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Abstract. Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff
and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic.
Sequents are given a physically motivated semantics that is consistent with exactly one semantics
for propositional formulas that use negation, conjunction, and implication. In particular,
implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem
in this logic. As an application, this deductive system is extended to two systems of predicate
logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant
of Weaver’s quantum logic.

§1. Introduction. Quantum logic as it was first defined by Birkhoff and von
Neumann [5] is a semantics for propositional formulas that use conjunction,
disjunction, and negation. In quantum logic, propositional formulas are interpreted
as closed subspaces of a separable infinite-dimensional complex Hilbert space.
Conjunction is interpreted as the intersection of closed subspaces, and negation is
interpreted as their orthogonal complementation. Quantum logic satisfies De Morgan’s
laws, so for convenience we use only conjunction and negation. The inclusion of
closed subspaces yields a notion of entailment for propositional formulas. Because the
separable infinite-dimensional Hilbert space is unique up to isomorphism, this notion
of entailment may be regarded as canonical.

This semantics for propositional formulas is well motivated physically. The physical
system that consists of a single quantum particle may be modeled by a separable infinite-
dimensional complex Hilbert space [86], and it may be that every physical system can
be modeled in this way [38]. In this context, the closed subspaces of the Hilbert space
model true-false-valued physical quantities that are measurable in principle. In short,
the closed subspaces of the Hilbert space are propositions about the physical system.

The inclusion of one closed subspace into another models the entailment of
propositions in the fully literal sense that measuring the antecedent proposition to be
true guarantees that a successive measurement of the consequent proposition will find
it to be true as well. The orthocomplementation of closed subspaces likewise models
the negation of propositions in the fully literal sense that measuring the negation of a
proposition to be true guarantees that a successive measurement of that proposition
will find it to be false. Unfortunately, there is no such simple account of conjunction

Received: September 9, 2022.
2020 Mathematics Subject Classification: Primary 03G12, Secondary 03E70, 06C15, 46L89.
Key words and phrases: orthomodular logic, natural deduction, quantum logic, quantum set, sequent

calculus, Fitch system, quantum measurement.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

910 doi:10.1017/S1755020323000229

https://doi.org/10.1017/S1755020323000229 Published online by Cambridge University Press

https://orcid.org/0000-0002-8930-7126
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/S1755020323000229
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1755020323000229&domain=pdf
https://doi.org/10.1017/S1755020323000229


A NATURAL DEDUCTION SYSTEM FOR ORTHOMODULAR LOGIC 911

and disjunction because measuring the truth-value of one proposition may alter the
truth-value of another. Nevertheless, the conjunction of two propositions is the weakest
proposition that entails both conjuncts.

Formally, we define quantum logic to be a binary consequence relation on the set of
propositional formulas in the connectives ∧ and ¬. We use a fixed countable infinite
set of propositional variables throughout, and we treat φ ∨ � as an abbreviation of
¬(¬φ ∧ ¬�). Let L0 be the set of these propositional formulas, and let C be the set
of closed subspaces of Hilbert space. A valuation of quantum logic is defined to be a
function � · � : L0 → C such that �φ ∧ � � = �φ � ∩ �� � and �¬φ � = �φ �⊥. A sequent
φ � � is defined to be valid in quantum logic if �φ � ⊆ �� � for every valuation of
quantum logic. We do not define the validity of Φ � � in quantum logic for arbitrary
Φ ⊆ L0.

The study of quantum logic has proceeded slowly by modern standards. Shortly
after the introduction of quantum logic, Husimi observed that this orthocomplemented
lattice of propositions satisfies the orthomodular law [37]:

a ≤ b =⇒ a ∨ (¬a ∧ b) = b,

where ¬a is the orthocomplement of a. Those orthocomplemented lattices that satisfy
the orthomodular law are called orthomodular lattices [36]. The first entailment that
is valid in quantum logic but not in orthomodular lattices was discovered by Greechie
[26]. A number of other examples were then found and investigated [23, 55–60, 73].
Recently, building on the work of Slofstra [80], Fritz showed that the first-order theory
of the ortholattice of closed subspaces of a separable infinite-dimensional Hilbert space
is undecidable [17]. It is apparently still unknown whether the validity of an entailment
in quantum logic is decidable.

This paper introduces a deductive system for orthomodular logic, which is also
known as orthomodular quantum logic and sometimes simply as quantum logic. We
define a valuation of orthomodular logic to be a function � · � : L0 → Q such that
�φ ∧ � � = �φ � ∧ �� � and �¬φ � = ¬�φ �, whereQ is any orthomodular lattice. Thus,
a sequent φ � � is defined to be valid in orthomodular logic if �φ � ≤ �� � for every
valuation of orthomodular logic. Orthomodular logic may be regarded as a pragmatic
approximation to quantum logic or, more speculatively, as a generalization of quantum
logic that is applicable to physical models with exotic scalars such as formal Laurent
series [28, 41]. An abundance of deductive systems for orthomodular logic has been
proposed [6–10, 24, 31, 40, 62, 64, 71, 72, 83, 90]; most are glossed in [74] along with
other systems of derivation. These deductive systems range from Hilbert-style systems
such as [8, 40] to Gentzen-style systems such as [9, 64]. What is the use of yet another
deductive system?

Quantum logic has been the subject of criticism on several fronts: that it is defective
as a logic, that it is conceptually misguided, and that it is useless. The first of these
critiques often focuses on the absence of a well-behaved implication that satisfies the
deduction theorem, e.g., “there is no obvious notion of implication or deduction” [1],
“no satisfactory implication operator has been found (so that there is no deductive
system in quantum logic)” [35]. The former authors go on to observe that “quantum
logic was therefore always seen as logically very weak, or even a non-logic.” The second
critique is more philosophical and has reached extreme conclusions, e.g., “the tale of
quantum logic is not the tale of a promising idea gone bad, it is rather the tale of the
unrelenting pursuit of a bad idea” [54], “quantum logic was a mistake a priori” [21].
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The third critique is simply that quantum logic has not played its hoped-for role in
either physics or in mathematics, e.g., “quantum logic ... has never yielded the goods”
[54], “it has proved to be mathematically sterile: it fails to link up in interesting ways
with mainstream developments in mathematical physics” [29].

This paper offers some evidence to the contrary for each of these three critiques.
First, it introduces a natural deductive system for orthomodular logic that does carry
a canonical notion of implication that satisfies the deduction theorem. Second, it
introduces a natural semantics for sequents that mirrors experimental procedure. Third,
it generalizes this deductive system to a quantum predicate logic that is applicable to
discrete quantum structures in the sense of noncommutative geometry. This is the
application that motivated this research.

The immediate subject of this paper is the following deductive system:

Definition 1.1 We define the propositional deductive system SOM :

(1) A formula is built up from propositional letters using the connectives ∧, →, and
¬.

(2) A sequent is an expression of the form φ1, ... , φn � �, where φ1 ... , φn, and� are
formulas with n ≥ 0.

(3) A sequent is derivable if it can be derived using the inference rules in Figure 1,
where φ, �, and � are formulas and Γ is a finite sequence of formulas, possibly
empty.

Γ, φ � φ

Γ � φ Γ, φ � �
Γ � �

Γ � φ Γ � �
Γ, φ � �

Γ, φ, � � φ Γ, φ, � � � Γ, �, φ � �
Γ, �, φ � �

Γ � φ Γ � �
Γ � φ ∧ �

Γ � φ ∧ �
Γ � φ

Γ � φ ∧ �
Γ � �

Γ, φ � �
Γ � φ→ �

Γ � φ→ �
Γ, φ � �

Γ, φ � � Γ,¬φ � �
Γ � �

Γ � ¬φ
Γ, φ � �

Fig. 1. The deductive system SOM . Top to bottom and left to right in Figure 1, the inference
rules of SOM are the assumption rule, the cut rule, the paste rule, the compatible exchange
rule, the ∧-introduction rule, the left ∧-elimination rule, the right ∧-elimination rule, the →-
introduction rule, the →-elimination rule, the excluded middle rule, and the deductive explosion
rule.

The antecedent of a sequent is a sequence of formulas, not a set. The intuitive
meaning of a judgement φ1, ... , φn � � is that after verifying each of the formulas
φ1, ... , φn via measurement and in that order, a measurement of the truth-value of �
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is guaranteed to find that it is true. The semantics that we will shortly define is entirely
faithful to this intuition.

The deductive system SOM includes an implication connective that satisfies the
deduction theorem by fiat. Furthermore, it uniquely determines a notion of implication
in orthomodular logic:

Result 1 (Sasaki arrow). The following rules of inference are derivable in SOM :

Γ � φ→ �
Γ � ¬(φ ∧ ¬(φ ∧ �))

,
Γ � ¬(φ ∧ ¬(φ ∧ �))

Γ � φ→ � .

This implication connective is of course the familiar Sasaki arrow [34, 79]. A number
of authors have argued that the Sasaki arrow is the natural implication connective for
quantum logic [15, 30, 32, 46, 61, 62]. Result 1 motivates the Sasaki arrow purely from
logical considerations; we have made no assumptions on the implication connective
except those that are implicit in the notion itself (cf. [63, p. 187]).

The deductive system SOM might be called a substructural logic because its
logical rules are all familiar rules of inference from classical logic. The weakening
and contraction rules

Γ � �
φ,Γ � �,

Γ, φ, φ � �
Γ, φ � �

are both admissible in SOM , but the exchange rule

Γ, φ, � � �
Γ, �, φ � �

is not admissible. The addition of this exchange rule recovers classical logic:

Result 2 (Noncommutativity). Let φ1, ... , φn, and � be propositional formulas in
the connectives ∧, →, and ¬. Then, the following are equivalent:

(1) The sequent φ1, ... , φn � � is derivable in SOM with the exchange rule.
(2) The formula (φ1 ∧ ··· ∧ φn) → � is classically derivable.

The deductive system SOM is not formally a substructural logic [77] because the
cut rule that is standard in substructural logics is not admissible. Nevertheless, Result
2 justifies the conceptual claim that SOM is a noncommutative logic.

The idea that orthomodular logic could be a structurally noncommutative logic is
natural and even expected due to the prominent role of noncommutativity in quantum
theory. Noncommutativity is a key feature in the standard general formulation of
Heisenberg’s uncertainty principle [27]. It is also the defining feature of quantum
mathematics in the sense noncommutative geometry [25]. This noncommutativity
is closely related to the noncommutativity of SOM as Lemma A.2 demonstrates.
Furthermore, Malinowski proved in essence that no commutative formulation of
orthomodular logic can satisfy the deduction theorem [51, theorem 2.7], though a
“semiclassical” deductive theorem may be formulated [83, p. 668].

It is therefore surprising that no noncommutative deductive systems for orthomod-
ular logic have appeared in the literature. This is all the more surprising because the
idea that the order of assumptions should be significant to quantum logic has been
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investigated before. In this respect, the nearest proof system to SOM is probably
Mittelstaedt’s quantum dialogic [63]. This is essentially a game-theoretic semantics
that formalizes a debate between a proponent and an opponent of a proposition.
The players are constrained in when they may cite a previously proved proposition,
and this constraint reflects that the result of one measurement may be “destroyed”
by another [63, p. 178]. The same intuition explains why all sequents of the form
Γ, φ, � � � are derivable in SOM , but not all sequents of the form Γ, �, φ � � are
derivable. Surprisingly, the natural deduction system that has been obtained from
quantum dialogic is commutative [81].

A noncommutative semantics for sequents was previously considered by Bell, and
furthermore, his semantics satisfies the deduction theorem [4, eq. (4.5)]. However, the
deductive system SOM is not sound for Bell’s semantics [4, p. 95], and Bell describes
the specification of a deductive system for his semantics as an “open problem” [4, p.
97]. Instead, SOM is sound for an experimentally motivated semantics, as anticipated
by Lehmann [49, p. 62].

This semantics for SOM interprets each sequent of experimentally decidable
propositions as an experimentally falsifiable proposition. For any interpretation of
formulas of any kind as true-false-valued observables on a physical system, the naive
meaning of a judgement φ1, ... , φn � � is that whenever we have verified the formulas
φ1, ... , φn, we may also be certain of the truth of �. If we formalize these observables
by closed subspaces of Hilbert space and we notate our interpretation by � · �, then
this condition is equivalent to the inclusion �φ1 � & ··· & �φn � ≤ �� �, where & is the
Sasaki projection [79]. This equivalence appears to be folklore; we record a proof of it
in Appendix A.

In principle, the same observable can be measured by different experimental
procedures that may be distinguished by their effect on the system. This distinction is
clearly significant to any discussion of sequential measurements. We assume minimally
destructive procedures, which are characterized by the property that any state in which
the truth or falsehood of the proposition is certain is left unaltered by the measurement.
We may gloss this assumption by saying that other procedures measure more than they
purport to measure.

If A and B are closed subspaces of Hilbert space, then A& B may be defined as the
closure of the projection of A onto B. Thus,A& B is spanned by those vector states that
may be obtained by verifying A and then verifying B, where the term “verify” means
“measure to be true.” The four structural rules of SOM are valid for this interpretation
of sequents in any physical system that can modeled using Hilbert space, in contrast
to the structural rules of classical natural deduction. The seven logical rules of SOM
simply express the familiar meanings of the logical connectives ∧, →, and ¬.

