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Abstract

This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic
equations. The unknown coefficient of the elliptic equations depends on the gradient
of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear
elliptic equations are uniquely solvable for the given class of coefficients. Proof of the
existence of a quasisolution of the inverse problems is obtained.
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1. Introduction

In this paper we consider the problem of determining the unknown coefficient &(£) in
the nonlinear elliptic boundary value problem

- V ( A : ( | V M | 2 ) V M ) = / ( A ) , xe£l

W(JC) = O, ' x e r,, r, c r = 3fi ( ] ] }

2 ) ^ - = <p(x), x e r 2 ,
dn

from knowledge of the measured data given on the boundary
u(x) = g{x), xeF2, (1.2)

where the domain Q c RN (N > 1) is assumed to be bounded and simply connected
with a piecewise smooth boundary F and H n F2 = 0, f, U f 2 = F, meas F, ^ 0.
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The determination of unknown coefficients in elliptic partial differential equations
from additional boundary conditions (measured data taken on the boundary) is known
in the literature as inverse coefficient problems (ICPs). Physically, an ICP is the recon-
struction of an intraproperty of a medium (for example, conductivity or permittivity)
in some bounded region by using steady-state measurements on the boundary.

ICPs for linear elliptic equations have been studied by many people, for example,
by Cannon and DuChateau [1] for rectangular domains, and by Cannon and Rundell
[2] for unbounded domains. ICPs for semilinear parabolic equations have also been
considered by Liu [8-12]. In the case of elliptic equations, uniqueness and continuous
dependence results for various inverse problems have been proved by Kohn and
Vogelius [6] and Sylvester and Uhlmann [13].

For a given coefficient k = k(s), we sometimes call the problem (1.1) the direct
problem DP. Denote the solution of DP by u[x;k]. Then from the additional con-
dition (1.2), we see that the ICP (1.2) consists of solving the nonlinear functional
equation

u[x;k] = g(x), x e r 2

for given data g = g (x), over the solution u = u [x; k] of the nonlinear boundary value
problem (1.1).

In applications, instead of the measured data (1.2) on the boundary, one may get
the nonlocal measured data

Lu(x)dx = <D. (1.3)
/n

In this case we shall define the problem of determining a solution k = k(s) of the
nonlinear functional equation

I u[x,k]dx = <t>
Ja

over the solution of the DP as a nonlocal inverse coefficient problem.
In the practical solution of such ICPs, instead of solving the functional equations

above, one usually tries to find the solutions of the minimization problem

li(k) = min/,(*), where /,(£) = [ u[x;k] - g(x) *dx (1.4)
keK Jf2

is an auxiliary functional and K is a set of admissible coefficients. Tikhonov and
Arsenin [14] call a solution of the minimization problem (1.4) a quasisolution of the
ICP (1.2) (see, for example, [3-5] for more detail).

For the ICP (1.3), a quasisolution can be defined as a solution of the minimization
problem

I2(k) — min I2(k), where I2(k) =
ketc

I u[x;k\dx — <J>
Jn
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The ICPs (1.2) and (1.3) have been considered by Hasanov [4] under the set K£ of
coefficients k(s) satisfying the following conditions:

(a) 0 < cx < k(s) < c2

(b) *'(*)< 0
(c) k(s) + 2k'(s)s > c3 > 0, s e (0, s*)
(d) 3sQ, k(s) + 2k'(s)s0 > c 3 > 0 , j e (0, so)
(e) k'(s) is a monotone increasing (or decreasing) function on (0, s").

In the set of admissible coefficients Ke, Hasanov [4] has proved that the ICP (1.2) has
at least one quasisolution.

However, in many applications, the coefficient k(s) does not satisfy the conditions
above. It may not be monotone and piecewise smooth. Also, it is not easy to estimate
the constant s*, which should be an a priori upper bound for |Vw(;c)|2, V.v e Q.
Therefore, one should consider the ICPs in the interval [0, oo) instead of in [0, s*]. In
the following we shall generalize the results in [4].

With respect to the coefficients k — k(s) we make the following assumptions:

(Al) it € C[[0, oo)] and c, < k(s) < c2, Vs e [0, oo);

(A2) £f=1 [k(\^m - *( |£f )$;]& - £/) > c3|£ - ^'l2 v£- §' e R".
Here c\, c2 and c3 are positive constants.

The set K of coefficients satisfying Assumptions (Al) and (A2) is called the set of
admissible coefficients for the ICPs under consideration.

Comparing with the conditions (a)-(e), we have the following result.

LEMMA 1.1. Suppose that a coefficient k(s) satisfies the conditions (a)-(c) above
with s* = oo. Then k e K.

