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Abstract
Indoor positioning systems (IPS) are essential for mobile robot navigation in environments where global posi-
tioning systems (GPS) are unavailable, such as hospitals, warehouses, and intelligent infrastructure. While current
surveys may limit themselves to specific technologies or fail to provide practical application-specific details, this
review summarizes IPS developments directed specifically towards mobile robotics. It examines and compares a
breadth of approaches that vary across non-radio frequency, radio frequency, and hybrid sensor fusion systems,
through the lens of performance metrics that include accuracy, delay, scalability, and cost. Distinctively, this work
explores emerging innovations, including synthetic aperture radar (SAR), federated learning, and privacy-aware AI,
which are reshaping the IPS landscape. The motivation stems from the’ increasing complexity and dynamic nature
of indoor environments, where high-precision, real-time localization is essential for safety and efficiency. This lit-
erature review provides a new conceptual, cross-border pathway for research and implementation of IPS in mobile
robotics, addressing both technical and application-related challenges in sectors related to healthcare, industry, and
smart cities. The findings from the literature review allow early career researchers, industry knowledge workers, and
stakeholders to provide secure societal, human, and economic integration of IPS with AI and IoT in safe expansions
and scale-ups.

1. Introduction
In an increasingly automated and intelligent world, mobile robots are transforming industries, enhanc-
ing services, and redefining human-machine interactions, from optimizing logistics in warehouses to
providing critical assistance in healthcare scenarios. These adaptable machines drive far-from-basic
advancements across all fields [1, 2]. The indoor positioning system (IPS) supports all of this. Unlike
outdoor robots that rely on global navigation satellite systems (GNSS), mobile robots operating indoors
must deal with serious challenges – they must navigate complex, dynamic, and often-cluttered envi-
ronments with precise and reliable performance, multiplied by the need for scalable and effective
IPS solutions. Therefore, the steady evolution of these systems creates great promise for intelligent
automation inside industries wherein traditional navigation systems would fail [3, 4].

Indoor positioning systems represent a group of technologies that estimate the location and orienta-
tion of a mobile robot with respect to its environment. Indoor positioning systems support increasing
robots’ autonomy and providing various applications in manufacturing, retail, public safety, and smart
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infrastructure. However, the series involved in achieving reliable indoor positioning is filled with chal-
lenges [5, 6]. Obstruction by signals, multi-path effects, variations in environmental conditions, and
differences in deployment scenarios all create an extremely challenging scope for researchers and engi-
neers alike. Such constraints drove IPS from simple systems based on visual markers or radio frequency
tags toward high-level solutions that involve fusion of multiple sensors, machine-learning algorithms,
and advanced computational models [7, 8]. One of IPS’s most attractive benefits is its interdisciplinary
nature that bridges robotics, computer vision, signal processing, and artificial intelligence (AI). For
example, the Light Detection and Ranging (LiDAR) and camera-based simultaneous localization and
mapping (SLAM) systems utilize the latest vision algorithms to create detailed maps of their environ-
ment so that robots can traverse it very precisely [9, 10]. Also, some radio-frequency technologies,
such as Ultra-Wideband (UWB) Radio-Frequency Identification (RFID), have led to the rise of low-
cost, scalable solutions becoming more common in logistics and retail environments. However, within
these approaches lie the respective advantages and disadvantages, leading to a constant motivation for
innovation, allowing for the conclusion of unsolved problems [11].

The demand for indoor localization is more challenging than outdoor localization due to the’ gener-
ally rather dynamic and unpredictable nature of indoor environments. While GPS signals can operate
comparatively smoothly in open spaces, their effectiveness in indoor spaces is severely restricted due
to walls, ceilings, and other structural hindrances [12–14]. Somewhat increased density in objects and
human activity in indoor environments requires Indoor Positioning Systems (IPS) to account for constant
changes in the surrounding environment. Hence, real-time accuracy becomes an essential requirement
for IPS, because any delay or errors in localization may cascade problems in navigation and task execu-
tion. Examples in healthcare justify the demand for high precision. In a hospital, mobile robots delivering
medications or sterilized equipment must navigate winding ways and avoid colliding with patients and
staff members. In industrial settings, robots maneuver between racks in aisles and need centimeter-level
accuracy for proper work and safety. Thus, these examples show that IPS serves not just as facilitators of
robotic mobility but are interdependent components toward ensuring the success of many applications
[15–17].

The evolution of IPS merges technological advances from various domains. Vision-based systems,
for example, have seen a remarkable transformation by incorporating deep learning models capable of
semantic segmentation and scene recognition. Neural networks allow the robot to build a map of the
environment and identify and categorize objects inside the environment, thus providing the robot with
some degree of contextual awareness [18, 19]. This capability is highly valuable when interacting with
specific objects, such as in industrial tasks like picking and placing. On the other hand, radio-based
systems have tapped into innovations in signal processing and hardware miniaturization. Cost-effective
UWB and Bluetooth systems have the potential to be developed in high quantities and deployed in many
environments, such as retail shops and airports. Although scalability and inexpensive installation make
them attractive, many are left wanting due to high electromagnetic activity, causing interference in their
operations and degrading signals [20]. To solve these limitations, researchers are working on hybrid
systems incorporating radio-based localization that work together with vision or inertial measurement
units (IMUs) to boost accuracy and reliability. New technologies, such as synthetic aperture radar (SAR)
and LiDAR, are expanding the scope of what IPS might accomplish. While SAR is traditionally used in
aerospace and defense, it has undertaken new applications in mobile robotics to support high-resolution
mapping in low-visibility environments [21]. LiDAR continues to underpin indoor navigation, providing
complex 3D maps that robots can navigate precisely. However, the prohibitive cost and computational
complexity of LiDAR sensors are a key barrier stopping wide adoption of these systems, particularly in
cost-saving applications [22–25].

Although new technologies have pushed the limits of the performance of IPS, this development is
not without its challenges. One of the main issues is balancing accuracy, scalability, and cost [26, 27].
High-precision systems like LiDAR and SAR frequently entail huge expenses and heavy demands for
processing power, rendering them impractical for many applications. On the other hand, less expen-
sive solutions, often based on Wi-Fi or Bluetooth, have poor accuracy and reliability, especially in

https://doi.org/10.1017/S0263574725101872 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101872


Robotica 3

environments with heavy interference or mobile obstacles [28]. Other challenges include the integration
of multiple sensing modalities. Hybrid systems, which blend visual, inertial, and radio-based sensors,
hold great promises to mitigate the limitations of each individual technology. Nevertheless, seamless
integration relies on sophisticated sensor fusion algorithms to process and reconcile data from impos-
sibly disparate sources in real time [29]. This is a nontrivial task, particularly because each sensor type
has its own noise characteristics, biases, and latency issues.

The role of intelligent machines in overcoming these challenges cannot be overstated. Machine learn-
ing algorithms, primarily built on foundation drivers such as reinforcement and federated learning,
introduce new capabilities in the IPS field. Such systems can leverage past data to adjust to chang-
ing environments, thus improving their robustness and accuracy further down the line. In the case of the
federated learning models, multiple collaborator machines can work together on improving the localiza-
tion ability while assuring data privacy, a high consideration in any IBM application, such as healthcare
and retail [30–32]. The evolution of IPS will show more possible opportunities for changes in the econ-
omy in industries and redefine their relations with humans via robots [33]. The synergy between IPS
and the greater IoT ecosystem could lead to possibilities we might not have imagined before, where
robots, innovative technologies, and even humans collaborate on this [34–36]. In the case of smart cities,
IPS would enable delivery robots to work cooperatively to find optimal routes based on current traffic
and environmental data; similar ideals extend to healthcare, wherein IPS, along with wearable devices,
could establish patient monitoring and support functions at an advanced level [37, 38]. With that aside,
however, there is still much work to do. IP implementation must be established safely and ethically, pro-
tecting data privacy and security. Moreover, to push the widest possible entry into the industry and ease
coexistence with others, measures must be taken to develop standards and benchmarks to evaluate IPS
performance.