We may formalize this discussion. In any orthomodular lattice, we may define the
Sasaki projection of elements a and b to be the element a & b = (a ∨ ¬b) ∧ b. Our
convention is that the connective & associates to the left. A sequent φ1, ... , φn � �
is defined to be valid in orthomodular logic if �φ1 � & ··· & �φn � ≤ �� � for every
valuation of orthomodular logic. We extend the notion of a valuation to the language
L1 ⊃ L0 that includes the implication connective by requiring that �φ→ � � = ¬�φ � ∨
(�φ � ∧ �� �) for all formulas φ and �, because a & b ≤ c if and only if a ≤ ¬b ∨ (b ∧
c) for all elements a, b, and c of any orthomodular lattice. Furthermore, the uniqueness
of right adjoints implies that this is the only choice of implication for whichSOM could
be sound. So it is:
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Result 3 (Soundness and completeness). A sequent φ1, ... , φn � � is derivable in
SOM if and only if it is valid in orthomodular logic.

The deductive system SOM is presented as a calculus of sequents, but in substance,
it is a system of natural deduction. No proof of this claim is possible because natural
deduction remains an informal notion. Nevertheless, Appendix B provides an argument
in three parts: First, a sequent calculus may be a natural deduction system [75]. Second,
SOM may also be presented as a natural deduction system in the style of Fitch [16,
39]. Third, the given formulation of SOM can be adjusted to exclude all rules that
allow an assertion only after one or more additional assumptions. This third argument
addresses readers who, unlike the author, find such rules to be incompatible with their
conception of natural deduction.

In contrast, SOM is not a sequent calculus in the vein of LJ and LK , Gentzen’s
prototypical sequent calculuses [18]. In these systems, logical rules have the subformula
property: each formula in a premise is a subformula of a formula in the conclusion.
This feature is typical of the sequent calculuses for orthomodular logic and related
logics that have appeared in the literature [7, 9, 64, 65, 83]. However, the elimination
rules of SOM do not have the subformula property. Instead, they follow the pattern
typical of natural deduction.

The experience of the author is that SOM formalizes a coherent mode of reasoning
as in the case of intuitionistic logic. To provide evidence for this claim, we include
derivations that might otherwise be left as exercises for the reader. In particular, we
continue the development of the deductive system SOM by deriving the primitive rules
of inference for the defined connectives ∨ and ⊥⊥:

Result 4 (Disjunction and compatibility). Let φ ∨ � be an abbreviation for ¬(¬φ ∧
¬�), and let φ ⊥⊥ � be an abbreviation for (φ→ (�→ φ)) ∧ (�→ (φ→ �)). Then, the
rules of inference in Figure 2 are derivable in SOM .

Γ � φ
Γ � φ ∨ �

Γ � �
Γ � φ ∨ �

Γ � φ ∨ � Γ, φ � � Γ, � � � Γ, �, φ � � Γ, �, � � �
Γ � �

Γ, φ, � � φ Γ, �, φ � �
Γ � φ ⊥⊥ �

Γ � φ ⊥⊥ � Γ, φ, � � �
Γ, �, φ � �

Γ � φ ⊥⊥ � Γ, �, φ � �
Γ, φ, � � �

Fig. 2. Primitive rules of inference for ∨ and ⊥⊥.

We also exhibit a derivation that the compatibility connective ⊥⊥ is equivalent to the
commutator that was introduced by Marsden [53]. This notation is due to Takeuti [82,
sec. 1].
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Result 5 (Commutator). The following rules of inference are derivable in SOM :

Γ � φ ⊥⊥ �
Γ � ((φ ∧ �) ∨ (φ ∧ ¬�)) ∨ ((¬φ ∧ �) ∨ (¬φ ∧ ¬�))

,

Γ � ((φ ∧ �) ∨ (φ ∧ ¬�)) ∨ ((¬φ ∧ �) ∨ (¬φ ∧ ¬�))
Γ � φ ⊥⊥ � .

The primitive rules of inference given for ⊥⊥ in Figure 2 clearly imply that φ ⊥⊥ �
is equivalent to (φ→ (�→ φ)) ∧ (�→ (φ→ �)), and hence Result 5 is comparable
to Result 1 in that it motivates the common interpretation of a connective from the
primitive inference rules for that connective.

We also extend SOM to a deductive system for quantum predicate logic. We do so
in two distinct ways because there are broadly two distinct notions of a quantum set.
These two notions do not represent competing conceptions of quantum mathematics
but rather distinct generalizations of sets within the same conception of quantum
mathematics.

The term “quantum set theory” commonly refers to a generalization of the Boolean-
valued models V (B) in which the complete Boolean algebra B is replaced with a
complete orthomodular lattice Q [11, 66, 69, 70, 82]. In the case of primary interest,
this complete orthomodular lattice Q consists of the closed subspaces of a Hilbert
space H. By Gleason’s theorem, the states of a physical system modeled by H are
in one-to-one correspondence with countably additive measures on Q, as long as the
dimension of H is greater than two [22]. In this way, each state assigns a probability
to each sentence of the language of set theory with constants from the orthomodular-
valued model V (Q). The canonical name of a generic ultrafilter behaves in some ways
like a “hidden variable” of the physical system.

Result 6 (Takeuti’s semantics). Let Q be a complete orthomodular lattice. Let � · �Q
be Takeuti’s interpretation of formulas in the language of set theory with constants from
V (Q) [76, 82]. Let SOMQ be the deductive system of single-sorted predicate logic whose
rules of inference are those of Figure 1 together with

Γ � φ[x/y]

Γ � (∀x)φ
,

Γ � (∀x)φ
Γ � φ[x/t]

,

where the former rule is subject to the standard constraint that y must not appear freely
in Γ � (∀x)φ. Then, for each closed formula �, if � � is derivable in SOMQ, then
�� �Q = �.

The most prominent connection between quantum set theory and quantum
mechanics is the so-called Takeuti correspondence, which is a canonical bijection
between the real numbers inV (Q) and the real-valued observables on a physical system
modeled by H, when Q consists of the closed subspaces of H [82, p. 321], [66, theorem
6.1]. In this context, Ozawa has analyzed the compatibility of real-valued observables
from the perspective of quantum logic [67, 68]. We do not treat bounded quantifiers
because they are not expressible within the language of set theory in quantum set theory
[82, p. 315]. However, if we treat quantum sets extensionally rather than intentionally,
then we may clearly treat bounded quantifiers as abbreviations in the obvious way.

The term “quantum set” may also refer to the discrete quantum spaces of
noncommutative geometry [43, 76]. A quantum set in this sense is essentially just a
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von Neumann algebra that may be noncommutative but that is otherwise very similar
to the von Neumann algebra of all bounded complex-valued functions on a set. We
show that SOM extends to a natural deductive system that is sound for Weaver’s
quantum predicate logic [87, sec. 2.6] as it applies to these quantum sets, albeit only for
nonduplicating formulas. A formula of first-order logic is defined to be nonduplicating if
no variable occurs more than once in any atomic subformula. This syntactic constraint
reflects the absence of diagonal functions in noncommutative geometry [89] and the
impossibility of broadcasting quantum states [3].

Result 7 (Weaver’s semantics). Let � · �q be the semantics that is defined in [44]. Let
SOMq be the deductive system of many-sorted predicate logic whose rules of inference
are those of Figure 1 together with the following:

(1)
Γ � φ[x/y]

Γ � (∀x)φ
, where y does not appear freely in Γ � (∀x)φ,

(2)
Γ � (∀x)φ
Γ � φ[x/t]

, where φ and t have no free variables in common,

(3)
Γ, φ, � � �
Γ, �, φ � � , where φ and � have no free variables in common.

Then, for each closed formula �, if � � is derivable in SOMq, then �� �q = �.

Many classes of discrete quantum structures may be axiomatized within quantum
predicate logic [44, sec. 1.5] including discrete quantum graphs, discrete quantum
groups, and discrete quantum isomorphisms [45]. Such discrete quantum structures
are quantum sets equipped with suitably generalized relations and functions of
various arity. The ubiquitous qualifier “discrete” addresses the fact that within
noncommutative geometry many structures are implicitly topological or measurable.
For example, quantum groups generalize locally compact groups [48], and quantum
graphs generalize measurable graphs [88]. These discrete quantum structures all
originate in mathematical physics. Quantum graphs were motivated by quantum error
correction [12], quantum groups were motivated by the quantization of physical
symmetry [76], and quantum graph isomorphisms were motivated by quantum
nonlocality [2, 52]. The general notion of a discrete quantum structure also traces
its origins to the problem of quantum error correction [43, 44, 47, 88]. With these
examples in hand, we may begin to address the third cited critique of quantum logic
that it has no meaningful connection to physics or to mathematics.

The deductive systemsSOMQ andSOMq are incomparable, even if we restrictSOMq
to a single sort. This is to be expected because we are generalizing the set-theoretic
universe in two very different ways. Intuitively, a Boolean-valued model is a classical
space whose points are copies of the cumulative hierarchy, even if the Boolean algebra
has no complete ultrafilters and thus the space has no points in the literal sense. An
orthomodular-valued model is similarly a quantum space whose points are copies of
the cumulative hierarchy, but its universe, i.e., its class of constants, is entirely classical.
Each member of the universe is a mathematical object, which may be named and
duplicated. In contrast, the universe of a single-sorted structure in noncommutative
geometry is a single discrete quantum space, whose points are just a figure of speech. In
short, intuitively,SOMQ is the logic of a quantum space of classical structures, whereas
SOMq is the logic of a classical space of quantum structures. For this reason, the closed
formulas of SOMq satisfy classical logic; this is reflected in rule (3) of Result 7. One
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convenient consequence of this principle is that a theorem that follows from a sequence
of axioms may be asserted after any sequence of additional assumptions, because the
theorem is a closed formula and it therefore commutes with each of the assumptions.

This paper does not include a completeness theorem that is converse to Result 6
or Result 7. A general completeness result for SOMQ appears to be out of reach,
because it is unknown whether every orthomodular lattice has a completion [33, sec.
6]. A completeness result for SOMq appears to be even further out of reach because
orthomodular logic is far from being complete for finite-dimensional Hilbert spaces.
A symmetric monoidal category of orthomodular quantum sets [78] along the lines of
[43] might bridge that gap.

Finally, we define the existential quantifier and derive its primitive rules of inference:

Result 8 (Existential quantification). Let (∃x)φ be an abbreviation for ¬(∀x)¬φ.
Then, the following rules of inference are derivable in SOMQ and SOMq:

Γ � φ[x/t]

Γ � (∃x)φ
,

Γ � (∃x)φ Γ, φ[x/y] � � Γ, �, φ[x/y] � �
Γ � � ,

where the latter rule is subject to the standard constraint that y must not appear freely in
Γ � (∃x)φ or in �. In the case of SOMq, the former rule is also subject to the constraint
that t and φ must have no free variables in common.

We offer an intuitive justification of the new premise in the ∃-elimination rule.
The assumption φ[x/y] may be regarded as creating an element y that satisfies φ. If
Γ � (∃x)φ is derivable, then we may create such an element consistently: if Γ � (∃x)φ
and Γ, φ[x/y] � � ∧ ¬� are both derivable, then so is Γ � � ∧ ¬�. However, the
formula�may be a consequence of creating y and not a consequence of the possibility
of creating y. In this sense, the existential quantifier expresses a potential rather than an
actual existence. Modulo Γ, φ[x/y] � �, the sequent Γ, �, φ[x/y] � � expresses that
� is compatible with the creation of y.

The first deductive system for quantum predicate logic was introduced by Dishkant
[10]. His inference rules for the existential quantifier,

� φ[x/y] →D (∃x)φ
,

� φ[x/y] →D �

� (∃x)φ→D �
,

where φ→D � abbreviates ¬�→¬φ, are easily derived in SOMQ by using the
primitive rules for the universal quantifier. An equivalent deductive system was then
investigated by Dunn, who showed that within quantum predicate logic, the axioms
of Peano arithmetic imply those of classical logic [13]. More recently, Titani has
formulated a sequent calculus for quantum predicate logic [83, sec. 3.2], which use
a modally closed implication connective that satisfies a restricted deduction theorem.

The development of SOM coincided with development of several other deductive
systems that incorporate the Sasaki adjunction. In the Implicational Quantum Logic
of Tokuo [84], the Sasaki projection is a primitive logical connective. Furthermore,
in the Orthomodular Groupoid Calculus of Fazio, Ledda, Paoli and St. John [14]
and the Projective Linear Logic of Lehmann [50], the Sasaki projection is a structural
connective, as it is in SOM . Tokuo has also introduced a natural deduction system for
orthomodular logic in the style of Gentzen’s NJ and NK [85]. It satisfies a restricted
deduction theorem.

https://doi.org/10.1017/S1755020323000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000229


A NATURAL DEDUCTION SYSTEM FOR ORTHOMODULAR LOGIC 919

Conventions. The unqualified terms “formula,” “sequent,” and “derivation” refer
to the formulas, sequents, and derivations ofSOM . Hilbert spaces are over the complex
numbers.