PROOF. Let the coefficient k(s) satisfy the conditions (a)-(c). By the definition of
the admissible coefficient set K, we have to show that k satisfies Assumption (A2).
For all £, £' e RN and t € [0, 1], define the functions

¥(0 = r£ + ( l-0£ ' and
Then

= /(i) - /(b) = / f\t)dt
Jo

/
I

* (I*(OI2)-|* " i f + 2k' (|*(r)|2) [*(0 (? - ?)fdt
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> / [k(\*(t)\2)+2k'(\*(t)\2)\*(t)\2]\!;-l;'\2dt
Jo

The first and second inequalities above use the Cauchy inequality, and conditions
(b) and (c), respectively. The proof is now complete. •

Let V = {v € H\Sl) : yv - 0on T,} and H = L2(J2), where y : / / '
L2(3fi) denotes the trace operator. Applying the Poincare inequality we may define
the Hilbert space V with norm ||u||v = ( / n |VM|2^JC)1 / 2 . Identifying H with its
dual, we have an evolution triple V c H C V* with dense, continuous and compact
embeddings (see, for example, Zeidler [15]). For convenience, we denote by (•, )B

the duality of B and its dual B* as well as the norm by || • ||B for any Banach space B.
For any k e K, we define the nonlinear operator A : V - • V* by

\ u , v ) v = /
Jn

(Au,v)v = / k(\Vu\2)VuVvdx VM, veV.

Since we always assume that f e H and <p e L2(r2), the linear functional F on V is
well defined by

(F, v)v = [ f(x)v(x)dx + I (p(xMx)dx.
Jn Jr2

Using the operators defined above, it is easy to see that a weak solution of the problem

DP can be defined as a solution of the variational problem

)v = (F,v)v VveV.

2. The inverse coefficient problem

The first theorem we intend to prove is as follows.

THEOREM 2.\.IfkeK, the problem DP has a unique solution ueV.lfu is the

solution to DP, then there exists a constant c > 0 (independent ofk € K) such that

ll«llv<c(||/||w + ||^||t2(r2)). (2.1)

PROOF. Applying a well-known existence theorem for monotone operators (see,
for example, Zeidler [15]), we readily obtain that DP has a unique solution in V for
any* e K.
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Let u be the solution to DP. We notice that u e V. Using (1.1) and integration by
parts, we have

/ *(|VM|2)|VM|2</;C = f fudx + f <p(yu)dx. (2.2)

By Assumption (Al), it follows that

c, [ \Vu\2dx< I k(\Vu\2)\Vu\2dx.
Ja Jn

Moreover, using the Young inequality with any e > 0, we have

/.fudx -1LuHx+i|i/i|!» - ¥L w'dx+&ifi1-
In the last inequality, we have used the Poincare inequality, where Co is the Poincare
constant.

By virtue of the boundedness of the trace operator y and the Young inequality, we
obtain

[ €2 f 1
/ <p(yu)dx < — / \yu\2dx + —

Jan 2 Jan 2e
r2)

r2|l,,l|2
2

From the above bounds and (2.2), we may choose e > 0 small enough and readily
deduce (2.1). This completes the proof. •

In what follows we analyze the class of admissible coefficients and prove stability
of the coefficient and then obtain the main result - the existence theorem for the
inverse problem. As seen above, the two Assumptions (Al) and (A2) guarantee the
solvability of the nonlinear DP in V. Therefore, when defining a set of admissible
coefficients for the ICPs under consideration, some conditions have already been
given. On the other hand, it is natural to endeavour to obtain a solution of any ICP
with minimal requirements on the desired coefficient. Unfortunately, in many cases
the given conditions (physical or mathematical, such as the DP solvability conditions
(Al) and (A2)) do not guarantee the compactness of the set of admissible coefficients
in the suitable space. Therefore, the main problem is to construct a compact set of
admissible coefficients with minimal additional conditions with respect to k = k{s).

Now we turn to the solvability of inverse coefficient problems. In order to obtain a
theorem on the existence of quasisolutions for ICPs, we need the following result.

THEOREM 2.2. Suppose that a sequence of coefficients km e K converges to a
function k g K in the following way:

lim \km{s) - k{s)\ = 0, Vs e [0, oo). (2.3)
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Then the sequence of solutions um = u(x;km) converges to the solution u = u(x;k)
inV.

PROOF. Since the sequence/:, km e K (m = 1, 2, . . .) , by Theorem 2.1 the solutions
M, um (m = 1, 2, 3,...) are well defined. By the definition of solutions for DP, we
have Vue V

/ km(\Vum\2)VumVvdx = f fvdx + / <p(yv)dx,
Jn Jn Jrz

I k(\Vu\2)VuVvdx = £ fvdxdt + j <p(yv)dx,
Jn Jn Jr2

which imply

/ [/tm(|V«J2)VMm - k(\Vu\2)Vu] V(«m - u)dx = 0.
Jn

Therefore, we get

[km{\Vum\2)Vum - km(\S7u\2)Vu]V(um - u)dx

fkm(\Vu\2) - *(|V«|2)]VMV(Um - u)dx = 0.
n

By Assumption (A2) and the Holder inequality, we obtain

c3 f \V(um-u)\2dx
Jn

< [ |[^(|V«|2) - k(\Vu\2)] VMV(«m -u)\dx
Jn
i c V12 \ r ll /2

<\J \km(\Vu\2)-k(\Vu\2)\2\Vu\2dx\ j | V ( M m - M ) | 2 ^ ,

which implies that

c2 f |V(«m - u)\2dx < f \km(\Vu\2) - k(\Vu\2)\2 \S7u\2dx. (2.4)
Jn Jn

By Assumption (Al), we have

| U | V M | 2 ) - k(\Vu\2)f |VM|2 < C2
2|VM|2. (2.5)

By virtue of (2.3), (2.5) and Lebesgue's convergence theorem, we obtain
Hm f | M | V H | 2 ) - k(\Vu\2)\2 \Vu\2dx = 0.