In contrast to existing literature, which predominantly offers technology-specific or siloed perspec-
tives, this review provides a comprehensive and integrative synthesis of Indoor Positioning Systems
(IPS) explicitly tailored to the needs of mobile robotics. Prior works, such as Rekkas et al. [39] focus
narrowly on AI methodologies in Visible Light Positioning (VLP) systems, overlooking other modali-
ties like SLAM or SAR, while Liu et al. [40] discuss indoor VLC systems in a generic context without
technical depth on mobile robot adaptability or cross-modal fusion. Similarly, Panigrahi et al. [41] offer
a structured review of localization strategies using SLAM and probabilistic methods but exclude recent
advancements in AI, edge computing, or federated architectures. Tan et al. [28] address RF-based IPS
techniques but do not cover non-RF solutions and lack a robotic-centric outlook. Huang et al. and Yin et
al. explore multiple IPS methods for mobile robots. Yet, their discussions are limited to classic methods
and do not evaluate emerging technologies like synthetic aperture radar (SAR), real-time sensor fusion,
or the implications of privacy-aware AI systems [21, 42]. Other articles, including those by Ullah et al.
and Solanes & Gracia (2025), emphasize broad themes such as trajectory control and localization theory
but provide neither empirical performance comparisons nor application-specific breakdowns in health-
care or public infrastructure [12, 43]. This review fills these critical gaps by (i) unifying non-RF, RF,
hybrid, and AI-powered IPS technologies under one framework; (ii) offering comparative performance
metrics such as accuracy, latency, cost, and scalability; (iii) highlighting underexplored technologies like
SAR, federated learning, and cross-modal sensor fusion; and (iv) mapping their real-world applicability
in healthcare, industrial automation, education, and smart cities. By addressing both the technical and
application layers, this work delivers a uniquely balanced, forward-thinking roadmap for innovation in
mobile robot localization, offering relevance to both early-career researchers and industry professionals.
This review is structured into thematic sections to guide readers through this multifaceted topic. This
review is divided into sections that build on each other logically and are intended to systematically intro-
duce the IPS technologies applicable to mobile robotics. Section 2 defines and discusses standardized
performance metrics and benchmarking tools applicable to evaluating IPS, allowing for an objective
comparison base. Section 3 comprehensively categorizes IPS technologies, starting with non-RF cate-
gories, such as IMUs, LiDAR, infrared, VLC, and SLAM. Section 4 discusses the RF-based methods
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of IPS, namely Wi-Fi, Bluetooth, RFID, and UWB, with accompanying hybrid system discussions.
Finally, Section 5 identifies major ongoing issues and research gaps such as trade-offs for accuracy vs
cost, difficulty with sensor fusion, and privacy.

2. Performance metrics and benchmarking in IPS
Standardized performance metrics are critical for assessing and comparing different IPS technologies.
Terms such as “accuracy,” “reliability,” and “efficiency” are frequently referenced in IPS literature; how-
ever, they are often left undefined or are used inconsistently. This section aims to clarify some essential
metrics used to evaluate IPS performance and describe how they are measured and interpreted in prac-
tice. (1) Accuracy is one of the more important metrics to consider when assessing IPS performance.
Accuracy refers to how closely an estimated position corresponds to the ground truth (actual position).
It is generally expressed in meters or centimeters and computed as the Euclidean distance between
estimated and true coordinates. In most real-world applications, anything less than one meter of accu-
racy is considered sufficient (like with industrial warehouses); however, sub-10-centimeter accuracy is
often recommended for practical applications in medical robots, UAVs, or other precision healthcare
tasks. Precision is another metric that is closely associated with accuracy. Unlike accuracy, (2) precision
concerns the repeatability of position estimates under the same or similar environmental conditions.
Precision is generally measured by the variance or standard deviation of position estimates. Significant
precision in IPS performance means that the estimations are stable, and in static or semi-dynamic envi-
ronments, little drift can result in compounding errors over time [44, 45]. (3) Reliability, however, is
the capability of the system to provide accurate localization consistently for a duration of time and over
a range of conditions. The reliability of the system is usually displayed as a percentage of the time the
system was localized within a set error window (e.g., <50 cm error) during operation; for example, if the
system was localized within a set window 80% of the time, the reliability value is typically considered
80%. (4) Latency (response time) refers to the delay from when a positioning request is made until a
valid position estimate is obtained. Latency is expressed in milliseconds, and with robotic navigation
systems, it is usually expected to be <100 msto operate safely and efficiently in a real-time scenario.
Infrared and VLC systems provide a lower latency than interfacing with a cloud-based AI-enhanced
IPS. (5) Scalability is an important consideration, especially in environments where multi-user support
or a much larger coverage area is necessary. Scalability denotes the IPS’s ability to maintain performance
as the number of tracked objects or the covered area increases. Scalability can be quantified using objec-
tive parameters by monitoring any performance degradation with increasing load or listed subjectively
by analyzing the system architecture [46]. (6) Another salient performance metric is coverage area; the
maximum extent of indoor space in which the IPS can yield reliable indoor operation must be defined
in pixels to square meters. Coverage area varies wildly between potential IPS technologies: For exam-
ple, there are IPS solutions available or technically feasible in very confined spaces like hospital rooms,
while there are some technologies that can service a bigger coverage area, such as warehouses, freight
terminals, and shopping malls. Many IPS have distinct performance metrics that researchers and prac-
titioners do not consider when evaluating routine applications. However, researchers and practitioners
can consistently and comparably assess the performance of indoor positioning systems, using a selec-
tion of benchmarks and datasets. Benchmarks include these frameworks: EvAAL (evaluation of AAL
systems) has existing benchmark test environments, the UJIIndoorLoc, a dataset used in Wi-Fi finger-
printing, and room-related IPS datasets used for spatial awareness, based on brochure, room Alive, or
orbit data, are popular datasets for evaluating camera-based systems. In robotics IPS, SLAM Bench
(benchmarking using simultaneous Localization and Mapping) or ROS (robotics operating system, or
more specifically, map-based platforms) should become a standard benchmark for evaluation to consider
and evaluate real-time performance, accuracy, energy efficiency, and consumption consideration under
the assumptions of scale-configurable environments [47]. By defining and framing performance metrics
of accuracy, precision, reliability, latency, scalability, energy consumption, and coverage, this section
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Table I. Summary of standard performance metrics for IPS [44–47].

Metric Definition Unit of
measure

Importance in IPS Typical
thresholds

Accuracy Closeness of
estimated location to
actual ground truth

meters or
centimeters

Critical for precise
navigation in
healthcare, robotics

<1 m (general);
<10 cm (surgical
robots)

Precision Repeatability of
position estimates
under similar
conditions

Variance, Std.
Deviation

Ensure consistency;
reduces cumulative
error

Low variance
preferred

Reliability The system’s ability
to maintain accuracy
over time and
conditions

% Time within
error window

Key for performance
consistency in
dynamic settings

≥80% within the
specified range

Latency Time delay from
request to position
estimation

Milliseconds
(ms)

Crucial for real-time
robotic response

<100 ms ideal

Scalability Ability to handle the
increased number of
devices or areas
without performance
loss

Qualitative /
Stress tests

Necessary for smart
buildings, multi-robot
systems

Performance
degradation %
under load

Coverage Physical space over
which IPS is effective

Square
meters/pixels

Helps determine
feasibility for larger
installations

Context-specific

Energy
efficiency

Power required to
operate the IPS
modules

Joules, Watts Important for mobile
devices and wearables

Lower is better

better conveys the technical complexity of evaluating IPS. Researchers and practitioners can weigh and
select positioning systems when and where they are relevant to environments and application-specific
situations. A summary of these performance metrics is provided in Table I.

3. Classification of indoor positioning systems
This section describes how IPS classified them into non-radio-frequency, radio frequency, and hybrid
systems. This classification highlights the technological diversity in IPS and various capabilities and
limitations. The section compares LiDAR to Visual SLAM and Wi-Fi to UWB and compares their
performances across different environments. Furthermore, it elaborates on hybrid systems that combine
various technologies into one, gaining accuracy and efficiency by showing how and where they work
in real applications. This extensive classification can justify the potential. The exposition provides a
foundation for understanding India’s complex situation and the prospects of IPS technologies.

3.1. Non-radio frequency methods
This section focuses on non-radio-frequency methods, technologies that do not rely on radio signals for
indoor positioning. Such methods occupy a conspicuous role in scenarios whereby the radio frequency-
based systems experience difficulties – either due to interference or regulation restrictions.
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3.1.1. Inertial measurement units (IMU)
Blind and moving around a room is how the IMU works for a robot. IMUs are electronic devices that
fit within robots and can sense and even interpret their motion without external help, including signals
from radio waves or light. An IMU comprises two components: an accelerometer that measures the
acceleration, such as how fast the robot goes forward or backward, and a gyroscope that mostly senses if
the robot tilts or turns. Some of these systems have a magnetometer as one of their components, which
acts as a compass to determine the directional orientation [48, 49]. Together, all this provides information
crucial for robots to navigate indoor spaces. IMUs are simple to understand. An accelerometer senses
if a robot is moving or not in the forward, backward, upward, or downward directions, quite like the
feeling a person gets from the acceleration and deceleration of a vehicle [50, 51].