§2. Conjunction, implication, and negation. This section exhibits a number of
derivations, beginning with a few simple derivations of some familiar rules of inference
and ending with two derivations that characterize the implication connective as the
Sasaki arrow.

Proposition 2.1. The following inference rules are derivable:

Γ � φ Γ � φ→ �
Γ � � ,

Γ � φ Γ � ¬φ
Γ � � .

Proof.

Γ � φ
Γ � φ→ �

Γ, φ � �
Γ � �;

Γ � φ
Γ � ¬φ

Γ, φ � �
Γ � �.

Lemma 2.2. The following sequents are derivable:

(1) Γ,¬φ, φ � �,
(2) Γ,¬¬φ � φ,
(3) Γ, φ,¬φ � �,
(4) Γ, φ � ¬¬φ.

Proof.

Γ,¬φ � ¬φ
Γ,¬φ, φ � �;

Γ,¬¬φ, φ � φ Γ,¬¬φ,¬φ � φ
Γ,¬¬φ � φ.

Γ,¬φ, φ � ¬φ→ �
Γ,¬φ � φ→ (¬φ→ �)

Γ,¬¬φ � φ
Γ,¬¬φ,¬φ � �

Γ,¬¬φ � ¬φ→ �
Γ,¬¬φ, φ � ¬φ→ �

Γ,¬¬φ � φ→ (¬φ→ �)

Γ � φ→ (¬φ→ �)
Γ, φ � ¬φ→ �
Γ, φ,¬φ � �.

Γ, φ,¬φ � ¬¬φ Γ, φ,¬¬φ � ¬¬φ
Γ, φ � ¬¬φ.

Proposition 2.3. The following inference rules are derivable:

Γ � φ
Γ � ¬¬φ ,

Γ � ¬¬φ
Γ � φ ,
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Γ, φ � � Γ, φ � ¬�
Γ � ¬φ ,

Γ,¬φ � � Γ,¬φ � ¬�
Γ � φ ,

Γ, φ � ¬φ
Γ � ¬φ ,

Γ,¬φ � φ
Γ � φ .

Proof. Refer to Proposition 2.1 and Lemma 2.2.

Γ � φ Γ, φ � ¬¬φ
Γ � ¬¬φ,

Γ � ¬¬φ Γ,¬¬φ � φ
Γ � φ,

Γ, φ � � Γ, φ � ¬�
Γ, φ � ¬φ Γ,¬φ � ¬φ

Γ � ¬φ,

Γ,¬φ � � Γ,¬φ � ¬�
Γ � ¬¬φ

Γ � φ,

Γ, φ � φ Γ, φ � ¬φ
Γ � ¬φ,

Γ,¬φ � φ Γ,¬φ � ¬φ
Γ � φ.

Lemma 2.4. The following inference rules are derivable:

Γ, φ � �
Γ, φ, φ � � ,

Γ, φ, φ � �
Γ, φ � � ,

Γ, φ � �
Γ,¬¬φ � � ,

Γ,¬¬φ � �
Γ, φ � � .

Proof. Refer to Lemma 2.2.

Γ, φ � φ Γ, φ � �
Γ, φ, φ � �;

Γ, φ � φ Γ, φ, φ � �
Γ, φ � �.

Γ,¬¬φ � φ
Γ, φ,¬¬φ � φ

Γ, φ � ¬¬φ Γ, φ � �
Γ, φ,¬¬φ � � Γ,¬¬φ, φ � ¬¬φ

Γ,¬¬φ, φ � �
Γ,¬¬φ � �;

Γ, φ � ¬¬φ
Γ,¬¬φ, φ � ¬¬φ

Γ,¬¬φ � φ Γ,¬¬φ � �
Γ,¬¬φ, φ � � Γ, φ,¬¬φ � φ

Γ, φ,¬¬φ � �
Γ, φ � �.

Theorem 2.5. The inference rules in Figure 3 are derivable.

Proof. In the special case that Δ is empty, each of the rules in Figure 3 is derivable
either because it is a primitive rule of SOM or by Lemmas 2.2 and 2.4. For each of
these rules, the general case follows from this special case via the →-introduction and
→-elimination rules, as in Lemma 2.2. For illustration, we prove that the generalized
paste rule is derivable. The proof proceeds by induction on the length of Δ. The special
case that Δ is empty is the base case of the induction.
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Γ, φ, φ,Δ � �
Γ, φ,Δ � �

Γ, φ,Δ � �
Γ, φ, φ,Δ � �

Γ � φ Γ, φ,Δ � �
Γ,Δ � �

Γ � φ Γ,Δ � �
Γ, φ,Δ � �

Γ, φ, � � φ Γ, φ, �,Δ � � Γ, �, φ � �
Γ, �, φ,Δ � �

Γ,¬φ, φ,Δ � � Γ, φ,¬φ,Δ � �

Γ,¬¬φ,Δ � �
Γ, φ,Δ � �

Γ, φ,Δ � �
Γ,¬¬φ,Δ � �

Γ, φ,Δ � � Γ,¬φ,Δ � �
Γ,Δ � �

Fig. 3. Some generalized rules of inference that are derivable in SOM .

Let � ≥ 0, and assume that the generalized paste rule is derivable for all sequences
Δ of length �. Let Δ′ be a sequence of length � + 1; it is of the form Δ, �′ for some
sequence Δ of length � and some formula �′. We now derive Γ, φ,Δ, �′ � � from Γ � φ
and Γ,Δ, �′ � �:

Γ � φ
Γ,Δ, �′ � �

Γ,Δ � �′ → �
Γ, φ,Δ � �′ → �
Γ, φ,Δ, �′ � �.

In other words, we have derived Γ, φ,Δ′ � � from Γ � φ and Γ,Δ′ � �. Proceeding
by induction on �, we conclude that the generalized paste rule is derivable for all
sequences Δ of arbitrary length. The derivability of the other nine rules is proved
similarly.

Lemma 2.6. The following sequents are derivable:

(1) Γ, φ ∧ �,¬φ � φ ∧ � and Γ, φ ∧ �,¬� � φ ∧ �,
(2) Γ,¬φ, φ ∧ � � ¬φ and Γ,¬�, φ ∧ � � ¬�,
(3) Γ,¬(φ ∧ �), φ � ¬(φ ∧ �) and Γ,¬(φ ∧ �), � � ¬(φ ∧ �),
(4) Γ, φ,¬(φ ∧ �) � φ and Γ, �,¬(φ ∧ �) � �.

Proof. We exhibit the derivations of four of these sequents because the derivations
of the other four sequents are entirely similar. Refer to Proposition 2.3 and Theorem
2.5.

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ Γ, φ ∧ �, φ,¬φ � φ ∧ �

Γ, φ ∧ �,¬φ � φ ∧ �.

Γ,¬φ, φ ∧ � � φ ∧ �
Γ,¬φ, φ ∧ � � φ Γ,¬φ, φ ∧ � � φ ∧ �

Γ,¬φ, φ ∧ �, φ � φ ∧ �;
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Γ,¬φ, φ ∧ � � φ ∧ �
Γ,¬φ, φ ∧ � � φ

Γ,¬φ, φ, φ ∧ � � φ Γ,¬φ, φ, φ ∧ � � ¬φ Γ,¬φ, φ ∧ �, φ � φ ∧ �
Γ,¬φ, φ ∧ �, φ � ¬φ

Γ,¬φ, φ ∧ � � ¬φ.

Γ,¬(φ ∧ �), φ ∧ �, φ � φ ∧ � Γ,¬(φ ∧ �), φ ∧ �, φ � ¬(φ ∧ �)

Γ,¬(φ ∧ �), φ, φ ∧ � � φ ∧ �
Γ,¬(φ ∧ �), φ, φ ∧ � � φ

Γ,¬(φ ∧ �), φ, φ ∧ � � ¬(φ ∧ �)

Γ,¬(φ ∧ �), φ � ¬(φ ∧ �).

Γ, φ, φ ∧ � � φ ∧ �
Γ, φ, φ ∧ � � φ Γ, φ, φ ∧ �,¬(φ ∧ �) � φ

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ Γ, φ ∧ � � φ ∧ �

Γ, φ ∧ �, φ � φ ∧ �
Γ, φ ∧ �, φ,¬(φ ∧ �) � φ;

Γ, φ ∧ �, φ,¬(φ ∧ �) � φ
Γ,¬(φ ∧ �), φ � ¬(φ ∧ �) Γ,¬(φ ∧ �), φ � φ

Γ,¬(φ ∧ �), φ,¬(φ ∧ �) � φ
Γ, φ,¬(φ ∧ �) � φ.

Proposition 2.7. The following inference rules are derivable:

Γ, φ,¬(φ ∧ �),Δ � �
Γ,¬(φ ∧ �), φ,Δ � � ,

Γ,¬(φ ∧ �), φ,Δ � �
Γ, φ,¬(φ ∧ �),Δ � � ,

Γ, �,¬(φ ∧ �),Δ � �
Γ,¬(φ ∧ �), �,Δ � � ,

Γ,¬(φ ∧ �), �,Δ � �
Γ, �,¬(φ ∧ �),Δ � � .

Proof. We exhibit the derivation of one of these rules because the derivations of the
other three rules are entirely similar. Refer to Theorem 2.5 and Lemma 2.6.

Γ, φ,¬(φ ∧ �) � φ Γ, φ,¬(φ ∧ �),Δ � � Γ,¬(φ ∧ �), φ � ¬(φ ∧ �)

Γ,¬(φ ∧ �), φ,Δ � �.
Proposition 2.8. The following inference rules are derivable:

Γ � ¬φ
Γ � ¬(φ ∧ �)

,
Γ � φ

Γ � ¬(¬φ ∧ �)
,

Γ � ¬�
Γ � ¬(φ ∧ �)

,
Γ � �

Γ � ¬(φ ∧ ¬�)
.

Proof. We exhibit the derivations of two of these rules because the derivations of the
other two rules are entirely similar. Refer to Proposition 2.3 and Lemma 2.6.

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ

Γ � ¬φ Γ,¬φ, φ ∧ � � ¬φ
Γ, φ ∧ � � ¬φ

Γ � ¬(φ ∧ �);

Γ � φ
Γ � ¬¬φ

Γ � ¬(¬φ ∧ �).

Theorem 2.9. The following inference rules are derivable:

Γ � φ→ �
Γ � ¬(φ ∧ ¬(φ ∧ �))

,
Γ � ¬(φ ∧ ¬(φ ∧ �))

Γ � φ→ � .
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Proof. Refer to Proposition 2.8.

Γ, φ � φ
Γ � φ→ �

Γ, φ � �
Γ, φ � φ ∧ �

Γ, φ � ¬(φ ∧ ¬(φ ∧ �))
Γ,¬φ � ¬φ

Γ,¬φ � ¬(φ ∧ ¬(φ ∧ �))

Γ � ¬(φ ∧ ¬(φ ∧ �)).

Refer to Propositions 2.3 and 2.7.

Γ � ¬(φ ∧ ¬(φ ∧ �))

Γ, φ,¬(φ ∧ �),¬(φ ∧ ¬(φ ∧ �)) � ¬(φ ∧ ¬(φ ∧ �))

Γ, φ,¬(φ ∧ ¬(φ ∧ �)),¬(φ ∧ �) � ¬(φ ∧ ¬(φ ∧ �))

Γ,¬(φ ∧ ¬(φ ∧ �)), φ,¬(φ ∧ �) � ¬(φ ∧ ¬(φ ∧ �))

Γ, φ,¬(φ ∧ �) � ¬(φ ∧ ¬(φ ∧ �));

Γ,¬(φ ∧ �), φ � φ
Γ, φ,¬(φ ∧ �) � φ Γ, φ,¬(φ ∧ �) � ¬(φ ∧ �)

Γ, φ,¬(φ ∧ �) � φ ∧ ¬(φ ∧ �)

Γ � ¬(φ ∧ ¬(φ ∧ �))

Γ, φ,¬(φ ∧ �) � ¬(φ ∧ ¬(φ ∧ �))
Γ, φ � φ ∧ �

Γ, φ � �
Γ � φ→ �.

§3. Noncommutativity, soundness, and completeness. This section contains proofs
establishing the basic metamathematical properties of SOM . We begin with the
admissibility of the weakening rule.

Proposition 3.1. If a sequent Γ � φ is derivable, then Δ,Γ � φ is also derivable.

Proof. Recall that the length of a derivation is the number of inferences in that
derivation. We prove the proposition by induction on the length of a derivation of
Γ � φ. If Γ � φ has a derivation of length one, then it is of the form Γ0, φ � φ, and
hence Δ,Γ � φ is of the form Δ,Γ0, φ � φ. Therefore, if Γ � φ has a derivation of length
� = 1, then Δ,Γ � φ is derivable.

Let � > 1, and assume that the proposition holds for all sequents that have a
derivation of length smaller than �. Let Γ � φ be a sequent that has a derivation
of length �. Then, there exist sequents Γ1 � φ1, Γ2 � φ2, and Γ3 � φ3, which may be
identical, that have derivations of length less than � and that yield Γ � φ via a primitive
inference of SOM :

Γ1 � φ1 Γ2 � φ2 Γ3 � φ3

Γ � φ .

