,7)), +. . . + (1,,7)y,]
+...
+1, [(Le Dy + LDy, + - . + (1, 7))
=r,(1,7),, + 1,(1,7),, +. .. +r. (1, 1),
+ 1 (1,7)y, + 1 (L,7),, + .+ (1, T),,
+...
+r,(1,7),, +r,(1,0),, +. .. + 1. (1;,7),, (8)
and on the other hand,
rt.w=(rl,tr,l,+.. ..+ L)Yy Y
=[rn(1,0)+r,(1,D+...+r (1, 7)]. 1, +1,+...+1,)
=(r,(1,7) +r,(1,0)+. .. +r, (1, D),
+((r, (L 0) +r (L) +. ..+ 1 (1, 7)),
+...
+ (r,(1,0) +r,(1,0) +. .. + 1. (1, 7)),. )]

We now see that expressions (8) and (9) are equal, which then proves relation (7).

Since & is a homomorphism of X* into N*, Lemma 5.2 yields that for some
endomorphism o of X* we have £o = 4. Substitution in (7) gives r. ow=r7. w for all

reN* and w e X*, which shows that o is an adjoint of 7. This establishes the converse
part of the first assertion and the last assertion of the theorem.

Now let o be any adjoint of z. Then for any u, v € X* and r ¢ N*, we obtain
r.ow)=rr.uv=rr.(A+0)=rr.a+rr. v
=r.ou+r.ov=r. (ou+ov).

Since r is arbitrary, (3) implies that o(uv) = ou + ov and &o is indeed a homomorphism.

Assume, in addition, that ¢’ is also an adjoint of 7. Then for any r e N¥ and w € X*,
we have

r.ow=rt.w=r.o'w,

so again by (3), we conclude that ow = o'w. It follows that Eo is unique.
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Motivated by the above theorem, we introduce the following concept.

DEeFINITION 5.4. A transformation o of X* is a generalized endomorphism if Eolis a
homomorphism.

In the notation employed above, this means that o(uv) = (ou)(ov) for all u, v € X*.
According to Proposition 5.1, 0 € J(X*) is a generalized endomorphism if and only if it
has an adjoint in N*. Generalized endomorphisms of X* may be constructed in a similar
fashion, as the following simple result shows.

PRrOPOSITION 5.5. Let 0:X— X* be any mapping. For w=x,x,...x, € X* let ow be
any word in X* satisfying

ow = (ox,)(0x,) . . . (ox,).

Then o is a generalized endomorphism of X*. Also, every generalized endomorphism of
X* can be so constructed.

Proof. Letu=x1x,...x,and v=y,y,...y, be words in X*. Then
ou+0v = (0x1)(0x3) . . . (0x,,) + (0y1)(0y2) - - . (OYa)
=0x,+0x,+...+0x,,+0oy;+ 0oy, +...+0y,

= (ox;)(0x2) . . . (0x,,)(0y1)(0y2) - - - (0yn)
= (a(uv),

as required.
Conversely, let o be a generalized endomorphism of X*. Then for all w =x,x,. . . x

in X*, we have W= 00055 . %) = (0x1)(0%3) .. (O%.),

m

as required.

It should now be clear how much generalized endomorphisms are indeed more
general than endomorphisms. Nevertheless, we have the following statement.

PROPOSITION 5.6. Let o be a generalized endomorphism of X* such that oX* c w* for
"some w € X*. Then o is an endomorphism.

Proof. 1If w=1, the assertion is trivial. Assume t_hat w # 1. For every x € X, we have
ox = w" for a positive integer r,. Hence
o(x1xy...x,)=0x,+0x,+...+0x,
=rwtr,w+...+trw
=(r,tr,+...+ rOw,
so that o(xx, . .. x,)=w™=*=" "= But this implies that
0(x1 . -xnyl . ym) = wr,|+. B A o (TR I o (N

= wr,|+. . '+’1mw’y1+' Loy,

=0(x)...%)0(V1 - V),
which gives a(uv) = (ou)(ov) for all u, v e X*. Therefore o is an endomorphism.
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The following examples illustrate the nature of some of the transformations studied.

ExampLE 5.7. Let |X|>1 and fix a € X™. For every w € X*, let ow = a®™ where ew
was defined in Section 2. For any w € X* and n = 1, we obtain
o,wn — aew" — an(sw) — (aew)n = (UW)".

For any x, y € X, x #y, we further get
o(xy) = a #a* = (ox)(0y)

and o is not an endomorphism. Hence Proposition 5.7 is not valid under the hypothesis
that ow" = (ow)" for all we X* and all n=1 instead of o being a generalized
endomorphism.