By combining sophisticated perception capabilities, IMUs are changing the playing field for indoor
navigation by tackling the complex technical challenges of localization. The ENDORSE project by
Ramdani et al. is a prime example (Figure 1A). The ENDORSE project harnesses the accuracy of
SLAM and fuses wireless sensors to create infrastructure-less robotic navigation in hospital scenarios.
The ENDORSE project uses a dynamic modular architecture built on HLAA-compliant cloud infras-
tructure to carry out modular tasks such as UV sanitization or diagnostics, which can be dynamic and
carry out hybrid tasks [52]. Building on this, Cheng et al. (Figure 1B) proposed a system combining
binocular vision with IMU data, where an asynchronous Kalman Filter fuses visual corner detection
with inertial data to reduce drift, ensuring high-precision navigation even in low-texture environments
[53]. This evolution continues with Yan et al. (Figure 1C), who integrated LiDAR and IMU data using
Kalman filtering to enhance positioning accuracy in dynamic or occluded spaces [54]. Shifting focus to
rugged construction sites, Ibrahim et al. (Figure 1D) introduced a jerk-based IMU localization approach
that uses triple jerk integration and barometric sensors for precise, infrastructure-free tracking [55].
Cramer et al. (Figure 1E) have benchmarked low-cost IMUs for AGVs for scalable industrial applica-
tions to demonstrate performance like premium IMUs [56]. The use of these low-cost IMUs is now being
extended to more unconventional applications, as Cole et al. (Figure 1F) have shown the use of IMUs
for biobotic insects in disaster robotics, where accurate path reconstruction was performed via machine
learning. Both cases illustrate the evolution and versatility of IMUs in contemporary navigation systems
[57].

From healthcare to industrial automation and disaster response, these case studies underscore the
transformative potential of IMUs when integrated with complementary technologies. Together, they
vividly picture how precise indoor navigation systems reshape diverse industries. To consolidate the
insights gained from the diverse applications of IMUs across various domains, Table II provides a com-
prehensive comparative analysis of the discussed case studies. This table captures each study’s unique
contributions, strengths, limitations, and overarching trends, offering a clear perspective on the evolution
and versatility of IMU-based systems. The table complements the detailed narratives by summarizing
the technical nuances and practical applications, ensuring a holistic understanding of these innovative
approaches.

3.1.2. Visible light communication (VLC)
VLC holds transformative potential for indoor remote mobile robotics systems, providing reliable, high-
speed communication, and precise positioning, which are essential for autonomous navigation and
operations. VLC uses LED lights as transmitters, modulating their intensity to encode data, which
is then received by robots equipped with photodetectors or image sensors. This dual functionality of
LEDs for illumination and communication makes VLC an energy-efficient and cost-effective solution
for enhancing the capabilities of indoor robotics [64]. VLC is becoming a very powerful technology
for high-precision indoor positioning, especially in areas with limitations of traditional RF systems. Li
et al. (Figure 2A) designed a VLC system using smart LED lamps with Bluetooth controls and LED-
ID algorithms with a centimeter-level (sub-2.14 cm) accuracy. They supported robot speeds of up to
20 km/h. This makes it perfect for fast-paced, dynamic indoor environments like office spaces [65]. To
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Table II. Comparative analysis of IMU-based localization and application case studies.

Ref.
Nos.

Focus Strengths Limitations Key
techniques

Applications Overarching
trends

[58] Using deep
neural
networks for
reducing drift
in low-cost
IMUs for
indoor
odometry

Learns motion
characteristics
and corrects
systematic
errors; adaptable
to dynamic
motions

Requires
extensive
training data
for neural
networks; com-
putationally
intensive

Deep neural
networks,
sequential
learning,
trajectory
reconstruction

Indoor
pedestrian
navigation,
retail spaces,
and dynamic
environments

Deep learning
techniques are
gaining
prominence for
trajectory
estimation and
drift correction.

[59] Pedestrian dead
reckoning with
chest-mounted
IMU and
map-matching
for 3D
navigation

Accurately
computes step
length and
direction;
integrates with a
map-matching
algorithm

Chest-mounted
position may
not suit all
scenarios;
dependent on
initial
calibration

Step-length
estimation,
chest-mounted
IMU, particle
filtering

Multifloor
navigation,
emergency
evacuations,
and large
buildings

Chest-mounted
IMUs introduce
new possibilities
for upper-body
motion tracking.

[60] Simultaneous
indoor
localization
and mapping
using IMU and
BLE beacon
fusion

Reduces
configuration
effort; adapts to
dynamic
environments;
highly accurate
localization

It depends on
the deployment
of BLE
beacons; less
suitable for
large, open
spaces

Kalman filters,
BLE beacon
data fusion
with PDR

Smart homes,
healthcare
monitoring,
and indoor
navigation

Hybrid solutions
combining IMU
and
environmental
sensors are
emerging as
robust systems.

[61] Estimating
human joint
angles using
IMUs with
UKF, validated
with a robot
arm

Integrates
anatomical
constraints and
zero-velocity
updates to
reduce sensor
drift

Performance
degrades with
prolonged use
due to sensor
drift

Unscented
Kalman Filter,
Kinematic
modeling,
sensor drift
modeling

Clinical
motion
analysis,
rehabilitation,
and wearable
technology

Advanced
filtering
techniques and
anatomical
constraints are
improving IMU
precision.

[62] Combining
IMU data with
IP camera
visual
measurements
for improved
indoor
positioning

Reduces
positioning
errors in dense
multipath
scenarios;
leverages visual
detection and
IMU fusion

Requires
fine-tuning of
Faster R-CNN;
dependent on
stable camera
networks

Extended
Kalman Filter,
Faster R-CNN,
Monocular
Vision
Relatively
Measuring

Indoor
navigation,
retail
monitoring,
and smart
cities

Incorporating
visual data into
IMU systems is
an effective way
to enhance
indoor
localization.

[63] Assessing IMU
accuracy with
industrial
robots under
various
dynamic
conditions

Provides robust
validation
protocol;
accurate in
electromagnetic
noise-prone
environments

Restricted to
controlled
settings; less
applicable for
free-form
environments

Kalman filter,
complementary
filter, gradient
descent filter

Validation of
IMU-based
applications
in controlled
lab
environments

Comprehensive
validation
methods are
critical for
establishing
IMU accuracy in
dynamic
contexts.
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Figure 1. (A) The development of infrastructure-less navigation for healthcare logistics, taken from
ref. [52], with the permission of IEEE. (B) Binocular vision and IMU-based system for GPS-denied
environments, taken from ref. [53], copyright sage publication. (C) indoor mobile robots for naviga-
tion positioning, replicated from ref. [54], copyright Sage Publication. (D) IMU system-based indoor
robots for infrastructure-independent localization, taken from ref. [55], Copyright Elsevier. (E) Low-
and medium-cost IMUs for automated guided vehicles for cost-effective navigation in industrial appli-
cations, taken from ref. [56], Copyright Elsevier. (F) IMU-based system for trajectories in GPS-denied
environments, taken from ref. [57], Copyright MDPI.

elaborate further, Guan et al. (Picture 2B) connected VLC to the Robot Operating System (ROS) for
the TurtleBot3 robots using video tracking and double-lamp positioning combined with an enhanced
version of Camshift–Kalman. The updates from the sensor resolved to an accuracy of 1 cm, with every
update being processed every 0.4 s. This demonstrates how feasible the integration of VLC with ROS
is going forward for robots at a higher level of sophistication [66]. The next area of optimization is
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Figure 2. (A) VLP system for mobile robots for dynamic indoor environments, taken from ref. [65],
Copyright Hindawi. (B) VLC-based localization system for indoor navigation, taken from ref. [66],
copyright arXiv. (C) Two-layer fusion network spanning industrial automation and smart buildings,
taken from ref. [68], copyright IEEE. (D) VLC-based autonomous delivery robot to improve hospi-
tal safety and navigation, taken from ref. [69], copyright IEEE. (E) VLC-based positioning system for
mobile robots in nuclear power plants, taken from ref. [70], copyright axXiv.

machine learning. Tran and Ha [67] (Figure 2C) achieved a 78.26% reduction in processing time and a
52.55% increase in accuracy using noise reduction and dual-function machine learning algorithms. In
another study with at least partially different machine learning methods, Guo et al. introduced a Two-
Layer Fusion Network to further improve localization through the integration of various fingerprints and
classifiers, even when the variation of LED was burdened by variation in power [68]. Then, also applied
in practice, in the health sector, Murai et al. (Figure 2D) outfitted the HOSPI robot with LED mapping
using VLC to support safe navigation of hospitals and avoid hazards on the pathways, for example, stairs
[69]. In the case of nuclear power plants, Xie et al. (Figure 2E) offer a VLC system enabling navigation
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using radiation-shielded LEDs and a dispersion-calibrated algorithm, which enabled accuracy within a
few centimeters in high-radiation environments [70]. The illustrative case studies described above men-
tion the various applications and advantages of VLC technology being utilized in indoor robotic systems,
ranging from precise navigation to robust communications in challenging environments. These conclu-
sions are supplemented by a tabular comparative analysis summarizing a consolidated account of these
findings and what technological contributions can be derived from them.