Perusing Figure 1, we conclude that

Δ,Γ1 � φ1 Δ,Γ2 � φ2 Δ,Γ3 � φ3

Δ,Γ � φ
is also a primitive inference of SOM . By the induction hypothesis, the sequents Δ,Γ1 �
φ1, Δ,Γ2 � φ2, and Δ,Γ3 � φ3 are all derivable, and thus the sequent Δ,Γ � φ is also
derivable. Therefore, the proposition holds for all sequents that have a derivation of
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length smaller than or equal to �. By induction on �, the proposition holds for all
sequents that have a derivation of any length.

Let H be the Hilbert-type deductive system given in [42, sec. 19]. Let LK be the
deductive system G1 given in [42, sec. 77]. Let the exchange rule (E) be the following
rule of inference:

Γ, φ, �,Δ � �
Γ, �, φ,Δ � � .

Theorem 3.2. Let φ1, ... , φn � �0 be a sequent. Then, the following are equivalent:

(1) φ1, ... , φn � �0 is derivable in SOM + E.
(2) φ1, ... , φn � �0 is derivable in LK .
(3) (φ1 ∧ ··· ∧ φn) → �0 is derivable in H.

When n = 0, the expression (φ1 ∧ ··· ∧ φn) → �0 means �0.

Proof. To prove the implication (1) ⇒ (2), it is sufficient to prove that each of the
inference rules ofSOM + E is derivable inLK . This is a set of exercises in introductory
logic. We further remark only that each inference rule of SOM + E is derivable in LK
because LK does include the cut rule, which is merely admissible rather than derivable
in the rest of that system. The implication (2) ⇒ (3) is essentially just [42, theorem
47] [19, sec. V.6]. Indeed the deduction theorem for H implies that �0 may be derived
from the assumptions φ1, ... , φn if and only if the formula (φ1 ∧ ··· ∧ φn) → �0 may be
derived without any assumptions [42, theorem 1]. It remains to prove the implication
(3) ⇒ (1).

Assume that the formula (φ1 ∧ ··· ∧ φn) → �0 has a derivation in H. As a
consequence of the cut elimination theorem, this formula has a derivation in H that
uses only those logical axioms of H that contain the symbols∧,→, and¬ [42, theorems
46 and 47 and corollary 2]. For each such logical axiom α, the sequent � α is derivable
in SOM + E: The sequent � φ→ (�→ φ) has the derivation

�, φ � φ
φ,� � φ
φ � �→ φ

� φ→ (�→ φ).

The sequent � (φ→ �) → ((φ→ (�→ �)) → (φ→ �)) has the derivation

φ→ (�→ �), φ→ � � φ→ �
φ→ (�→ �), φ→ �, φ � �
φ→ �, φ→ (�→ �), φ � �

φ→ �, φ→ (�→ �) � φ→ (�→ �)

φ→ �, φ→ (�→ �), φ � �→ �
φ→ �, φ→ (�→ �), φ, � � �

φ→ �, φ→ (�→ �), φ � �
φ→ �, φ→ (�→ �) � φ→ �

φ→ � � (φ→ (�→ �)) → (φ→ �)

� (φ→ �) → ((φ→ (�→ �)) → (φ→ �)).
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The sequent � φ→ (�→ (φ ∧ �)) has the derivation

�, φ � φ
φ,� � φ φ,� � �
φ,� � φ ∧ �
φ � �→ (φ ∧ �)

� φ→ (�→ (φ ∧ �)).

The sequents � (φ ∧ �) → φ and � (φ ∧ �) → � have the derivations

φ ∧ � � φ ∧ �
φ ∧ � � φ

� (φ ∧ �) → φ,

φ ∧ � � φ ∧ �
φ ∧ � � �

� (φ ∧ �) → �.

By Lemma 2.3, the sequent � (φ→ �) → ((φ→¬�) →¬φ) has the derivation

φ→¬�, φ→ � � φ→ �
φ→¬�, φ→ �, φ � �
φ→ �, φ→¬�, φ � �

φ→ �, φ→¬� � φ→¬�
φ→ �, φ→¬�, φ � ¬�

φ→ �, φ→¬� � ¬φ
φ→ � � (φ→¬�) →¬φ

� (φ→ �) → ((φ→¬�) →¬φ).

By Lemma 2.2, the sequent � ¬¬φ→ φ has the derivation

¬¬φ � φ
� ¬¬φ→ φ.

Therefore, for every logical axiom α in the derivation of (φ1 ∧ ··· ∧ φn) → �0, the
sequent � α is derivable in SOM + E.

Furthermore, by Proposition 2.1, the inference rule

� φ � φ→ �
� �

is also derivable in SOM + E. Therefore, we may transform a derivation of (φ1 ∧ ··· ∧
φn) → �0 in H into a derivation of � (φ1 ∧ ··· ∧ φn) → �0 in SOM + E essentially
by placing the symbol � in front of each formula. Formally, this is a straightforward
inductive argument. We conclude that the sequent � (φ1 ∧ ··· ∧ φn) → �0 is derivable
in SOM + E.

By Proposition 3.1 and the→-elimination rule, the sequent φ1, ... , φn, φ1 ∧ ··· ∧ φn �
�0 is also derivable in SOM + E. Certainly, so is the sequent φ1, ... , φn � φ1 ∧ ··· ∧ φn.
Appealing to the cut rule, we conclude that φ1, ... , φn � �0 is derivable in SOM + E,
proving the implication (3) ⇒ (1).

In any orthomodular latticeQ, the binary operations & and→ are defined bya & b =
(a ∨ ¬b) ∧ b and a→ b = ¬a ∨ (a ∧ b) for all a, b ∈ Q. Our convention is that &
associates with the left and → associates with the right. Furthermore, a1 & ··· & an
denotes � when n = 0.
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Definition 3.3. Let L1 be the set of formulas of SOM . We define an interpretation to
be a function � · � : L1 → Q such that Q is an orthomodular lattice. Thus, a valuation of
orthomodular logic is an interpretation such that

(1) �φ ∧ � � = �φ � ∧ �� �,
(2) �φ→ � � = �φ � → �� �,
(3) �¬φ � = ¬�φ �

for all formulasφ and�. We define a sequentφ1, ... , φn � � to be true in an interpretation
if �φ1 � & ··· & �φn � ≤ �� �. We define a rule of inference to be sound in an interpretation
if its conclusion is true whenever its premises are all true.

The definition of a true sequent is motivated by Theorem A.3. The definition of a
valuation is then motivated by the following proposition:

Proposition 3.4. Let � · � be a surjective interpretation. If the rules of inference of
SOM are all sound in this interpretation, then � · � is a valuation of orthomodular logic.

Proof. Let Q be the orthomodular lattice that is the codomain of the interpretation
� · �. Assume that the rules of inference of SOM are all sound.

Let φ be a formula. Let α be a formula such that �α � = ⊥, and let � be a formula
such that � � � = �φ � ∨ �¬φ �. By assumption, the following derivations both yield
sound rules of inference:

¬φ � ¬φ
¬φ, φ � α,

φ � � ¬φ � �
� �.

The soundness of the first rule implies that �¬φ � & �φ � ≤ �α � = ⊥, and thus,
�φ � ⊥ �¬φ �. We certainly have that �φ � ≤ � � � and �¬φ � ≤ � � �, so the soundness
of the second rule implies that � ≤ � � � = �φ � ∨ �¬φ �. Altogether, we have that
�¬φ � is a complement of �φ � that is orthogonal to �φ �. Therefore, �¬φ � = ¬�φ �
for all formulas φ.

Let φ and � be formulas. Let 	 be a formula such that � 	 � = �φ � ∧ �� �. By
assumption, the following derivations all yield sound rules of inference:

φ ∧ � � φ ∧ �
φ ∧ � � φ,

φ ∧ � � φ ∧ �
φ ∧ � � �,

	 � φ 	 � �
	 � φ ∧ �.

The soundness of the first two rules implies that �φ ∧ � � ≤ �φ � and �φ ∧ � � ≤
�� �; thus, �φ ∧ � � is a lower bound of �φ � and �� �. We certainly have that � 	 � ≤
�φ � and � 	 � ≤ �� �, so the soundness of the third rule implies that �φ � ∧ �� � =
� 	 � ≤ �φ ∧ � �. Altogether, we have that �φ ∧ � � is a lower bound of �φ � and �� �
that is at least as large as their greatest lower bound �φ � ∧ �� �. Therefore, �φ ∧ � � =
�φ � ∧ �� � for all formulas φ and �.

Let φ and � be formulas. By Theorem 2.9, the following derivations yield sound
rules of inference:

φ→ � � φ→ �
φ→ � � ¬(φ ∧ ¬(φ ∧ �)),

¬(φ ∧ ¬(φ ∧ �)) � ¬(φ ∧ ¬(φ ∧ �))

¬(φ ∧ ¬(φ ∧ �)) � φ→ �.
The soundness of the first rule implies that �φ→ � � ≤ �¬(φ ∧ ¬(φ ∧ �)) �, and the

soundness of the second rule implies the opposite inequality. Altogether, we have that
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�φ→ � � = �¬(φ ∧ ¬(φ ∧ �)) � = ¬�φ ∧ ¬(φ ∧ �) � = ¬(�φ � ∧ �¬(φ ∧ �) �)

= ¬(�φ � ∧ ¬�φ ∧ � �) = ¬(�φ � ∧ ¬(�φ � ∧ �� �)) = ¬�φ � ∨ (�φ � ∧ �� �) = �φ � → �� �.

Therefore, �φ→ � � = �φ � → �� � for all formulas φ and �.

Theorem 3.5. The rules of inference of SOM are sound in every valuation of
orthomodular logic.

Proof. For brevity, we use the notation � Γ � = � 	1 � & ··· & � 	n �, where Γ is the
sequence 	1, ... , 	n.

First, we prove the soundness of the conjunction and implication rules. Let Γ � φ
and Γ � � be sequents, and assume that they are true. Then, we have that � Γ � ≤ �φ �
and � Γ � ≤ �� �, and hence � Γ � ≤ �φ � ∧ �� � = �φ ∧ � �. In other words, Γ � φ ∧ �
is true. Therefore, the ∧-introduction rule is sound. We may similarly conclude that the
∧-elimination rules are sound.

The →-introduction and →-elimination rules are both sound if and only if the
inequality � Γ � & �φ � ≤ �� � is equivalent to the inequality � Γ � ≤ �φ � → �� � for
all Γ, φ, and �. These inequalities certainly are equivalent because the inequalities
a & b ≤ c and a ≤ b→ c are equivalent in every orthomodular lattice [15]. Therefore,
the →-introduction rule and the →-elimination rule are sound.

Of the six remaining rules of inference, we may prove the soundness of all but the
compatible exchange rule by appealing to the soundness of the rules for conjunction
and implication and to the theorem that the orthomodular lattice 24 ×MO2 is the
free orthomodular lattice on two generators [40, theorem 2.1]. This theorem implies
that an inequality in two variables holds universally in all orthomodular lattices if it
holds in 2 and inMO2, making the verification of such inequalities a matter of routine
computation.

For illustration, we prove the soundness of the excluded middle rule. Let Γ, φ � �
and Γ,¬φ � � be sequents, and assume that they are true. By the soundness of the
conjunction and implication rules, we find that Γ � (φ→ �) ∧ (¬φ→ �) is also true.
By routine computation, we find that the inequality (a→ b) ∧ (¬a→ b) ≤ b holds
universally in any orthomodular lattice. We infer that

� Γ � ≤ � (φ→ �) ∧ (¬φ→ �) � = (�φ � → �� �) ∧ (¬�φ � → �� �) ≤ �� �.

Thus, the sequent Γ � � is true. Therefore, the excluded middle rule is sound. We may
similarly conclude that the deductive explosion rule, the assumption rule, the cut rule,
and the paste rule are all sound.

That leaves the compatible exchange rule, which is not directly amenable to the same
approach. However, we can use the same approach to prove the soundness of the rule

Γ, φ, � � φ Γ, �, φ � �
Γ,¬φ,� � ¬φ .
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We can then prove the soundness of the compatible exchange rule by deriving it from
the rules whose soundness we have already established:

Γ, φ, � � φ Γ, φ, � � �
Γ, φ, �, φ � �

Γ, φ, � � φ→ �
Γ, φ � �→ (φ→ �)

Γ, φ, � � φ Γ, �, φ � �
Γ,¬φ,� � ¬φ
Γ,¬φ,�, φ � �

Γ,¬φ,� � φ→ �
Γ,¬φ � �→ (φ→ �)

Γ � �→ (φ→ �)
Γ, � � φ→ �
Γ, �, φ � �.

We have now established the soundness of all 11 inference rules of SOM .

Lemma 3.6. The deductive system SOM has the following properties:

(1) If φ � � and � � � are both derivable, then φ � � is derivable.
(2) If φ � � is derivable, then ¬� � ¬φ is derivable.

Proof. Assume that φ � � and � � � are both derivable. By Proposition 3.1, the
sequent φ,� � � is also derivable, and therefore, so is the sequent φ � �:

φ � � φ,� � �
φ � �.