»-°° Jn
Therefore, using inequality (2.4), it is easy to see that

l im \\um - u \ \ v = 0 .
m-»oo

The proof of the theorem is complete. •
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Next we study the existence of a quasisolution of thelCPs (1.2) and (1.3). For this
reason we need a compact set of coefficients and continuity of the functionals /, (k)
and I2(k) defined in the previous section, respectively. First we note that the two
Assumptions (Al) and (A2) that compose the set of admissible coefficients K arise
as solvability conditions for the problem DP. By virtue of Theorem 2.2, it is natural
to construct a compact set of admissible coefficients in C[[0, oo)]. For this reason, in
addition to Assumptions (Al) and (A2), we assume that the subset Kc of K is equi-
continuous, that is, Kc c K and for every e > 0, there exists S > 0 such that if
k e Kc, s\, s2 e [0, oo) and |^i - s2\ < S, then \k(S]) — k(s2)\ < e.

Now we shall show the following generalized Ascoli-Arzela theorem.

THEOREM 2.3. Let Kc be an equicontinuous subset of K. Then for any se-
quence [km} of coefficients in Kc, there exists a subsequence, still denoted by [km},
such that limm_00km(s) = k(s), V.? e [0, oo) andk e Kc.

PROOF. The idea of the proof is similar to that of the Ascoli-Arzela theorem. For
the convenience of the reader, we give an outline here.

Tt is well known that the interval [0, oo) is separable. One may choose a dense
countable subset {.?,} in it. By use of Assumption (Al), there is a subsequence
{ î") £ {̂m} such that the sequence {^"(^i)} converges to a real number, denoted
by k(s\). Then by Assumption (Al) again, one may choose a subsequence {^2)} c
{k^} such that the sequence {k^is?,)} converges to a real number, denoted by fcfo)-
Repeating the procedure, we obtain a subsequence {k^} such that

lim k™{Si)=k(s,), / = 1, 2 n.
m-*oe

We easily conclude that the subsequence {^m)} C {km) constructed above has

lim ^:'m)(j,) = k(Sj), / = 1, 2, 3 , . . . .
m-KX>

Furthermore, we shall prove that k^is) is a convergent sequence for all s € [0, oo).
By use of the equicontinuity, for every e > 0, there exists S > 0 such that if
s, s' e [0, oo) and | j - s'\ < 5, then \k^\s) - kj™\s')\ < e/3, m = 1, 2, 3,
Since {.*,} is dense in [0, oo), Vj e [0, oo) \ {st), we can get an sio e {J,} such that
\sio - s\ < 8 and by the convergence of {^m)(^0)}. o n e c a n choose M > 0 such that
|A*71)(jio) - k^'\sio)\ < e/3, Vw, m' > M. By the inequalities above, if m, m! > M,
we easily get

-k(ml)(s) ' C e

Km' W - „ • o • / ,
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which implies that k"(s) is a Cauchy sequence. Therefore, we have shown that

lim k^is) = k(s) Ws e [0, oo).
m-*oo

Similarly we easily conclude that it € Kc. The proof is complete. •

REMARK. Let Kh be a uniformly Holder continuous subset of K. Then Kh is
equicontinuous. In particular, any subsets of K which are bounded in // '([0, oo)) are
equicontinuous.

Using the compactness of the class of admissible coefficients Kc C K, we can
prove the following existence theorem for ICPs.

THEOREM 2.4. Both ICPs (1.2) and (1.3) have at least one quasisolution in the set
of admissible coefficients Kc.

PROOF. Let {km) C Kc be a minimizing sequence of the functional /2 on Kc defined
by (1.4). By Theorem 2.3, we may assume that km(s) -*• k(s) as m -» oo, Ws e
[0, oo). Using Theorem 2.2, the sequence um = u(x;km) converges to u = u{x\k)
in V. Applying the trace theorem (see [7, Theorem 6.5]), we conclude that the
sequence {«„,} converges to u in L2(F2). Therefore, we have

min/,(*) = lim /,(*„) = /,(*).

Similarly, we can show the existence of quasisolutions of 72 on Kc. The proof is
complete. •

COROLLARY 2.5. Let Ko be a subset of admissible coefficients satisfying the con-
ditions (a)-(d) with s* = oo. Then both ICPs (1.2) and (1.3) have at least one
quasisolution in Ko-

PROOF. By Lemma 1.1, we get that Ko C K. It is easy to see from (a) and (d) that
V/c e KQ, VS € [0, oo), c3 - c2/2s0 < k'(s) < 0. Therefore, Ko is an equicontinuous
subset of K. From this point, we can use the same argument as that in Theorem 2.4
to show the corollary. The proof is complete. •
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