ExampLE 5.8. Let X = {a, b} and define o by:
ow=w if w¢(ab)* (weX™),
o(ab)" = (ba)" (n=1).
For m, n=1, we get ow" = (ow)" trivially if w ¢ (ab)* and
o((ab)™)" = a(ab)™ = (ba)™ = ((ba)™)" = (a(ab)™)".

Therefore ow” = (ow)" forall we X*, n=1.
Next let u, v € X*. Then for x € X,

(0(uv)), = (Uv); = u, + v, = (ou), + (ov),,

which implies that o(uv) = ou + ov and o is a generalized endomorphism. However,
o(ab) = ba = (ob)(0a)

and o is not an endomorphism. This shows that & is properly contained in igx-)(R).

6. A dense embedding. Let I be an ideal of a semigroup S. We say that S is an ideal
extension of 1. If the equality relation on S is the only congruence on § whose restriction
to I is the equality on I, then § is a dense (ideal) extension of L. If, in addition, S is, under
inclusion, a maximal dense extension of I, then I is a densely embedded ideal of I.

An isomorphism ¢ of a semigroup § into a semigroup T is a dense embedding if S¢ is
a densely embedded ideal of its idealizer in T.

Our aim here is to prove that the mapping 6 in Theorem 3.1, considered as an
isomorphism of S into 7(X™*), is a dense embedding. In order to achieve this goal, we will .
make use of the following useful tool.

Let § be a semigroup. A transformation A (respectively p) written on the left
(respectively right) is a left (respectively right) translation of S if A(xy)=(Ax)y
(respectively (xy)p =x(yp)) for all x, y € §; the two translations are linked if (xp)y =
x(Ay) for all x,yeS in which case (A, p) is a bitranslation. The set Q(S) of all
bitranslations of S under the componentwise multiplication is the translational hull of S.
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For any a €S, let A,x =ax and xp,=xa for all xeS. Then n,=(4,, p,) is an inner
bitranslation of S. The mapping w:a— 7, (a € S) is the canonical homomorphism of S
into Q(S) with image IT(S). Finally, S is weakly reductive if & is one-to-one, that is, for
any a, b € S, ax = bx and xa = xb for all x € S implies that a = b. The proof of the above
stated goal is based on the following well-known

ResuLt 6.1. If a semigroup S is weakly reductive, then T1(S) is a densely embedded
ideal of Q(S).

Since in this case & is an isomorphism of S onto II(S), the proof will be effected by
constructing an isomorphism of the idealizer of S¢ onto Q(S) which maps S¢ onto II(S).
For a complete discussion concerning these concepts, consult [4, Chapter II].

As the first part of our program, we prove

LeMMA 6.2. The semigroup S is weakly reductive.
Proof. Let (p, n, q), (z, m, r) be nonzero elements of S and assume that
W, k, x)(p, n, q) = (u, k, x)(z, m, 7),
(p, n, q)(u, k, x) = (z, m, r)(u, k, x)
for all (4, k, x)eS. We can choose x € 2 such that x.p #0 which gives k(x.p)n =
k(x.z)m#0 and g =r. Also, we can find u € ? such that q. i #0 which implies that

p=z and n(q. @)k =m(r. @)k #0. But g =r then gives n =m. Therefore (p,n,q)=
(z, m, r), as required.

For any set Y, denote by F(Y) (respectively %'(Y)) the semigroup of all partial
transformations on the set Y written and composed as left (respectively right) operators.
For ¢ € #(Y)U F'(Y), denote by d¢ the domain of ¢.

The following lemma gives a description of left and right translations of the
semigroup S.

LemMA 6.3. (i) For a € F(P) and ¢ :da— N”, the function A defined by
{(ap, (¢p)n, q) ifpeda }

, A0=0,
otherwise

Mp,n, q)=

is a left translation of S. Conversely, every left translation of S has this form.
(ii) For Be F'(2) and y:df— N*, the function p defined by

(p, n(qy), aB) ifqedp }

0p=0
otherwise p

(p,n,q)p= {

is a right translation of S. Conversely, every right translation of S has this form.
(iii) With the above notation, A and p are linked if and only if for any p € P and
qge2,

peda,qg. ap#0qedf, gf.p#0
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and if one side holds, then
(g - ap)(¢p) = (q¥)(gB . p)-

Proof. The proofs in [4, V.3] remain valid in any Rees matrix semigroup over a
semigroup with a zero adjoined. The above is an application of this remark to the
semigroup S = M°(P, N*, 2;(q . p)).

THEOREM 6.4. Let $ = igx+\(IN) and define a mapping yx by
x:0—=>(4,p) (0ed)
where
06,=8,;, 6,0=20,, (ses).