Assume that φ � � is derivable. By Proposition 3.1, the sequent ¬�, φ � � is also
derivable, and therefore, so is the sequent ¬� � ¬φ:

¬�, φ � �

¬�,�, φ � � ¬�,�, φ � ¬�
¬�, φ � � ¬�, φ � φ

¬�, φ,� � φ
¬�, φ,� � ¬�
¬�, φ � ¬�

¬� � ¬φ.

Refer to Proposition 2.3 and Theorem 2.5.

Definition 3.7. For all formulas φ and� of SOM , we define φ ≤ � if φ � � is derivable
in SOM . This relation is reflexive by Definition 1.1 and transitive by Lemma 3.6(1). In
other words, (L1,≤) is a preordered set. We define (L1,≤) to be the partially ordered set
that is obtained by identifying formulas that are equivalent in (L1,≤).

Let [ · ] : L1 → L1 be the quotient map. The function φ �→ ¬φ on L1 is order-reversing
by Lemma 3.6(2), so the function [φ] �→ [¬φ] on L1 is well-defined and order-reversing.
We define ¬[φ] = [¬φ] for all formulas φ of L1.

Theorem 3.8. The structure (L1,≤,¬) is an orthomodular lattice. Furthermore, the
quotient map [ · ] : L1 → L1 is a valuation of orthomodular logic.

Proof. First, we observe that the quotient map [ · ] : L1 → L1 satisfies conditions
(1)–(3) of Definition 3.3. It satisfies condition (1) because [φ ∧ �] is the meet of [φ]
and [�] due to the logical rules for conjunction. It satisfies condition (3) by Definition
3.7. Finally, it satisfies condition (2) by Theorem 2.9, which implies that [φ→ �] =
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[¬(φ ∧ ¬(φ ∧ �))]. Therefore, the quotient map [ · ] : L1 → L1 satisfies conditions (1)–
(3) of Definition 3.3, and it is a valuation if (L1,≤,¬) is an orthomodular lattice.

The function ¬ : [φ] �→ [¬φ] is an involution of (L1,≤) by Lemma 2.2. We have
already observed that (L1,≤) has binary meets with [φ] ∧ [�] = [φ ∧ �]. Since ¬ is
an order-reversing involution, (L1,≤) also has binary joins with [φ] ∨ [�] = [¬(¬φ ∧
¬�)]. For all formulas φ and �, the sequent φ ∧ ¬φ � � is derivable:

φ ∧ ¬φ � φ ∧ ¬φ
φ ∧ ¬φ � φ

φ ∧ ¬φ � φ ∧ ¬φ
φ ∧ ¬φ � ¬φ

φ ∧ ¬φ � �;

we have appealed to Proposition 2.1. Thus, (L1,≤) has a least element, and moreover,
[φ] ∧ ¬[φ] is equal to that least element for every formula φ. Applying the order-
reversing involution ¬, we find that (L1,≤) also has a greatest element, and moreover,
¬[φ] ∨ [φ] is equal to that greatest element for every formula φ. Therefore, (L1,≤,¬)
is an ortholattice.

Let φ and � be formulas such that [φ] ≤ [�], that is, such that the sequent φ � �
is derivable. By Proposition 3.1, the sequent ¬φ,�, φ � � is also derivable. We apply
Proposition 2.3 and Theorems 2.5 and 2.9 to derive � � ¬(¬φ ∧ ¬(¬φ ∧ �)):

φ � � φ,¬φ � �
φ,�,¬φ � �

¬φ, φ,� � φ ¬φ, φ,� � ¬φ ¬φ,�, φ � �
¬φ,�, φ � ¬φ
¬φ,� � ¬φ ¬φ,� � �

¬φ,�,¬φ � �
�,¬φ � �
� � ¬φ→ �

� � ¬(¬φ ∧ ¬(¬φ ∧ �)).

Therefore, [�] ≤ [¬(¬φ ∧ ¬(¬φ ∧ �))] = ¬(¬[φ] ∧ ¬(¬[φ] ∧ [�])) = [φ] ∨ (¬[φ] ∧
[�]).

For the opposite inequality, we reason that ¬φ→ �, φ � � is derivable by
Proposition 3.1, and hence the sequent ¬φ→ � � � is derivable:

¬φ→ �, φ � �
¬φ→ � � ¬φ→ �
¬φ→ �,¬φ � �

¬φ→ � � �.
Thus, [¬φ→ �] ≤ [�]. By Theorem 2.9, we also have that [¬(¬φ ∧ ¬(¬φ ∧ �))] ≤

[¬φ→ �], and therefore

[φ] ∨ (¬[φ] ∧ [�]) = ¬(¬[φ] ∧ ¬(¬[φ] ∧ [�])) = [¬(¬φ ∧ ¬(¬φ ∧ �))] ≤ [¬φ→ �] ≤ [�].

Altogether, we have that [φ] ∨ (¬[φ] ∧ [�]) = [�] for all formulas φ and � such that
[φ] ≤ [�]. We conclude that (L1,≤,¬) is an orthomodular lattice, as claimed.

Corollary 3.9. If a sequent is true in every valuation of orthomodular logic, then that
sequent is derivable in SOM .

Proof. Let φ1, ... , φn � � be a sequent that it is true in every valuation. By Theorem
3.8, the quotient map [ · ] : L1 → L1 is a valuation; hence [φ1] & ··· & [φn] ≤ [�].
Repeatedly applying the adjunction between & and → [15], we conclude that
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[φ1] → ··· → [φn] → [�] is the greatest element of L1. Thus, [φ1 → ··· → φn→ �] is
the greatest element of L1. In particular, the sequents � � φ1 → ··· → φn→ � and
¬� � φ1 → ··· → φn→ � are both derivable. Applying the excluded middle rule, we
infer that � φ1 → ··· → φn→ � is derivable. Repeatedly applying the →-elimination
rule, we conclude that φ1, ... , φn � � is derivable.

§4. Disjunction and compatibility.

Definition 4.1. We introduce two abbreviations:

(1) Let φ ∨ � be an abbreviation for ¬(¬φ ∧ ¬�).
(2) Let φ ⊥⊥ � be an abbreviation for (φ→ (�→ φ)) ∧ (�→ (φ→ �)).

In this section, we derive the primitive inference rules for these two connectives. We
also derive the equivalence between the given expression for φ ⊥⊥ � and the standard
expression for it. Along the way, we derive a number of other rules of inference that
express intelligible logical principles. We do not appeal to the results of Section 3 in
any way. This section exhibits the derivations whose existence it claims, continuing the
development that was initiated in Section 2.

Proposition 4.2. The following inference rule is derivable:

Γ, φ, � � ¬φ
Γ, φ � ¬� .

Proof. Refer to Proposition 2.3 and Theorem 2.5.

Γ, φ,¬φ,� � ¬φ Γ, φ,¬φ,� � φ
Γ, φ, � � ¬φ Γ, φ, � � �

Γ, φ, �,¬φ � �
Γ, φ, �,¬φ � φ

Γ, φ, � � φ Γ, φ, � � ¬φ
Γ, φ � ¬�.

Lemma 4.3. The following inference rule is derivable:

Γ � ¬(φ ∧ �) Γ, �,¬φ � ¬� Γ, �,¬� � ¬�
Γ � ¬� .

Proof. Refer to Propositions 2.3 and 4.2 and Theorem 2.5.

Γ � ¬(φ ∧ �)

Γ � ¬(φ ∧ �)

Γ, �,¬φ � ¬�
Γ, �,� ¬¬φ

Γ, � � φ

Γ, �,¬� � ¬�
Γ, � � ¬¬�

Γ, � � �
Γ, � � φ ∧ �

Γ,¬(φ ∧ �), � � φ ∧ �
Γ,¬(φ ∧ �), � � ¬¬(φ ∧ �)

Γ,¬(φ ∧ �) � ¬�
Γ � ¬�.
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Theorem 4.4. The following inference rule is derivable:

Γ � � Γ, φ � �
Γ,¬φ � � .

Proof. Refer to Theorems 2.5 and 2.9, Propositions 2.7 and 2.8, and Lemma 4.3.

Γ,¬(φ ∧ �) � ¬(φ ∧ �) Γ,¬(φ ∧ �), φ,¬φ � ¬φ

Γ, φ � �
Γ, φ,¬(φ ∧ �), �,¬� � ¬φ
Γ, φ, �,¬(φ ∧ �),¬� � ¬φ

Γ, φ,¬(φ ∧ �),¬� � ¬φ
Γ,¬(φ ∧ �), φ,¬� � ¬φ

Γ,¬(φ ∧ �) � ¬φ;

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ

Γ, φ ∧ � � ¬(¬φ ∧ ¬(¬φ ∧ �))

Γ, φ � �
Γ,¬(φ ∧ �) � ¬φ

Γ � �
Γ,¬(φ ∧ �), � � �
Γ, �,¬(φ ∧ �) � �

Γ,¬(φ ∧ �) � �
Γ,¬(φ ∧ �) � ¬φ ∧ �

Γ,¬(φ ∧ �) � ¬(¬φ ∧ ¬(¬φ ∧ �))

Γ � ¬(¬φ ∧ ¬(¬φ ∧ �))
Γ � ¬φ→ �
Γ,¬φ � �.

Corollary 4.5. The following inference rules are derivable:

Γ, φ, � � φ
Γ, φ,¬� � φ ,

Γ, φ, � � φ Γ, �, φ � �
Γ,¬φ,� � ¬φ .

Proof. Refer to Proposition 2.3 and Theorems 2.5 and 4.4.

Γ, φ � φ Γ, φ, � � φ
Γ, φ,¬� � φ.

Γ,¬φ, φ,� � φ Γ,¬φ, φ,� � ¬φ

Γ, �, φ � �
Γ, � � φ→ �

Γ � �→ (φ→ �)

Γ, φ, � � φ Γ, φ, � � �
Γ, φ, �, φ � �

Γ, φ, � � φ→ �
Γ, φ � �→ (φ→ �)

Γ,¬φ � �→ (φ→ �)
Γ,¬φ,� � φ→ �

Γ,¬φ,�, φ � �
Γ,¬φ,�, φ � ¬φ
Γ,¬φ,� � ¬φ.

Corollary 4.6. The following inference rules are derivable:

Γ � φ
Γ � φ ∨ � ,

Γ � �
Γ � φ ∨ � ,

Γ � φ ∨ � Γ, φ � � Γ, � � � Γ, �, φ � � Γ, �, � � �
Γ � � .
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Proof. The two introduction rules are derivable by Proposition 2.8. For the
derivation of the elimination rule, refer to Proposition 2.3, Theorems 2.5 and 4.4,
and Lemma 4.3.

Γ � φ ∨ �

Γ, φ � �
Γ � φ→ �

Γ, �, φ � �
Γ, � � φ→ �

Γ,¬� � φ→ �
Γ,¬�, φ � �

Γ,¬�,¬¬φ � �
Γ,¬�,¬¬φ � ¬¬�

Γ, � � �
Γ � �→ �

Γ, �, � � �
Γ, � � �→ �

Γ,¬� � �→ �
Γ,¬�,� � �

Γ,¬�,¬¬� � �
Γ,¬�,¬¬� � ¬¬�

Γ � ¬¬�
Γ � �.

Proposition 4.7. The following inference rules are derivable:

Γ, φ, � � φ Γ, �, φ � �
Γ � φ ⊥⊥ � ,

Γ � φ ⊥⊥ � Γ, φ, �,Δ � �
Γ, �, φ,Δ � � ,

Γ � φ ⊥⊥ � Γ, �, φ,Δ � �
Γ, φ, �,Δ � � .

Proof. Refer to Theorem 2.5.

Γ, φ, � � φ
Γ, φ � �→ φ

Γ � φ→ (�→ φ)

Γ, �, φ � �
Γ, � � φ→ �

Γ � �→ (φ→ �)
Γ � φ ⊥⊥ �.

Γ � φ ⊥⊥ �
Γ � φ→ (�→ φ)

Γ, φ � �→ φ
Γ, φ, � � φ Γ, φ, �,Δ � �

Γ � φ ⊥⊥ �
Γ � �→ (φ→ �)

Γ, � � φ→ �
Γ, �, φ � �

Γ, �, φ,Δ � �.

The derivation of the third rule is entirely similar to that of the second.

Proposition 4.8. The following inference rules are derivable:

Γ � φ ⊥⊥ �
Γ, φ, � � φ ,

Γ � φ ⊥⊥ �
Γ, �, φ � � ,

Γ � φ ⊥⊥ �
Γ � � ⊥⊥ φ ,

Γ � φ ⊥⊥ �
Γ � φ ⊥⊥ ¬� ,

Γ � φ ⊥⊥ ¬�
Γ � φ ⊥⊥ � ,

Γ � φ ⊥⊥ �
Γ � ¬φ ⊥⊥ � ,

Γ � ¬φ ⊥⊥ �
Γ � φ ⊥⊥ � ,

Γ � φ ⊥⊥ (φ→ �) , Γ � φ ⊥⊥ (φ ∧ �) , Γ � � ⊥⊥ (φ ∧ �) .