Moving off from the setup of experimentation and the design achievement from the case studies,
entrapping a whole platform upon which VLC throws in all its bridges inside different applied fields,
employing Table III.

3.2. Non-radio frequency methods
Infrared systems have found extensive application in indoor robotics for communication, navigation,
and detection of obstacles. They are based on invisible infrared light waves, generated from IR LEDs
or similar equipment, and received by photodiodes or infrared cameras. The IR emitter, therefore, sends
some light pulses, modulated to carry information regarding the distance of objects, their positions, or
command instructions. The receiver detects the pulses and translates them into electrical signals, which
are then processed to decode the transmitted data [28]. In navigation, IR systems often rely on triangula-
tion to determine the robot’s position. By measuring the time it takes for infrared signals from multiple
emitters to reach the robot, its location can be calculated with high precision. For obstacle detection, IR
sensors emit light and measure the time it takes for the reflected signal to return or the strength of the
reflection, helping the robot estimate the distance to nearby objects and avoid collisions. Additionally,
infrared communication allows robots to exchange data in environments where radio frequencies might
cause interference. The working principle of IR systems highlights their utility in indoor robotics for
precise navigation, obstacle detection, and secure communication. These fundamental capabilities form
the basis for various innovative applications across diverse environments, from small-scale setups to
large, dynamic spaces [75, 76].

For instance, Raharijaona et al. developed a minimalistic indoor localization system using flickering
infrared LEDs and bio-inspired sensors. By utilizing amplitude-modulated infrared signals, the system
achieves azimuth and elevation angle estimation with an accuracy of 2 cm at a 2 m range and a sam-
pling frequency of 100 Hz. The compact design, 10 cm3 in size, weighing 6 g, and consuming just 0.4
W supports low-cost, energy-efficient operation, as shown in Figure 3 (A). The sensor demonstrated
robustness to diverse lighting conditions, including darkness and flickering light, making it suitable for
GPS-denied environments like indoor robotic applications. Its Arduino-compatible demodulator fur-
ther emphasizes its accessibility and practical use in trajectory tracking [77]. Building on the theme of
dynamic indoor positioning, Awad et al. introduced a collaborative approach to localize access points
(APs) using a swarm of autonomous robots. By collecting non-uniformly distributed RSSI samples,
the system efficiently estimates AP locations without prior knowledge of the environment. Tests con-
firmed its precision and reduced reliance on manual labor, demonstrating scalability and robustness for
complex indoor settings. This solution provides a cost-effective way to address issues like rogue APs
in wireless networks, as shown in Figure 3 (B) [78]. Extending to industrial environments, Cretu-Sîrcu
et al. compared ultrasonic (GoT) and UWB technologies for indoor localization (as shown in Figure 3
(C)). Static tests showed localization errors of 0.3–0.6 m, while dynamic tests with a robot moving at 0.5
m/s revealed GoT’s superior accuracy of 0.1–0.2 m, compared to Pozyx’s 0.3–0.4 m. Although UWB
excelled in mixed LoS/NLoS conditions, GoT was particularly effective for mobile robotics, meeting
industrial accuracy requirements [79]. Finally, Qi and Liu presented a high-accuracy ultrasonic indoor
positioning system (UIPS) based on wireless sensor networks. Using time-of-flight measurements and
synchronized ultrasonic beacons, the system achieved a maximum localization error of 10.2 mm and a
precision of 0.61 mm under line-of-sight conditions (as shown in Figure 3 (D)). Its cost-effective, robust
design ensures suitability for dynamic, cluttered spaces, making it ideal for industrial and healthcare
applications requiring high precision [80]. These studies illustrate the versatility and advancements in
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Table III. Comprehensive analysis of VLC-based indoor robotics systems.

Ref.
Nos.

Focus Strengths Limitations Key
techniques

Applications Overarching
trends

[67] Optimizing
positioning
accuracy and
speed under
multipath
conditions
using ML.

52.55%
accuracy
improvement;
reduces
computational
time by
78.26%.

Prone to noise
and multipath
interference in
some setups.

Noise
reduction, area
division, ML
regression,
and
classification.

Retail,
healthcare,
and dynamic
indoor
positioning.

ML integration
addresses noise
and enhances
efficiency.

[71] Combining
VLP with IMU
data for robust
positioning
under LED
outages.

Maintains
accurate
positioning
even under LED
outages; 2.1 cm
average error.

Dependent on
proper IMU
calibration for
accuracy.

Extended
Kalman Filter
(EKF),
IMU-VLP
fusion.

Indoor
localization
for robotics
in dynamic
or obstructed
spaces.

Sensor fusion
enhances
reliability under
challenging
conditions.

[72] Integrating
VLP and
SLAM with
LiDAR for
precise
navigation and
mapping.

Provides 2.5 cm
accuracy and
robust mapping
in dynamic
environments.

Requires
dense LED
deployment
for
initialization.

LiDAR-
SLAM,
multi-sensor
fusion,
EKF-based
localization.

Warehouse
automation,
long-term
autonomous
navigation.

Combining
VLP with
SLAM
broadens
functionality to
mapping and
navigation.

[73] Combining
pose assistance
and VLP for
enhanced
indoor
positioning in
complex spaces.

It achieves 5 cm
plane and 6 cm
height accuracy,
and it is
cost-effective
and scalable.

Performance
depends on
light source
layout; limited
scalability to
dynamic
environments.

VLP imaging
methods,
LED-ID
recognition,
and
IMU-assisted
pose
estimation.

Urban lifeline
navigation,
underground
and indoor
construction
projects.

Integration of
imaging and
pose assistance
enhances VLP
accuracy for
enclosed
environments.

[74] Using
smartphone
cameras for
VLC-based
indoor
positioning
through the
rolling shutter
effect.

Utilizes existing
smartphones;
robust against
RF interference;
provides high
localization
accuracy.

Susceptible to
noise from
external light
sources;
limited to
compatible
Android
devices.

Rolling shutter
effect, OOK
modulation,
Manchester
encoding for
robust data
decoding.

Smart homes,
retail spaces,
museums,
and
healthcare
facilities.

Smartphone-
based solutions
make VLC
practical and
accessible for
indoor
navigation.

indoor localization technologies across varied applications and environments. These advancements in
indoor localization demonstrate the growing diversity of techniques and technologies tailored to meet
specific application needs, from robotics and industrial automation to healthcare and public spaces.

A detailed comparative analysis of selected IR-based indoor localization systems is provided in
Table IV below. This comparison highlights the focus, strengths, limitations, key techniques, and appli-
cations of each system, offering insights into overarching trends shaping the development of these
innovative solutions.
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Figure 3. (A) Indoor localization system using flickering infrared LEDs and bio-inspired sensors suit-
able for GPS-denied environments like indoor robotic applications, taken from ref. [77], Copyright
MDPI. (B) Swarm of autonomous robots for complex indoor settings, taken from ref. [78], Copyright
MDPI. (C) Mobile robotics based on ultrasonic and UWB technologies for indoor localization, taken
from ref. [79], copyright MDIP. (D) High-accuracy ultrasonic indoor positioning system (UIPS) based
on wireless sensor networks, taken from ref. [80], copyright MDIP.

3.2.1. Light detection and ranging (LiDAR)
LiDAR technology measures distances and creates detailed maps for indoor environments using laser
light. Technology consists of laser pulses that reflect off objects or surfaces, measuring the time the laser
light travels back after reflecting. The measured time-of-flight data are then used to compute the distance
to the object, which helps the robot get a better picture of what is around it. LiDAR systems do either a
sweep or a rotation across a broad area to collect millions of data points, which are integrated together to
create a 2D or 3D map of the environment. Within indoor robotics, it is paramount for navigation, obsta-
cle detection, and mapping [89]. Robots with LiDAR could precisely identify walls, furniture, and other
objects, allowing them to move safely and plan efficient paths in dynamic environments. For example, a
delivery robot in a hospital could use LiDAR to navigate through crowded hallways and avoid obstacles,
such as other people or carts. Furthermore, LiDAR supports SLAM algorithms that enable robots to
build and update maps dynamically while keeping track of where they are within those maps [90].

LiDAR technology has become foundational in indoor robotics due to its precision, low-light oper-
ability, and capability to navigate complex layouts. Despite limitations such as poor performance on
reflective or transparent surfaces and high costs, LiDAR remains crucial for accurate mapping and
autonomous indoor navigation. A key example is the real-time LiDAR-based SLAM system devel-
oped by Zhang et al. (Figure 4A), which utilizes scan-to-map matching and adaptive loop closure to
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Table IV. Comparative study of indoor localization systems based on IR.
Ref.
Nos.