Then yx is an isomorphism of ¥ onto Q(S) and the following diagram commutes:

QS) =2 IKS)
1T
F oM «—S8.

Proof. First note that x is well-defined since o€ # so that oI, Mo <M and by
Lemma 6.2, 6,, and 0,, uniquely determine As and sp, respectively. Further, for any
s, teS, we have

e().y)t = Glset = (Gex)el = 0(0501) = Gest = el(st)’
so that (As)t=A(st) and analogously s(tp)=(st)p and (sp)t=s(At). Consequently

(A, p) € Q(S) and hence y maps # into Q(S).
Let 0, Te $ and oy = (4, p),7x = (@, B). Then for any s € S, we have

o010, = 00,, = 6;,,, 0,0t = 0,,T = O,,,
whence

(o1)x = (Aa, Bp) = (4, p)(a, B) = (ox)(7X)
and yx is a homomorphism.

Before proving that x is one-to-one, we make the following observation. For any
s=(p,n, q)€S and w € X*, we get
gbw = op"(q' w) = (gp)"(q~ w) — [n(op)]ls(op)ln(q. w)
= O(a(op).tetap)ng)W>

which implies

06, = {e(u(op).[e(apnn,q) if op#1,
w0 g otherwise.

(10)

https://doi.org/10.1017/50017089500007588 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007588

100 MARIO PETRICH

Now assume that for o, v € $, we have 00, = 10, for all s € S. In view of (10), we
conclude that

op=1e1p=1 (pe?),

and otherwise 6 ,(op),(e(oo)ina) = O(n(wp).leup)in,q)» Which yields

op = [(op))*™ = [ (wp)]"™ = 1p.

This evidently implies that ow =tw for all we X*, whence o=7t. Therefore yx is
one-to-one.
In order to show that x is onto, we let (4, p) € Q(S). By Lemma 6.3, to (4, p) is

associated a quadruple (&, ¢, ¥, B). We thus may define the following two functions. For
we X", say w=p™ where p € P, let

(¢pp)m -
0w={(ap) 1fped‘a' }, ol=1.
1 otherwise
For r e N%, r #0, say r = nq where q € 2, let
if d
. {(qw)n(qﬁ) if g € dp } O =0,
1 otherwise

With this notation, we have for k=1,

(ap)®™* if p eda
1 otherwise

ow* = o™ = { }= (@™ = (ow",

which proves that o € ligx, () by Proposition 4.1. Furthermore,

r Swe {nq - (¢p)map if p € da,
0 otherwise,
I {(W)rn(qﬁ) .mp if g edp,
0 otherwise.

The conditions on the quadruple (a, ¢, ¥, B) in Lemma 6.3(iii) imply that r. ow = rt. w.
Since this holds trivially for r=0 or w =1, we conclude that o and 7 are adjoints. By
Theorem 4.2, we have that g € rigx+ (). Consequently o € £.

It remains to prove that oy = (4, p). Let s=(p, n,q) €S and w e X*. On the left
we get

08w = a(p"- ") = (0p)" @ ® = B(a(op),(eopyma)W

= G(WP»(¢P)H,4)W = el(p,n,q)w = ebw
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and thus 08, = 6,;; this holds trivially if s =0. On the right, we obtain

[(@p(mw)](ew) +
eso’w = eso-(nw)sw = es{[a’(ﬂw)] if w e da,

1 otherwise
pn(q- a(@W[¢@)IEw) i pw e da,
- {1 - otherwise
pn(qﬁ. aw)(qw)(ew) if qe dﬁ,
- { 1 otherwise
_ {0(p,n(qw).qﬁ)(nw)€w if ¢ e dB,
1 otherwise

= O0pnqpW = O5pW

and thus 6,0 = 0,,; this holds trivially for s = 0. Consequently oy = (4, p).
Therefore x is an isomorphism of .# onto €2(S). It remains to show that 6 followed by
x equals m, that is 6,y = &, for every s € S. Indeed, let s, t € S. Then

0,6,=6,=6,, 6,6,=6,=26,,
and hence O,y = (A, p,;) = &, as required.
We can finally deduce the desired result.
COROLLARY 6.5. The mapping
0:5— 06, (s€S)
is a dense embedding of S into T(X*).

Proof. By Lemma 6.2, S is weakly reductive. Hence by Result 6.1, TI(S) is a densely
embedded ideal of (S). According to Theorem 6.4, y is an isomorphism of ¥ =
igx(IN) onto Q(S) which maps M onto II(S). Therefore P is a densely embedded ideal
of # and hence 6 is a dense embedding of § into J(X*).
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