Proof. Refer to Propositions 2.3 and 4.7, Theorem 2.5, and Corollary 4.5.

Γ � φ ⊥⊥ � Γ, �, φ � φ
Γ, φ, � � φ;

Γ � φ ⊥⊥ � Γ, φ, � � �
Γ, �, φ � �.

Γ � φ ⊥⊥ �
Γ, �, φ � �

Γ � φ ⊥⊥ �
Γ, φ, � � φ

Γ � � ⊥⊥ φ.
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Γ � φ ⊥⊥ �
Γ, φ, � � φ

Γ, φ,¬� � φ

Γ � φ ⊥⊥ �
Γ, �, φ � �

Γ � φ ⊥⊥ �
Γ, φ, � � φ

Γ,¬�, φ � ¬�
Γ � φ ⊥⊥ ¬�;

Γ � φ ⊥⊥ ¬�
Γ � φ ⊥⊥ ¬¬�
Γ, φ,¬¬� � φ

Γ, φ, � � φ

Γ � φ ⊥⊥ ¬�
Γ � φ ⊥⊥ ¬¬�

Γ,¬¬�, φ � ¬¬�
Γ,¬¬�, φ � �

Γ, �, φ � �
Γ � φ ⊥⊥ �.

The derivations of the two remaining rules for negation are entirely similar.

Γ, φ→ �,¬φ, φ � �
Γ, φ→ �,¬φ � φ→ �

Γ,¬φ, φ � �
Γ,¬φ � φ→ � Γ,¬φ � ¬φ

Γ,¬φ, φ→ � � ¬φ
Γ � (φ→ �) ⊥⊥ ¬φ
Γ � (φ→ �) ⊥⊥ φ
Γ � φ ⊥⊥ (φ→ �).

Γ, φ, φ ∧ � � φ ∧ �
Γ, φ, φ ∧ � � φ

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ Γ, φ ∧ � � φ ∧ �

Γ, φ ∧ �, φ � φ ∧ �
Γ � φ ⊥⊥ (φ ∧ �).

The derivation of the remaining rule for conjunction is entirely similar.

Proposition 4.9. The following inference rule is derivable:

Γ � φ ⊥⊥ � Γ, φ � �
Γ,¬� � ¬φ .

Proof. Refer to Theorem 2.5 and Proposition 4.8.

Γ, φ � � Γ, φ, �,¬� � ¬φ
Γ, φ,¬� � ¬φ

Γ � φ ⊥⊥ �
Γ � φ ⊥⊥ ¬�

Γ � ¬φ ⊥⊥ ¬�
Γ,¬φ,¬� � ¬φ

Γ,¬� � ¬φ.

Lemma 4.10. The following inference rules are derivable:

Γ � φ ⊥⊥ �
Γ, φ, � � φ ∧ � ,

Γ � φ ⊥⊥ �
Γ, φ,¬� � φ ∧ ¬� ,

Γ � φ ⊥⊥ �
Γ,¬φ,� � ¬φ ∧ � ,

Γ � φ ⊥⊥ �
Γ,¬φ,¬� � ¬φ ∧ ¬� .

Proof. Refer to Proposition 4.8.

Γ � φ ⊥⊥ �
Γ, φ, � � φ Γ, φ, � � �

Γ, φ, � � φ ∧ �;

Γ � φ ⊥⊥ �
Γ � φ ⊥⊥ ¬�
Γ, φ,¬� � φ Γ, φ,¬� � ¬�

Γ, φ,¬� � φ ∧ ¬�;
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Γ � φ ⊥⊥ �
Γ � ¬φ ⊥⊥ �

Γ,¬φ,� � ¬φ Γ,¬φ,� � �
Γ,¬φ,� � ¬φ ∧ �;

Γ � φ ⊥⊥ �
Γ � φ ⊥⊥ ¬�

Γ � ¬φ ⊥⊥ ¬�
Γ,¬φ,¬� � ¬φ Γ,¬φ,¬� � ¬�

Γ,¬φ,¬� � ¬φ ∧ ¬�.

Proposition 4.11. The following inference rules are derivable:

Γ � φ ⊥⊥ �
Γ, φ � (φ ∧ �) ∨ (φ ∧ ¬�)

,

Γ � φ ⊥⊥ �
Γ � ((φ ∧ �) ∨ (φ ∧ ¬�)) ∨ ((¬φ ∧ �) ∨ (¬φ ∧ ¬�))

.

Proof. Refer to Corollary 4.6, Proposition 4.8, and Lemma 4.10.

Γ � φ ⊥⊥ �
Γ, φ, � � φ ∧ �

Γ, φ, � � (φ ∧ �) ∨ (φ ∧ ¬�)

Γ � φ ⊥⊥ �
Γ, φ,¬� � φ ∧ ¬�

Γ, φ,¬� � (φ ∧ �) ∨ (φ ∧ ¬�)

Γ, φ � (φ ∧ �) ∨ (φ ∧ ¬�).

Let �0 be the formula ((φ ∧ �) ∨ (φ ∧ ¬�)) ∨ ((¬φ ∧ �) ∨ (¬φ ∧ ¬�)).

Γ � φ ⊥⊥ �
Γ, φ � (φ ∧ �) ∨ (φ ∧ ¬�)

Γ, φ � �0

Γ � φ ⊥⊥ �
Γ � ¬φ ⊥⊥ �

Γ,¬φ � (¬φ ∧ �) ∨ (¬φ ∧ ¬�)
Γ,¬φ � �0

Γ � �0.

Lemma 4.12. The following inference rules are derivable:

Γ � φ ∧ �
Γ � φ ⊥⊥ � ,

Γ � φ ∧ ¬�
Γ � φ ⊥⊥ � ,

Γ � ¬φ ∧ �
Γ � φ ⊥⊥ � ,

Γ � ¬φ ∧ ¬�
Γ � φ ⊥⊥ � .

Consequently, the following sequents are derivable:

(1) Γ, φ ∧ � � φ ⊥⊥ �,
(2) Γ, φ ∧ ¬� � φ ⊥⊥ �,
(3) Γ,¬φ ∧ � � φ ⊥⊥ �,
(4) Γ,¬φ ∧ ¬� � φ ⊥⊥ �.

Proof. Refer to Propositions 4.7 and 4.8.

Γ � φ ∧ �

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � φ

Γ, φ ∧ � � φ ∧ �
Γ, φ ∧ � � �

Γ, φ ∧ �, φ � �
Γ, φ � � Γ, φ � φ

Γ, φ, � � φ.
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The derivation of the rule
Γ � φ ∧ �
Γ, �, φ � � is entirely similar.

Γ � φ ∧ �
Γ, φ, � � φ

Γ � φ ∧ �
Γ, �, φ � �

Γ � φ ⊥⊥ �;

Γ � φ ∧ ¬�
Γ � φ ⊥⊥ ¬�
Γ � φ ⊥⊥ �;

Γ � ¬φ ∧ �
Γ � ¬φ ⊥⊥ �
Γ � φ ⊥⊥ �;

Γ � ¬φ ∧ ¬�
Γ � ¬φ ⊥⊥ ¬�
Γ � φ ⊥⊥ ¬�
Γ � φ ⊥⊥ �.

Lemma 4.13. The following inference rule is derivable:

Γ � (φ ∧ �) ∨ (φ ∧ ¬�)
Γ � φ ⊥⊥ � .

Consequently, the following sequents are derivable:

(1) Γ, (φ ∧ �) ∨ (φ ∧ ¬�) � φ ⊥⊥ �,
(2) Γ, (¬φ ∧ �) ∨ (¬φ ∧ ¬�) � φ ⊥⊥ �.

Proof. Refer to Corollary 4.6, Proposition 4.8, and Lemma 4.12. Let 
1 be the
formula φ ∧ �, and let 
2 be the formula φ ∧ ¬�.

Γ � 
1 ∨ 
2 Γ, 
1 � φ ⊥⊥ � Γ, 
2 � φ ⊥⊥ � Γ, φ ⊥⊥ �, 
1 � φ ⊥⊥ � Γ, φ ⊥⊥ �, 
2 � φ ⊥⊥ �
Γ � φ ⊥⊥ �.

It follows that sequent (1) is derivable. So is sequent (2):

Γ, (¬φ ∧ �) ∨ (¬φ ∧ ¬�) � (¬φ ∧ �) ∨ (¬φ ∧ ¬�)

Γ, (¬φ ∧ �) ∨ (¬φ ∧ ¬�) � ¬φ ⊥⊥ �
Γ, (¬φ ∧ �) ∨ (¬φ ∧ ¬�) � φ ⊥⊥ �.

Proposition 4.14. The following inference rule is derivable:

Γ � ((φ ∧ �) ∨ (φ ∧ ¬�)) ∨ ((¬φ ∧ �) ∨ (¬φ ∧ ¬�))
Γ � φ ⊥⊥ � .

Proof. Refer to Corollary 4.6 and Lemma 4.13. Let �1 be the formula (φ ∧ �) ∨
(φ ∧ ¬�), and let �2 be the formula (¬φ ∧ �) ∨ (¬φ ∧ ¬�).

Γ � �1 ∨ �2 Γ, �1 � φ ⊥⊥ � Γ, �2 � φ ⊥⊥ � Γ, φ ⊥⊥ �, �1 � φ ⊥⊥ � Γ, φ ⊥⊥ �, �2 � φ ⊥⊥ �
Γ � φ ⊥⊥ �.

§5. Universal and existential quantification. This section extends the propositional
deductive system SOM to two predicate deductive systems. The first is shown to be
sound for Takeuti’s semantics [82], and the second is shown to be sound for a variant
of Weaver’s semantics [87]. For simplicity, we identify formulas that differ only in the
symbols used for their bound variables so that any term is substitutable for any variable
in any formula.

Throughout this section, let Q be a complete orthomodular lattice, and let V (Q) be
the Q-valued universe [82], [70, sec. 4.1].
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Definition 5.1. We define the single-sorted predicate deductive system SOMQ:

(1) Its formulas are the first-order formulas whose
(a) connectives are ∧, →, and ¬;
(b) quantifiers are ∀;
(c) relation symbols are = and ∈;
(d) constant symbols are the elements of V (Q), with no other function symbols.

(2) Its rules of inference are those in Figure 1 together with

Γ � φ
Γ � (∀x)φ

,
Γ � (∀x)φ
Γ � φ[x/t]

,

where the former rule is subject to the standard constraint that the variable x
must not appear freely in Γ.

Corollary 5.2. Let � · �Q be a Q-valued interpretation of the formulas of SOMQ
whose quantized implication is the Sasaki arrow [70, sec. 4.2], e.g., Takeuti’s interpretation
[82]. Let φ be a closed formula of SOMQ. If � φ is derivable in SOMQ, then �φ �Q = �.

Proof. We define a sequent φ1(x1, ... , xm), ... , φn(x1, ... , xm) � �(x1, ... , xm) to
be Q-true if �φ1(u1, ... , um) �Q & ··· & �φn(u1, ... , um) �Q ≤ ��(u1, ... , um) �Q for all
u1, ... , um ∈ V (Q). We prove by induction that every derivable sequent of SOMQ is
Q-true. It is evidently sufficient to verify that each rule is Q-sound: if its premises are
Q-true, then its conclusion is also Q-true. For those rules that appear in Figure 1, this
follows by Theorem 3.5.

Let φ1(x1, ... , xm), ... , φn(x1, ... , xm) � �(x0, x1, ... , xm) be a Q-true sequent. Then,

�φ1(u1, ... , um) �Q & ··· & �φn(u1, ... , um) �Q

≤
∧

u∈V (Q)

��(u, u1, ... , um) �Q = � (∀x0)�(x0, u1, ... , um) �Q

for all u1, ... , um ∈ V (Q). Therefore, the sequent φ1(x1, ... , xm), ... , φn(x1, ... , xm) �
(∀x0)�(x0, x1, ... , xm) is Q-true, and more generally, the ∀-introduction rule is Q-
sound.

Let φ1(x1, ... , xm), ... , φn(x1, ... , xm) � (∀x0)�(x0, x1, ... , xm) be a Q-true sequent,
and let t be a term. We calculate that

�φ1(u1, ... , um) �Q & ··· & �φn(u1, ... , um) �Q

≤ � (∀x0)�(x0, u1 ... , um) �Q =
∧

u∈V (Q)

��(u, u1, ... , um) �Q

for all u1, ... , um ∈ V (Q). If t is a variable, then φ1(x1, ... , xm), ... , φn(x1, ... , xm) �
�(t, x1, ... , xm) is Q-true because

∧
u∈V (Q)��(u, u1, ... , um) �Q ≤ ��(u0, u1, ... , um) �Q

for all u0 ∈ V (Q), and if t is a constant, then φ1(x1, ... , xm), ... , φn(x1, ... , xm) �
�(t, x1, ... , xm) is Q-true for the same reason. Therefore, the ∀-elimination rule is
Q-sound.

Altogether, we find that all of the inference rules of SOMQ are Q-sound. In
particular, if φ is a closed formula such that � φ is derivable in SOMQ, then � φ
is Q-true, and thus � ≤ �φ �Q as desired.