Focus Strengths Limitations Key techniques Applications Overarching
trends

[81] Fusion of
cameras and
infrared sensors
for indoor
positioning.

Achieves
sub-centimeter
accuracy in most
tested positions;
cost-effective and
scalable.

Limited to
specific
environmental
setups; sensitive
to lighting
conditions.

Sensor fusion,
maximum
likelihood
estimation, and
variance
propagation.

Industrial spaces
and smart
environments.

Fusion-based
systems enhance
precision and
robustness in
complex indoor
spaces.

[82] Three-
photodetector
optical sensor for
mobile robot
localization.

10 cm accuracy
at 3 m; robust to
environmental
variations;
low-cost design.

Limited to
small-scale
setups; sensitive
to beacon
placement.

Extended
Kalman filter,
complementary
filter, and
radiometric
modeling.

Mobile robotics
and critical
industrial areas.

Optical
sensor-based
solutions
emphasize
cost-efficiency
and robustness
for mobile
robots.

[83] Wiimote-based
2D localization
for mobile
robots.

Provides accurate
2D tracking
using
off-the-shelf
hardware;
integrates
feedback control.

Limited to 2D
localization;
performance
decreases in
complex
environments.

Coordinate
transformation,
Wiimote
tracking,
trajectory
feedback control.

Indoor
navigation and
mobile robotics.

Leveraging
commercial
gaming hardware
for localization in
intelligent
systems.

[84] Low-cost light
system for indoor
robot
self-localization.

Cost-effective,
innovative ID
encoding;
suitable for
large-scale
setups.

Restricted by ID
limitations and
low
computational
resources.

IR LEDs,
Monte-Carlo
localization,
novel ID
arrangement.

Indoor navigation
in public spaces
like malls and
museums.

Affordable
localization
systems targeting
large-scale
indoor
environments.

[85] Infrared Angle of
Arrival (AoA)
sensor for indoor
localization.

Centimeter-level
accuracy in static
scenarios, low
cost, and
real-time
navigation
support.

Limited accuracy
in dynamic
contexts;
sensitive to
signal
propagation
issues.

Infrared AoA,
wireless sensor
networks,
pragmatic
design.

Supermarkets
and retail spaces.

Exploiting
IR-based AoA
for affordable
and accurate
navigation in
commercial
spaces.

[86] Multi-sensor
fusion for
human-following
robot navigation.

Handles
dynamically
changing
environments,
reliable obstacle
avoidance, and
human tracking.

Computationally
intensive;
requires multiple
sensors.

Depth camera,
active IR marker,
and proximity
sensors fusion.

Companion
robots for elderly
or disabled users.

Multi-sensor
fusion improves
robustness and
accuracy in
human-following
tasks.

[87] 3D position and
orientation
measurement for
mobile robots
using
photoelectric
scanning.

3.8 mm position
accuracy and
0.104◦
orientation
accuracy in a
large-scale
environment.

Requires precise
landmark
calibration;
sensitive to
environmental
conditions.

Photoelectric
scanning, rotary
laser, multi-angle
intersection.

Industrial
automation and
cargo handling.

Emphasis on 3D
localization for
high-precision
applications in
structured
environments.

[88] IR sensor array
with k-means
clustering for
multi-robot
localization.

Efficient
multi-robot
localization;
reduced time for
position
estimation.

Accuracy
depends on array
density; it is
sensitive to noise
in signal
propagation.

IR receiver array,
k-means
clustering,
column scanning.

Multi-robot
systems in
industrial or
public spaces.

Combining
clustering
algorithms with
IR sensors for
efficient
multi-robot
positioning.
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Figure 4. (A) LiDAR-based SLAM system for autonomous robots, taken from ref. [91], copyright fron-
tiers. (B) LiDAR-based robust for pose estimation in clean and perturbed environments [92], copyright
MDPI. (C) self-adaptive Monte Carlo Localization algorithm tailored for smart automated guided vehi-
cles position tracking, and kidnapping scenarios, taken from ref. [93], copyright elsevier. (D) LiDAR
localization method leveraging multi-sensing data from IMU, odometry, and 3D LiDAR for complex
indoor spaces, taken from ref. [94], copyright MDPI. (E) LiDAR and IMU integration for UAV indoor
navigation, taken from ref. [95], copyright MDPI.

enhance mapping consistency and reduce drift. It’s integrated probabilistic data association ensures
reliable localization even in dynamic environments [91]. Building on this, Wang et al. (Figure 4B) intro-
duced a solution for improving LiDAR-based feature extraction using a weighted parallel ICP algorithm,
which increases convergence speed and robustness, especially in structured indoor environments [92].
Building previous multi-sensor systems, Yilmaz and Temeltas (Figure 4C) created Self-Adaptive Monte
Carlo Localization for smart AGVs incorporating 2D/3D LiDARs. Their energy model uses ellipses to
be less sensitive to asymmetrical sensor placements in an industrial factory [93]. Liu et al. (Figure 4D)
further enhanced LiDAR localization by fusing data from IMU, odometry, and 3D LiDAR through an
Extended Kalman Filter and PL-ICP, delivering accurate localization without GNSS [94]. For UAVs,
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Kumar et al. (Figure 4E) integrated horizontally and vertically mounted LiDARs with IMUs to achieve
3D indoor navigation, which is useful in confined, dynamic environments like pipelines and disaster
zones [95]. Lastly, Li et al. [24] created a hybrid indoor-outdoor navigation framework combining GNSS,
INS, and LiDAR. This system seamlessly transitions between navigation environments with Hector
SLAM and Kalman filtering. These studies collectively showcase LiDAR’s adaptability and essential
role in enabling robust, accurate, and context-sensitive indoor localization solutions across robotics and
autonomous systems.

Such case studies illustrate the wide-ranging versatility of LiDAR technology in solving many local-
ization and navigation problems. From single-sensor performance to multi-sensor integration, and from
land-based robots to UAVs, LiDAR’s versatility highlights its importance in furthering the technology
for autonomous robotics. Each study is founded on the last, showing a progressive refinement of tech-
niques to improve reliability, accuracy, and computational efficiency in indoor robotics applications. A
complete comparison Table V integrates the strengths, weaknesses, and main trends of these studies as
a follow-up to the findings of such studies.

While LiDAR, VLC, and IR systems have demonstrated significant utility in indoor positioning,
their suitability varies based on deployment needs. LiDAR offers centimeter-level precision and excels
in 3D mapping, but its high hardware cost and computational demands limit its scalability in low-cost
applications. In contrast, VLC systems provide high localization accuracy and dual use for lighting and
communication. Still, they are susceptible to ambient lighting and require line-of-sight, making them
less robust in dynamic environments. IR systems are cost-effective and energy-efficient, with moderate
accuracy, but suffer from limited range and poor performance in environments with signal occlusion
or thermal interference. Table VI presents a side-by-side comparison of these technologies using core
evaluation metrics relevant to indoor robotic navigation.

3.2.2. Visual simultaneous localization and mapping (SLAM)
Visual Simultaneous Localization and Mapping (SLAM) is a technology that enables robots to build
a map of their surroundings while simultaneously determining their location within that map. It relies
on visual data captured by cameras, such as monocular, stereo, or RGB-D cameras, to extract environ-
mental information. The process involves detecting and tracking key features, such as edges, corners,
or textures, in consecutive frames of the camera feed. The robot’s camera captures images as it moves
through the environment. Key features from these images are identified and matched across frames to
estimate the robot’s movement and orientation (pose). Using these pose estimations, the robot contin-
uously updates its position and integrates new observations into the map. Advanced algorithms, like
Bundle Adjustment and Loop Closure Detection, refine the map to reduce errors caused by drift or
repeated patterns [41, 104].

Visual SLAM has become a cornerstone of autonomous indoor navigation, enabling robots to map
and traverse unfamiliar environments. Its evolution through multi-sensor integration and advanced
algorithms has led to diverse real-world applications. Roy et al (Figure 5A) [100], presented an
exploration-based SLAM (e-SLAM) framework solely using LiDAR sensors, including mapping, local-
ization, and path planning using a generalized Voronoi algorithm. Controlled gains reflect a proportional
increase in fidelity, and as shown, navigate both robustly and effectively by all measures with minimal
hardware. Beyond navigation, SLAM is being utilized, for example, by Yang et al. [105] (Figure 5B),
as they let a SLAM-equipped robot monitor CO2 levels indoors by mapping results spatially to the
temporal sensing, the SLAM robot had a source detection accuracy of 1.83 m, effectively combining
spatial mapping and temporal sensing. This approach is more economical and flexible than static sen-
sors for environmental monitoring. For visually sparse and repetitive environments, Chen (Figure 5C)
[106], proposed STCM-SLAM, fusing stereo vision and IMU data. By leveraging forward-backward
optical flow and nonlinear optimization, this system outperformed ORB-SLAM2 and OKVIS in trajec-
tory accuracy, proving effective in complex, low-texture settings. Singh et al. (Figure 5D) introduced
a socially aware SLAM using adaptive neural networks concerning human-robot interaction. Tested at
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Table V. LiDAR research overview.