The quantum sets that are the discrete quantum spaces of noncommutative geometry
[43, definition 2.1], [76] form a category in two inequivalent natural ways. The category
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qSet of quantum sets and functions generalizes the category Set of sets and functions,
and it is dual to the category of hereditarily atomic von Neumann algebras and unital
normal ∗-homomorphisms [43, definition 5.3 and theorem 7.4]. The category qRel
of quantum sets and binary relations generalizes the category Rel of sets and binary
relations, and it is dual to the category of hereditarily atomic von Neumann algebras
and quantum relations in the sense of Weaver [44, Appendix A.2], [88].

A function between quantum sets is formally a kind of binary relation between
quantum sets [43, definition 4.1]; qSet is a subcategory of qRel. The two categories
share the same symmetric monoidal structure, whose product is notated × because
it generalizes the Cartesian product of sets in a suitable way [43, definitions 2.2 and
3.3]. The unit of the monoidal structure is notated 1. For a quantum set X , there
exist suitable projection functions X × X → X , but in general, there does not exist a
suitable diagonal function X → X ×X [43, definition 10.3]. This is not a defect in the
definition but rather a basic feature of quantum spaces in noncommutative geometry
[89].

In this setting, we work with a class of formulas that does not presume the existence of
diagonal functions. A nonduplicating formula is a formula such that no variable, bound
or free, appears more than once in any atomic subformula. For illustration, P(x, y) ∧
Q(x, y) is a nonduplicating formula, and P(x, x) ∧Q(y, y) is not a nonduplicating
formula.

Definition 5.3. We define the many-sorted predicate deductive system SOMq:

(1) Its formulas are the nonduplicating first-order formulas whose
(a) connectives are ∧, →, and ¬;
(b) quantifiers are ∀;
(c) sorts are quantum sets;
(d) relation symbols of each arity (X1, ... ,Xn) are binary relations X1 × ··· ×

Xn → 1;
(e) function symbols of each arity (X1, ... ,Xm;Y) are functions X1 × ··· ×

Xm → Y .
(2) Its rules of inference are those in Figure 1 together with

Γ � φ
Γ � (∀x)φ

,
Γ � (∀x)φ
Γ � φ[x/t]

,
Γ, φ, � � �
Γ, �, φ � � ,

where the first rule is subject to the constraint that x must not appear freely in Γ,
the second rule is subject to the constraint that φ and t must not have any free
variables in common, and the third rule is subject to the constraint that φ and �
must not have any free variables in common.

Corollary 5.4. Let � · �q be Weaver’s interpretation of the formulas of SOMq [44,
sec. 2], [87] with implication being interpreted as the Sasaki arrow. Let φ be a closed
formula of SOMq. If � φ is derivable in SOMq, then �φ �q = �.

Proof. We define a sequentφ1, ... , φn � � to be q-true if � x̄ |φ1 �q & ··· & � x̄ |φn �q ≤
� x̄ |� �q for all tuples of distinct variables x̄ = (x1, ... , xm) that include the free
variables of the sequent. We prove by induction that every derivable sequent in SOMq
is q-true. It is evidently sufficient to verify that each rule is q-sound: if its premises
are q-true, then its conclusion is q-true. For those rules that appear in Figure 1, this
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follows by Theorem 3.5; the binary relations between any two quantum sets form an
orthomodular lattice [43, definition 3.8].

Let φ1, ... , φn � � be a q-true sequent, and let x0 be a variable that does not
appear freely in the antecedent. Let x = (x1, ... , xm) be a tuple of distinct variables
that includes the free variables of the sequent φ1, ... , φn � (∀x0)�. Without loss
of generality, we may assume that x0 does not appear in x. Because the sequent
φ1, ... , φn � � is q-true, we have that �x0, x |φ1 �q & ··· & �x0, x |φn �q ≤ �x0, x |� �q.
By [44, proposition 2.3.3], �x0, x |φi �q = �X0 × �x, φi �q for each index i ∈ {1, ... , n},
where X0 is the sort of x0. We calculate that

�X0 × (�x |φ1 �q & ··· & �x |φn �q) = (�X0 × �x |φ1 �q) & ··· & (�X0 × �x |φn �q)

= �x0, x |φ1 �q & ··· & �x0, x |φn �q ≤ �x0, x |� �q,

which implies that �x |φ1 �q & ··· & �x |φn �q ≤ �x | (∀x0)�) �q by [44, definition
2.3.2]. Therefore, φ1, ... , φn � (∀x0)� is q-true, and more generally, the ∀-introduction
rule is q-sound.

Let φ1, ... , φn � (∀x0)� be a q-true sequent, and let t be a term of the same sort as x0.
Assume that � and t have no free variables in common. Let x = (x1, ... , xm) be a tuple
of distinct variables that includes the free variables of φ1, ... , φn � �[x0/t]. Without
loss of generality, we may assume that x0 does not appear in x. Let y = (y1, ... , yk) and
z = (z1, ... , z�) be tuples of distinct variables such that the variables of t appear in y,
the free variables of � appear in z, and the concatenation of y and z is a permutation
of x. In particular y and z have no variables in common, and neither include x0.

Let X0 be the sort of x0, let Y1, ... ,Yk be the sorts of y1, ... , yk , respectively, and
let Z1, ... ,Z� be the sorts of z1, ... , z� , respectively. Let Y = Y1 × ··· × Yk , and let
Z = Z1 × ··· × Z� . We calculate that

� y, z |φ1 �q & ··· & � y, z |φn �q ≤ � y, z | (∀x0)� �q = �Y × � z | (∀x0)� �q

= (�X0 ◦ � y | t �q) × (� z | (∀x0)� �q ◦ IZ) = (�X0 × � z | (∀x0)� �q) ◦ (� y | t �q × IZ)

≤ �x0, z |� �q ◦ (� y | t �q × IZ) = � y, z |�[x0/t] �q,

where �Y = �X0 ◦ � y | t �q because � y | t �q is a function by [44, lemma 3.5.3]
and �x0, x |� �q ◦ (� y | t �q × IZ) = � y, x |�[x0/t] �q by Proposition C.2. Indeed, any
function F from a quantum set Y to a quantum set X0 satisfies �Y = �X0 ◦ F
because �Y = �Y ◦ IY ≤ �Y ◦ F † ◦ F ≤ �X0 ◦ F . We conclude that � y, z |φ1 �q &
··· & � y, z |φn �q ≤ � y, z |�[x0/t] �q. It follows by [44, definition 2.2.4 and propo-
sition 2.3.3] that �x |φ1 �q & ··· & �x |φn �q ≤ �x |�[x0/t] �q. Therefore, the sequent
φ1, ... , φn � �[x0/t] is q-true, and more generally, the ∀-elimination is q-sound.

Let φ1, ... , φn, φ, � � � be a q-true sequent, and assume that φ and � have no
variables in common. Let x be a tuple of distinct variables that includes the free
variables of φ1, ... , φn, �, φ � �. Let y = (y1, ... , yk) and z = (z1, ... , z�) be tuples of
distinct variables such that the free variables of φ appear in y, the free variables of �
appear in z, and the concatenation of y and z is a permutation of x. Let Y1, ... ,Yk be
the sorts of y1, ... , yk , and letZ1, ... ,Z� be the sorts of z1, ... , z� . LetY = Y1 × ··· × Yk ,
and let Z = Z1 × ··· × Z� . Applying [44, proposition 2.3.3], we calculate that

� y, z |φ1 �q& ··· & � y, z |φn �q & � y, z |� �q & � y, z |φ �q

= � y, z |φ1 �q & ··· & � y, z |φn �q & (�Y × � z |� �q) & (� y |φ �q ×�Z)

= � y, z |φ1 �q & ··· & � y, z |φn �q & (� y |φ �q × � z |� �q)

https://doi.org/10.1017/S1755020323000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000229


A NATURAL DEDUCTION SYSTEM FOR ORTHOMODULAR LOGIC 939

= � y, z |φ1 �q & ··· & � y, z |φn �q & (� y |φ �q ×�Z) & (�Y × � z |� �q)

= � y, z |φ1 �q & ··· & � y, z |φn �q & � y, z |φ �q & � y, z |� �q ≤ � y, z |� �q,

where the first and fourth equalities follow by [44, proposition 2.3.3] and the second and
third equalities follow by linear algebra [43, definition 3.8]. It follows by [44, definition
2.2.4 and proposition 2.3.3] that �x |φ1 �q & ··· & �x |φn �q & �x |� �q & �x |φ �q ≤
�x |� �q. Therefore, the sequent φ1, ... , φn, �, φ � � is q-true, and more generally, the
third rule of inference in Definition 5.3 is q-sound.

Altogether, we have that all of the inference rules ofSOMq are q-sound. In particular,
if φ is a closed formula such that � φ is derivable in SOMq, then � φ is q-true.

Definition 5.5. Let (∃x)φ be an abbreviation for ¬(∀x)¬φ.

Lemma 5.6. The sequent Γ � (∀x)φ ⊥⊥ φ[x/t] is derivable in SOMQ. It is also
derivable in SOMq if φ and t have no free variables in common.

Proof. Refer to Proposition 4.7.

Γ, (∀x)φ � (∀x)φ
Γ, (∀x)φ � φ[x/t] Γ, (∀x)φ � (∀x)φ

Γ, (∀x)φ, φ[x/t] � (∀x)φ

Γ, φ[x/t], (∀x)φ � (∀x)φ

Γ, φ[x/t], (∀x)φ � φ[x/t]

Γ � (∀x)φ ⊥⊥ φ[x/t].

Proposition 5.7. The following inference rules are derivable in SOMQ:

Γ � φ[x/t]

Γ � (∃x)φ
,

Γ � (∃x)φ Γ, φ � � Γ, �, φ � �
Γ � � ,

where the latter rule is subject to the standard constraint that the variable x must not
appear freely in Γ or in �. Both rules are also derivable in SOMq if the former rule is
subject to the additional constraint that φ and t have no free variables in common.

Proof. Refer to Propositions 2.3, 4.2, and 4.7–4.9, Theorem 2.5, and Lemma 5.6.

Γ � φ[x/t]

Γ � (∀x)¬φ ⊥⊥ ¬φ[x/t]

Γ � (∀x)¬φ ⊥⊥ φ[x/t]

Γ, φ[x/t], (∀x)¬φ � φ[x/t]

Γ, (∀x)¬φ � φ[x/t]
Γ, (∀x)¬φ � (∀x)¬φ
Γ, (∀x)¬φ � ¬φ[x/t]

Γ � ¬(∀x)¬φ.
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Γ � ¬(∀x)¬φ

Γ � ¬(∀x)¬φ

Γ, φ � � Γ, φ � φ
Γ, φ, � � φ Γ, �, φ � �

Γ � φ ⊥⊥ � Γ, φ � �
Γ,¬� � ¬φ

Γ,¬� � (∀x)¬φ
Γ,¬(∀x)¬φ,¬� � (∀x)¬φ

Γ,¬(∀x)¬φ,¬� � ¬¬(∀x)¬φ
Γ,¬(∀x)¬φ � ¬¬�

Γ,¬(∀x)¬φ � �
Γ � �.

§A. Appendix. Let H be a Hilbert space of any dimension. For each subspace A of
H, let A be the closure of A. For each closed subspace A of H, let [A] : H → H be the
corresponding orthogonal projection operator.

Proposition A.1. Let A and B be closed subspaces of H. Then, A& B = [B]A.

Proof. Let 
 ∈ A. We calculate that for all � ∈ A⊥ ∧ B , 〈�|[B]
〉 = 〈[B]�|
〉 =
〈�|
〉 = 0. Thus, [B]
 ∈ (A⊥ ∧ B)⊥ = A ∨ B⊥, and moreover, [B]
 ∈ (A ∨ B⊥) ∧
B = A& B . We conclude that [B]A is a subspace of A& B , and therefore [B]A ⊆
A& B .

Let � ∈ ([B]A)⊥. We calculate that for all 
 ∈ A, 〈
|[B]�〉 = 〈[B]
|�〉 = 0. Thus,
[B]� ∈ A⊥, and moreover, [B]� ∈ A⊥ ∧ B . Of course (1 – [B])� ∈ B⊥, and hence � =
[B]� + (1 – [B])� ∈ (A⊥ ∧ B) ∨ B⊥ = ((A ∨ B⊥) ∧ B)⊥ = (A& B)⊥. We conclude
that ([B]A)⊥ ⊆ (A& B)⊥, and therefore A& B = (A& B)⊥⊥ ⊆ ([B]A)⊥⊥ = [B]A.
Altogether, we have that A& B = [B]A.

Lemma A.2. For all closed subspaces A1, ... , An, and B of H, we have that A1 & ··· &
An ≤ B is equivalent to [An] ··· [A1]H ⊆ B .

Proof. In the case n = 0, the equivalence holds as a consequence of the convention
that A1 & ··· & An = H. In the case n = 1, the equivalence holds because [A1]H = A1.
For the remaining cases, we argue by induction. Let n ≥ 1, and assume that for all
closed subspaces A1, ... , An, and B of H, we have that A1 & ··· & An ≤ B is equivalent
to [An] ··· [A1]H ⊆ B . Then, for all closed subspaces A1, ... , An, An+1, and B of H, we
reason that

A1 & ··· & An & An+1 ≤ B ⇐⇒ A1 & ··· & An ≤ An+1 → B
⇐⇒ [An] ··· [A1]H ⊆ An+1 → B ⇐⇒ [An] ··· [A1]H ≤ An+1 → B

⇐⇒ [An] ··· [A1]H & An+1 ≤ B ⇐⇒ [An+1][An] ··· [A1]H ≤ B
⇐⇒ [An+1][An] ··· [A1]H ≤ B ⇐⇒ [An+1][An] ··· [A1]H ⊆ B,

where the first and fourth equivalences follow by the adjunction between the Sasaki
projection and the Sasaki arrow [15] and the fifth equivalence follows by Proposition
A.1. Therefore, by induction on n, A1 & ··· & An ≤ B if and only if [An] ··· [A1]H ⊆ B
for all closed subspaces A1, ... , An, and B of H.
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Theorem A.3. Let A1, ... , An, and B be closed subspaces of H. Then, the following are
equivalent:

(1) If a physical system that is modeled by H is prepared in any initial state and the
propositions that are modeled byA1, ... , An are measured to be true in that order,
then the proposition that is modeled by B is true with probability one.

(2) A1 & ··· & An ≤ B .

Proof. If the physical system is in vector state 
 and the proposition modeled by A
is verified to be true, then after this measurement, the physical system is in vector state

′ = (‖[A]
‖)–1[A]
. The scalar ‖[A]
‖ is the square-root of the probability that the
proposition modeled by A true in vector state 
, and thus it is necessarily nonzero if
that proposition can be verified.

Let 
0 be the initial vector state of the system. For each i ∈ {1, ... , n}, let pi be the
probability that the propositions modeled by A1, ... , Ai can be verified in that order,
and let 
i be the vector state of the system after such a verification. By a straightforward
inductive argument, pi = ‖[Ai ] ··· [A1]
0‖2 and 
i = p–1/2

i [Ai ] ··· [A1]
0 if pi �= 0.
In particular, pn = ‖[An] ··· [A1]
0‖2 and 
n = p–1/2

n [An] ··· [A1]
0 if pn �= 0. Thus,
condition (1) is equivalent to the condition that for each vector state 
0, if
‖[An] ··· [A1]
0‖2 �= 0, then ‖[An] ··· [A1]
0‖–1[An] ··· [A1]
0 ∈ B .

We obtain a sequence of equivalent conditions:

• condition (1);
• for each unit vector 
0 ∈ H, if ‖[An] ··· [A1]
0‖2 �= 0, then

‖[An] ··· [A1]
0‖–1[An] ··· [A1]
0 ∈ B ;

• for each unit vector 
0 ∈ H, if ‖[An] ··· [A1]
0‖2 �= 0, then [An] ··· [A1]
0 ∈ B ;
• for each unit vector 
0 ∈ H, [An] ··· [A1]
0 ∈ B ;
• [An] ··· [A1]H ⊆ B ;
• condition (2).

The last equivalence follows by Lemma A.2. Thus, the theorem is proved.

§B. Appendix. This appendix addresses readers who are skeptical of the claim that
SOM is a system of natural deduction. Before reading this appendix, such a reader is
encouraged to make their own assessment of the essential features of natural deduction
and to compare this assessment to the discussion in [75].

“A fundamental part of natural deduction, and what (according to most writers on
the topic) sets it apart from other proof methods, is the notion of a ‘subproof”’ [75,
abs.]. A subproof begins with an assumption and has the form of a stand-alone proof
in which this assumption plays the same role as other asserted formulas. Previously
derived subproofs serve to justify assertions just as previously asserted formulas do.
For example, a subproof of � from assumption φ justifies the assertion of φ→ �.
Similarly, a subproof of � from assumption φ and a subproof of � from assumption
¬φ together justify the assertion of �; this is the principle of excluded middle.

Natural deduction can be presented in a number of ways, including as a sequent
calculus [75, sec. 4]. Gentzen’s presentation of natural deduction as a sequent calculus
[20] is much like SOM . Each assertion in a natural deduction is recorded as a sequent
whose consequent is the asserted formula and whose antecedent is the sequence of
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assumptions that have been made but not discharged. The significance of the weakening
rule, which is a rule of Gentzen’s system and which is admissible inSOM by Proposition
3.1, is that any proof may be a part of any subproof because every valid inference is
valid with additional assumptions.

A restrictive conception of natural deduction might exclude sequent calculuses, but
even the most restrictive conception must include deductive systems in the style of
Fitch [16]. Fitch modified the notation of Jaśkowski’s natural deduction system [39],
which is contemporary with Gentzen’s first natural deductive systems [18] and which is
clearly more faithful to deduction as it is practiced by mathematicians. The deductive
system SOM may be presented in the style of Fitch without difficulty. For illustration,
the cut rule and the paste rule would be presented as follows:

m φ

i φ

j �

� cut, m, i–j

m φ

n �

o φ

� paste, m, n, o

The greatest departure of SOM , in this presentation, from the standard system
of Fitch is that the reiteration rule is more restricted. Recall that in Fitch’s system
a previously asserted formula may be reiterated after any number of additional
assumptions have been made. Such a reiteration rule is not sound for orthomodular
logic. The paste rule is nothing but a restricted reiteration rule that is sound for
orthomodular logic. However, properly considered, the reiteration rule in Fitch’s
system is not unrestricted either: no formula can be reiterated after one of its
assumptions has been discharged.

Another apparent departure ofSOM from Fitch’s system is that some primitive rules
allow an assertion after one or more additional assumptions, e.g., the →-elimination
rule:

m φ→ �

n φ

� →-elimination, m, n

This is only an apparent departure from Fitch’s system because the reiteration rule is
such a rule. Furthermore, such rules are fully compatible with the author’s conception
of natural deduction. Nevertheless, it is possible to adjust the primitive rules of SOM
in such a way as to leave special cases of reiteration as the only primitive rules with this
property. It is a short exercise to show that SOM is equivalent to the sequent calculus
given in Figure 4. It too may be presented in the style of Fitch.

In natural language, the primitive rules of this natural deduction system are as
follows: After assuming φ, you may reiterate any formula of the form φ ∧ �, ¬φ, or
φ→ �. If you have proved φ after assuming φ and then � and you have proved �
after assuming � and then φ, then you may infer �→ (φ→ �) from φ→ (�→ �).
The other primitive rules are entirely familiar.
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Γ, φ � φ

Γ � φ ∧ �
Γ, φ � φ ∧ �

Γ � φ→ �
Γ, φ � φ→ �

Γ � ¬φ
Γ, φ � ¬φ

Γ, φ, � � φ Γ � φ→ (�→ �) Γ, �, φ � �
Γ � �→ (φ→ �)

Γ � φ Γ � �
Γ � φ ∧ �

Γ � φ ∧ �
Γ � φ

Γ � φ ∧ �
Γ � �

Γ, φ � �
Γ � φ→ �

Γ � φ Γ � φ→ �
Γ � �

Γ, φ � � Γ,¬φ � �
Γ � �

Γ � φ Γ � ¬φ
Γ � �

Fig. 4. A minor reformulation of SOM .

§C. Appendix. In this appendix, as in [44], we write Rel(X1, ... ,Xn) for the complete
orthomodular lattice of all binary relations X1 × ··· × Xn → 1, where X1, ... ,Xn are
quantum sets and (qRel,×, 1) is the symmetric monoidal category of quantum sets and
binary relations. We also write � · �q for the interpretation of nonduplicating formulas
and terms as it is defined in [44].

Lemma C.1. Let X , Y , and Z be quantum sets, let F be a function X → Y , and let R
be a binary relation Y × Z → 1. Then,

sup{P ∈ Rel(X ) |P ×�Z ≤ R ◦ (F × IZ)} = sup{Q ∈ Rel(Y) |Q ×�Z ≤ R} ◦ F.

Proof. LetS1 = sup{P ∈ Rel(X ) |P ×�Z ≤ R ◦ (F × IZ)}, and letS2 = sup{Q ∈
Rel(Y) |Q ×�Z ≤ R}. We are to prove that S1 = S2 ◦ F . By the definition of
S2, we have that S2 ×�Z ≤ R, and thus we also have that (S2 ◦ F ) ×�Z =
(S2 ×�Z) ◦ (F × IZ) ≤ R ◦ (F × IZ). Therefore, S2 ◦ F ≤ S1 by the definition of
S1. Similarly, by the definition of S1, we have that S1 ×�Z ≤ R ◦ (F × IZ), and
thus we also have that (S1 ◦ F †) ×�Z = (S1 ×�Z) ◦ (F † × IZ) ≤ R ◦ (F × IZ) ◦
(F † × IZ) = R ◦ ((F ◦ F †) × IZ) ≤ R ◦ (IY × IZ) = R because F ◦ F † ≤ IY by the
definition of a function between quantum sets. Hence S1 ◦ F † ≤ S2 by the definition
of S2. Therefore, S1 = S1 ◦ IX ≤ S1 ◦ F † ◦ F ≤ S2 ◦ F because IX ≤ F † ◦ F by the
definition of a function between quantum sets. Altogether, we have that S1 = S2 ◦ F ,
as desired.

We make two observations for the next proof: First, [44, proposition 2.3.3], which
relates �x |φ(x) �q to �x′ |φ(x) �q when the variables of x all appear in x′, applies to
nonduplicating formulas as well as to primitive formulas. Indeed, a nonduplicating
formula is interpreted by first translating it into a primitive formula [44, sec. 2.7].
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Second, �x | t(x) �q is a function for any term t(x) by a simple inductive argument that
applies [44, lemma 3.5.3] at each step.

Proposition C.2. Let t(x1, ... , xn) be a nonduplicating term, and letφ(y, z1, ... , zm) be
a nonduplicating formula. LetX1, ... ,Xn be the sorts ofx1, ... , xn, respectively, letY be the
sort of y, and let Z1, ... ,Zm be the sorts of z1, ... , zm, respectively. Let x = (x1, ... , xn),
and let z = (z1, ... , zm); let X = X1 × ··· × Xn, and let Z = Z1 × ··· × Zm. Assume that
the sort of t(x1, ... , xn) is Y and that x and z have no variables in common. Then,

�x, z |φ(t(x1, ... , xn), z1, ... , zm) �q = �y, z |φ(y, z1, ... , zm) �q ◦ (�x | t(x1, ... , xn) �q × IZ).

Proof. We prove the proposition by induction on the formula φ(y, z) for a fixed
term t(x). The base case, when φ(y, z) is an atomic formula, follows from Lemmas
3.5.2 and 3.5.3 of [44] with Propositions 2.3.3 and 3.1.1 of [44] serving to handle the
expansion and permutation of contexts. The proof consists of tedious bookkeeping
that differs only superficially from the bookkeeping for classical predicate logic, and it
is omitted.

If φ(y, z) is of the form ¬�(y, z), then we argue that

�x, z | ¬�(t(x), z) �q = ¬�x, z |�(t(x), z) �q = ¬(�y, z |�(y, z) �q ◦ (�x | t(x) �q × IZ))

= ¬�y, z |�(y, z) �q ◦ (�x | t(x) �q × IZ) = �y, z | ¬�(y, z) �q ◦ (�x | t(x) �q × IZ),

where the second equality follows by the induction hypothesis and the third equality
follows by [43, theorem B.8]. We argue likewise if φ(y, z) is of the form �1(y, z) ∧
�2(y, z), if it is of the form�1(y, z) ∨ �2(y, z), or if it is of the form�1(y, z) → �2(y, z).

If φ(y, z) is of the form (∀zm+1)�(y, z, zm+1) for some variable zm+1 of some sort
Zm+1, then we argue that

�x, z | (∀zm+1)�(t(x), z, zm+1) �q

= sup{P ∈ Rel(X1, ... ,Xn,Z1, ... ,Zm) |P ×
Zm+1 ≤ �x, z, zm+1 |�(t(x), z, zm+1) �q}
= sup{P ∈ Rel(X1, ... ,Xn,Z1, ... ,Zm)

|P ×
Zm+1 ≤ �y, z, zm+1 |�(y, z, zm+1) �q ◦ (�x | t(x) �q × IZ × IZm+1 )}
= sup{Q ∈ Rel(Y,Z1, ... ,Zm) |Q ×
Zm+1 ≤ �y, z, zm+1 |�(y, z, zm+1) �q}

◦ (�x | t(x) �q × IZ)

= �y, z | (∀zm+1)�(y, z, zm+1) �q ◦ (�x | t(x) �q × IZ),

where the second equality follows by the induction hypothesis and the third equality fol-
lows by Lemma C.1, which is applied to the function F = �x | t(x) �q × IZ : X × Z →
Y ×Z and the binary relation R = � y, z, zm+1 |�(y, z, zm+1) �q : X × Z × Zm+1 → 1.
We argue likewise if φ(y, z) is of the form (∃zm+1)�(y, z, zm+1).

By induction over the class of all nonduplicating formulasφ(y, z) for arbitrary tuples
z, we conclude that the claimed equality holds universally.
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