Ref.
Nos.

Focus Strengths Limitations Key techniques Applications Overarching
trends

[24] Seamless indoor
and outdoor
navigation using
INS, GNSS, and
LiDAR
integration.

50% higher
accuracy than
Dead Reckoning;
80% success in
navigation mode
switching.

Complex
switching
algorithm for
INS/LIDAR

INS/LIDAR
integration,
switching
algorithms

Vehicular
navigation in
mixed
environments

Expanding
seamless
navigation
capabilities for
vehicles

[90] Semantic mapping
for domestic robot
navigation

Improved
navigation
through object
semantics

Limited to static
objects

2D LiDAR,
RGB-D
integration,
SLAM

Home robotics
for navigation
and mapping

Bridging semantic
understanding
with navigation

[96] Sparse feature
environments for
navigation

Effective
trajectory tracking
with low features

Dependency on
learning-based
classifiers

Improved Pure
Pursuit algorithm

AGV
navigation in
sparse
environments

Adapting to
challenging
low-feature spaces

[97] SLAM and path
planning for
rescue robots

Balanced path
optimality and
obstacle
avoidance;
validated in rescue
competition
environments.

Lack of robustness
in unknown
environments

A∗, DWA
algorithms,
SLAM
comparison

Indoor rescue
missions,
RoboCup
competitions

Combining
SLAM with
real-time rescue
applications

[98] 2D-LiDAR-based
localization with
correlative scan
matching (CSM)

High precision
and fast recovery
from localization
failures

Requires
fine-tuned
thresholds for
pose estimation

CSM, low-pass
filter,
branch-and-bound
method

Indoor mobile
robot
localization
and navigation

Emphasis on
robust and
efficient pose
estimation

[99] Exploration-Based
SLAM (e-SLAM)
for mapping and
localization

Real-time
mapping and
navigation without
pre-built maps

Complex
algorithms may
limit scalability

LiDAR mesh
generation, MSC
alignment, LQE

Service robots
in office and
academic
buildings

Combining
exploration and
SLAM for flexible
deployment

[100] Path planning and
motion control
under e-SLAM

Efficient path
planning with
obstacle avoidance

Relies solely on
LiDAR, limiting
data diversity

Dynamic-Window
Approach (DWA),
interpolation
techniques

Indoor rescue
missions,
industrial robot
navigation

Integrating SLAM
with real-time
path planning

[101] Simplified
structure-based
loop closure
detection

Efficient and
robust global loop
closure detection

Limited by
low-resolution
LiDAR

Simplified
structure
extraction,
hierarchical
matching

Indoor
mapping with
low-cost
LiDAR sensors

Improving
efficiency with
simplified data
processing

[102] Indoor
localization using
LiDAR and dual
AprilTags

Quick global
localization with
reduced
computation

Dependent on
proper AprilTag
placement

AMCL, dual
AprilTag
positioning

Warehouse and
factory
automation

Enhancing
accuracy by
combining LiDAR
and visual markers

[103] Robust
localization
integrating
CNN-based visual
and laser
localization

Handles robot
kidnapping and
provides accurate
re-localization

Sensitive to
environmental
lighting conditions

CNN-based image
retrieval, AMCL

Indoor mobile
robot
navigation in
structured
spaces

Fusion of visual
and laser data for
enhanced
robustness

[89] Autonomous
navigation using
2D LiDAR and
enhanced SLAM

Enhanced map
accuracy and path
planning
efficiency

Suboptimal in
highly dynamic
environments

RBPF-SLAM,
GBI-RRT path
planning

Rescue
operations,
household
automation

Advancing
probabilistic
SLAM techniques
for dynamic tasks
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Table VI. Comparative analysis of liDAR, VLC, and IR systems [28, 64–90].

Feature LiDAR VLC IR
Accuracy Very high (cm-level) High (sub-meter with

dense LED grid)
Moderate (1–2 m typical)

Scalability Moderate
(cost-prohibitive for large
setups)

Moderate (requires
controlled lighting and
dense LEDs)

Low to Moderate (limited
by range and LOS)

Cost High (sensor and
compute-intensive)

Moderate (LED
infrastructure needed)

Low (economical sensors)

Latency Low (real-time with
onboard processing)

Low to Moderate
(dependent on
pre-processing)

Low (fast response time)

Robustness High (works in low light,
cluttered environments)

Low (affected by ambient
light and obstructions)

Low to Moderate (affected
by heat, obstacles)

Environment
Suitability

Warehouses, hospitals,
UAVs

Offices, healthcare, and
clean indoor spaces

Museums, retail, and small
indoor areas

Advantages High precision, Effective
in cluttered/low-light
environments, Strong
support for SLAM and
3D mapping

Dual use for lighting &
communication, High
data rate, Good for
EM-sensitive
environments

Low cost, Fast response,
Easy to deploy in confined
indoor spaces

Disadvantages Expensive hardware,
High computational
needs, Not ideal for
highly reflective or
transparent surfaces

Requires clear
line-of-sight, affected by
ambient lighting, and
Limited in dynamic
environments

Limited range and
accuracy, Susceptible to
thermal and light
interference, needs LOS
for best performance

Chandigarh University, the system respected social norms and reduced the number of mapping iterations
to support safe navigation around humans [107]. Finally, Wang et al. (Figure 5E) focused on 3D naviga-
tion in uneven terrains using RGB-D cameras and an enhanced RRT algorithm. Their OctoMap-based
framework distinguished between slopes and staircases, ensuring safe movement through cluttered and
physically complex indoor spaces [104]. These case studies highlight Visual SLAM’s adaptability from
precise mapping and environmental sensing to socially intelligent and terrain-aware navigation, show-
casing its transformative role in indoor robotics. Table VII provides a detailed comparative summary of
various implementations of SLAM, outlining their domain of focus, strengths, shortcomings, techniques
used, applications, and trends.

3.2.3. Comparative performance across scenarios
Other positioning technologies have been revised and will develop diverse systems suited for each one of
the challenges specific to environmental types and applications. IMU, VLC, Infrared Systems, LiDAR,
and Visual SLAM differ yet have different advantages and limits depending on the situation. Before
selecting the appropriate solution for a specific use case, every technology must be assessed against
position accuracy, cost-effectiveness, robustness, and scalability. Table VIII below provides a detailed
comparison and contrast of these technologies, as well as their strengths and weaknesses in different
settings, and illustrates the importance of both environmental conditions and application needs, along
with system integration, to ensure the effectiveness of each positioning methodology.
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Figure 5. (A) SLAM framework that relies exclusively on liDAR sensors for indoor mobile robot nav-
igation, taken from ref. [100], copyright MDPI. (B) Indoor environmental monitoring, taken from ref.
[105], copyright Elsevier. (C) STCM-SLAM for precise pose estimation, taken from ref. [106], copyright
IEEE. (D) SLAM-based navigation systems for environments populated with humans, taken from ref.
[107], copyright IEEE. (E) SLAM-based 3D OctoMap navigation system for complex 3D environments,
taken from ref. [104], copyright MDPI.

4. Radio frequency methods
First, RF methods have become essential for enabling wireless communication between robots and
effective navigation. RF signals from Wi-Fi, Bluetooth, and RFID help robots locate objects, map
environments, and keep connections in real time. Above all, such methods have proven efficient when
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Table VII. Summarizing key details like focus, strengths, limitations, key techniques, applications, and
overarching trends.
Ref.
Nos.

Focus Strengths Limitations Key techniques Applications Overarching trends

[91] Range-only SLAM for
mobile robots

It uses RSSI for distance
estimation and is suitable
for WSN integration. With
prior node position
knowledge, achieved an
average localization
error<1 m; reduced error
to 0.5 m.

Noisy RSSI data;
limited accuracy in
complex
environments.

Extended Kalman
Filter (EKF) is a
pre-processing filter
for RSSI.

Surveillance and
rescue operations
using wireless
sensor networks.

Focus on
energy-efficient,
adaptive localization
methods in WSN
environments.

[108] Dynamic indoor
navigation using
SLAM and RL

Combines SLAM with
reinforcement learning for
dynamic obstacle
avoidance. Improved path
efficiency by 20%.

Requires significant
computing resources;
sensor limitations.

Kinect is used for
mapping, and a rotary
encoder is used for
localization.

Assisting disabled
individuals, delivery
services, and
domestic robots.

Emphasis on
adaptability to dynamic
and unstructured
environments.

[109] Multi-sensor fusion for
indoor localization

Robust localization using
ORB-SLAM, IMU, and
wheel odometry. Achieved
localization error of<5 cm
in controlled environments

Challenges in
low-light or
high-speed scenarios;
limited robustness
under dynamic
changes.

ORB-SLAM,
multi-sensor fusion
(IMU, odometry).

Indoor mobile
robots, navigation in
GPS-denied
environments.

Multi-sensor fusion
enhances localization
accuracy and robustness.

[110] Wi-Fi-based
positioning with
SLAM integration

Improved accuracy (by
40%) and cost-efficiency
by leveraging existing
Wi-Fi infrastructure.

Signal interference
and environment
dependency; limited
robustness in low
Wi-Fi density areas.

Wi-Fi fingerprinting,
extended Viterbi
algorithm, SLAM
fusion.

Indoor localization,
robot-based learning
data collection.

Integration of ubiquitous
Wi-Fi infrastructure with
SLAM for localization.

[111] PF-SLAM for
dynamic indoor
environments

Efficient navigation in
dynamic environments
with reduced computation
and mechanical strain.

Susceptible to noise
and computational
challenges in
large-scale scenarios.

Particle Filter SLAM,
motion optimization.

Mobile robots in
dynamic indoor
settings, service
robots.

Optimization of SLAM
algorithms for dynamic
environments with
real-time adaptability.

[112] Pseudo-GNSS/INS for
indoor mapping

Provides GNSS-equivalent
functionality in
GNSS-denied areas;
flexible integration with
existing frameworks.

Computational
complexity of
post-processing;
limited to indoor
environments.

Probabilistic SLAM,
LiDAR for sparse
point cloud extraction.

Indoor mapping,
unmanned ground
vehicles, and
high-precision
navigation.

Transition from
GNSS-dependent to
GNSS-independent
mapping technologies.

[113] Path planning for
indoor substations

A∗ for global paths, DWA
for local paths; robust map
creation with EKF-based
sensor fusion.

Limited adaptation to
moving obstacles;
challenges in
high-density
environments.

A∗ algorithm, DWA,
extended Kalman filter
(EKF).

Indoor substations,
robot-assisted
maintenance.

Integration of multiple
navigation and mapping
methods for task-specific
applications.

[114] Autonomous
navigation using
SLAM under ROS

High precision map
building; robust path
planning.

Dependency on
specific algorithms
like A∗ and DWA.

Karto SLAM, A∗, and
DWA algorithms.

Indoor navigation,
robot automation.

Integration of ROS for
effective autonomous
navigation.

[115] Drift-free visual
SLAM with UWB
technology

Reduced drift error by
over 50%; better indoor
accuracy.

Dependency on UWB
infrastructure.

Visual SLAM, UWB
integration, Extended
Kalman Filter.

Smart factories,
indoor localization.

Combining UWB with
visual SLAM for drift
reduction.

[116] Positioning and
navigation in industrial
robots

High accuracy through
optimized particle filter
and Kalman filter fusion.

Challenges in
low-light
environments with
visual SLAM.

Particle filter,
Unscented Kalman
filter, PSO
optimization.

Industrial
automation, precise
navigation.

Combining multiple
filters for robust
industrial navigation.

[54] LiDAR and IMU
integrated navigation

High localization
accuracy; resilience to
signal occlusion.

High dependency on
sensor fusion accuracy.

Voxel-SIFT, LiDAR,
IMU, Kalman Filter.

Indoor mobile
robots,
sensor-integrated
navigation.

Fusion of LiDAR and
IMU for robust indoor
positioning.

[117] 3D point cloud
mapping with SLAM

Accurate 3D mapping
with real-time registration.

Higher noise levels in
dynamic conditions.

Hector SLAM, 3D
points cloud
registration.

Construction site
mapping, dynamic
environments.

Integration of SLAM for
high-resolution 3D point
cloud generation.

[118] Comparison of SLAM
technologies for
indoor mapping

Centimeter-level mapping
accuracy; evaluation of
multiple SLAM systems.

Variation in accuracy
is based on hardware
configurations.

LiDAR, Matterport,
and NAVIS systems
comparison.

Indoor mapping,
technology
evaluation.

Benchmarking multiple
SLAM approaches for
specific applications.

[119] Development of
mobile robot SLAM
using ROS

Ease of implementation
with ROS; effective for
tracked robots.

Limited to the ROS
ecosystem and specific
hardware setups.

Monte Carlo
localization, ROS
framework.

Education, indoor
navigation.

Utilizing ROS for
accessible and modular
SLAM development.

[120] Real-time visual
SLAM with GPS for
outdoor robots

Integration of GPS
reduces drift and improves
scale estimation.

Sensitive to GPS
signal quality in
obstructed areas.

Visual SLAM, GPS
fusion, and graph
optimization.

Outdoor robot
navigation,
augmented reality.

Hybrid SLAM
approaches are robust
for outdoor applications.
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Table VIII. Provides a comparative performance analysis of various positioning technologies [28, 39,
40, 48].

Technology Position
accuracy

Cost-efficiency Robustness Scalability

Inertial
Measurement
Units (IMU)

Moderate: Prone
to drift over time;
accuracy
degrades without
external
corrections.

High: Affordable
for standalone
systems, but
increases with
additional
integration.

Moderate:
Reliable in
GPS-denied
areas but
accumulates
errors without
correction.

High: Easily
integrate with
other systems
like GPS or
SLAM.

Visible Light
Communication
(VLC)

High: Achieves
sub-meter
accuracy in
well-lit
conditions with
sufficient LEDs.

Moderate:
Requires
specialized
infrastructure;
costs increase
with scalability.

Low: Sensitive to
environmental
lighting
conditions and
line-of-sight
issues.

Moderate: Scales
effectively in
controlled
environments but
are limited in
dynamic settings.

Infrared
Systems

Moderate:
Effective for
short-range
indoor
positioning,
typically
accurate within
1-2 m.

Moderate to
High: Affordable
but dependent on
sensors and
infrastructure.

Moderate:
Affected by
environmental
interference and
requires a line of
sight.

Low to
Moderate:
Suitable for
small-scale
indoor setups,
challenging for
large-scale
deployments.

Light Detection
and Ranging
(LiDAR)

Very High:
Achieves
centimeter-level
accuracy in
structured
environments.

Low to
Moderate:
Expensive
hardware, costs
increase with
resolution and
range.

High: Robust
against
environmental
changes but
limited in
low-light or
featureless areas.

Moderate: Scales
well in structured
indoor or outdoor
environments but
is costly.

Visual
Simultaneous
Localization
and Mapping
(Visual SLAM)

High: Accurate
in feature-rich
environments,
sensitive to
lighting and
textures.

Moderate: Cost
depends on the
camera type
(monocular,
stereo, RGB-D).

Moderate: Prone
to motion blur,
low-light issues,
and challenges in
texture-less
spaces.

High: Adaptable
to various
settings with
proper sensor
integration and
algorithms.

applying other traditional sensors, such as cameras or LiDAR, becomes impossible. Based on the RF
technology, robots can perform seamlessly in complex indoor environments [28].

4.1. Wi-fi-based indoor mobile robots
Wi-Fi-based indoor mobile robots depend on wireless internet signals for navigating, localizing, and
communicating inside indoor spaces. The robots use a triangulation technique called Wi-Fi signal trian-
gulation or fingerprinting to anchor their position [29]. To determine its position, the robot integrates the
Received Signal Strength Indicator (RSSI) of several Wi-Fi access points in the building. By matching
these measurements with a map of the environment built before, the robot can estimate its actual position
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with reasonable accuracy during calibration. Apart from this, Wi-Fi plays a vital role in real-time com-
munication: connected to a Wi-Fi network, the robot will send and receive updates about itself, readings
from its sensors, or even instructions. This type of communication allows the operators to control the
robot from a distance via another device. It enables two or more robots of other types to cooperate as a
group, sharing information in real time. Wi-Fi also allows connecting to the cloud, accessing advanced
computing resources the robot can use, or sharing information for other purposes, such as complex
decision-making or machine learning [121, 122].

Indoor localization has witnessed transformative progress by integrating Wi-Fi, machine learn-
ing, and robotics, tackling long-standing accuracy, adaptability, and scalability challenges. Shu et al.
(Figure 6A) proposed a multimodal localization approach combining 3D point cloud data with Wi-
Fi fingerprinting to estimate 6-DoF robot poses. By reducing search complexity and mitigating noise in
large-scale settings (650+ million points), their fusion method proves highly effective in intricate indoor
environments [123]. Furthermore, Ayyalasomayajula et al. (Figure 6B) proposed DLoc utilizing deep
learning in combination with MapFind, a self-mapping platform. This combination can allow for the
creation of a large-scale, labeled dataset from mapping and deeper modeling, improving accuracy and
reducing manual input while also being able to tolerate multipath errors and sparse maps [124]. Turning
to passive systems, Chan et al. (Figure 6C) created an entropy-optimized passive Wi-Fi localization sys-
tem using genetic algorithms to evaluate optimal placement of Wi-Fi sniffers. Their system achieved 2.2-
m accuracy while providing a cheaper and device-free option for tracking in real time [125]. To improve
data collection, Lin et al. (Figure 6D) presented a hybrid deep learning approach using supervised, semi-
supervised, and unsupervised learning with robot-collected RSSI data, enabling incremental learning
and adaptability in obstacle-rich settings [126]. Finally, Kharmeh et al. (Figure 6E) presented a low-cost
robotic solution for generating automatic 3D Wi-Fi radio maps. Using a combination of SLAM and data
fusion, the scalable and low-cost architecture facilitates automatic collection and mapping of Wi-Fi radio
maps at a significant reduction in labor consumption and energy use when deploying to larger scales
[127]. Together, these studies reflect how multimodal integration, AI, and robotic automation reshape
indoor localization systems, making them more precise, scalable, and adaptive to dynamic environ-
ments. Table IX consolidates major prospects into equally compelling trends, driving innovations in this
field.

4.2. Radio frequency identification (RFID)-based indoor mobile robots
RFID-based indoor mobile robots are used to navigate and perform tasks within specific indoor fields
or environments with Radio Frequency Identification (RFID) technology. In this system, RFID tags are
placed at critical, specific locations as markers or waypoints that contain unique identification informa-
tion for the robot to read from an RFID reader. The robot scans these tags while moving to determine
where it is and verify that it is going to the right place. The RFID reader used by the robot emits signals
to detect nearby tags, and the information is processed using other sensors, such as cameras or ultrason-
ics, to avoid obstacles and issue commands. This method is very efficient for the purposes of tracking
the robot’s position and guiding its movement, without the use of GPS, for suitable indoor applications,
like warehouses, hospitals, and offices [138, 139]. Building on the advancements in indoor navigation,
Demiral et al. [140], presented a modular RFID-guided robot prototype for structured environments.
Using strategically placed RFID tags and auxiliary sensors such as gyros and ultrasonic detectors, the
system enables autonomous pathfinding through shortest-path algorithms, as shown in Figure 7 (A).
This practical, cost-effective solution sets a foundation for more advanced navigation systems in emer-
gency and service applications. Extending these principles, Wu et al. [141], developed a standalone
RFID-based navigation method using phase-difference modeling (shown in Figure 7 (B)). This innova-
tive approach eliminates the need for additional sensors or reference tags, achieving precise localization
with a distance accuracy of 4.04 cm, showcasing RFID’s potential for unstructured navigation. Taking
precision navigation further, Kammel et al. [142] introduced a hybrid system that integrates UHF RFID
and odometry for centimeter-level localization, shown in Figure 7 (C). This system proves its robustness
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Figure 6. (A) A multimodal approach combining 3D point clouds and Wi-Fi signals to achieve pose
estimation for mobile robots was taken from ref. [123], copyright IEEE. (B) Deep learning-based system
that pairs neural networks with MapFind, an autonomous mapping platform, taken from ref. [124]. (C)
Wi-Fi-based indoor positioning system, taken from ref. [125], copyright MDPI. (D) wi-fi RSSI-based
indoor Robots for obstacle-rich environments, taken from ref. [126], copyright MDPI. (E) 3D Wi-Fi
localization using low-cost robots for large-scale deployments, taken from ref. [127], copyright MDPI.

in warehouse environments by addressing odometry drift and multipath interference through itera-
tive Kalman filtering. Building on this, Shangguan and Jamieson [143], tackled sorting closely spaced
RFID-tagged items in dense environments. Their MobiTagbot system leverages synthetic aperture radar
techniques to achieve nearly 100% accuracy, making it a breakthrough for libraries and supply chains,
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as shown in Figure 7 (D). Similarly, DiGiampaolo and Martinelli [144], focused on robotic localization
in shelves (shown in Figure 7 (E)), combining odometry and RFID signal analysis to achieve high preci-
sion (∼10 cm error) in cluttered scenarios like metallic storage racks. Beyond single-robot applications,
cooperative approaches have been explored. Seco and Jiménez [145] proposed a smartphone-based
localization system that integrates RFID tags, pedestrian dead reckoning (PDR), and map data, reduc-
ing errors from 6.1 m to 1.6 m through collaborative tracking. This complements the low-cost HF RFID
system by Mi and Takahashi [146], which optimizes sparse tag placement and achieves millimeter-level
accuracy, broadening the use cases for service robots in public facilities. Meanwhile, Ye and Peng [147]
improved WiFi-based fingerprinting for robot navigation by refining grid-based points and adaptive
correction, achieving accuracy within 0.4 m for dynamic indoor tasks. Closing the loop, Da Mota et
al. [148] integrated Petri nets with RFID tags for structured navigation in labyrinth-like spaces, while
Kassim et al. [149], extended RFID’s reach to assist visually impaired individuals, combining tactile
paving and digital compasses for inclusive indoor mobility. These studies illustrate RFID’s versatility,
spanning precision robotics, collaborative systems, and accessible technologies. The diverse applica-
tions and innovations in RFID-based indoor robotics demonstrate the adaptability and precision of this
technology across various fields. The advancements highlighted above showcase various approaches tai-
lored for specific use cases, from structured navigation to unstructured environments, and single-robot
systems to collaborative networks. Table X comprehensively compares the reviewed studies to illustrate
these findings further, detailing their focus, strengths, limitations, key techniques, and applications.

4.3. Ultra-wideband (UWB) and bluetooth-based indoor mobile robots
UWB and Bluetooth-based indoor mobile robots use advanced wireless technologies to determine their
location and navigate within indoor spaces. UWB operates by sending very short radio pulses across a
wide frequency range. These pulses travel to multiple fixed anchors in the environment, and the time
for the signal to travel to and from them is measured. Using this “time-of-flight” data, the robot can
calculate its precise position with high accuracy, often within a few centimeters. On the other hand,
Bluetooth technology, particularly Bluetooth Low Energy (BLE), works by detecting signal strength
(RSSI) from beacons placed around the area. The robot can estimate its position by analyzing these sig-
nal strengths and sometimes combining them with other methods like triangulation [151, 152]. Together,
these technologies can complement each other. UWB provides high precision, ideal for tasks requiring
fine control, while Bluetooth offers cost-effective and energy-efficient positioning for broader naviga-
tion. Using these systems, the robot can map its surroundings, avoid obstacles, and move efficiently to
complete its tasks in warehouses, hospitals, or smart homes.

Recent developments in indoor localization have demonstrated the effectiveness of combining mul-
tiple sensing approaches to alleviate some of the problems of accuracy, robustness, and adaptability. A
noteworthy example of this is in the work of Kok et al. [153], which presented a tightly coupled UWB-
IMU fusion system through a maximum a posteriori (MAP) formulation. Their approach uses a heavily
tailed asymmetric distribution to filter UWB data for outliers, indicating improved pose estimation com-
pared to optical tracking, even in a non-line-of-sight (NLOS) tracking condition. Expanding on this, Yao
et al. [154], leveraged an Extended Kalman Filter (EKF) to fuse UWB and IMU data, effectively address-
ing inertial drift and UWB multipath effects. Their system delivered over 100% improvement in accuracy
compared to traditional UWB-only approaches, proving the synergy of complementary technologies in
real-world lab and simulation environments. Investigating Bluetooth-based solutions, Weinmann and
Simske [155], Introduced a Bluetooth 5.1 Angle of Arrival (AoA) system for autonomous robots and
demonstrated a 0.12-m mean localization accuracy through beacon-based corrections. The possibility
of utilizing this in scenarios like fire rescue and capturing objects under harsh indoor conditions is
promising. Furthering the use of UWB, Juston and Norris [156] developed an ad hoc mesh network
localization system for mobile robots. Using UWB and odometry with an unscented Kalman filter, the
decentralized setup enabled real-time adaptability and dynamic environment compatibility, allowing
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Table IX. Comparative analysis for wi-fi-based indoor localization techniques.

Ref.
Nos.

Focus Strengths Limitations Key techniques Applications Overarching
trends

[128] Cloudlet-based
cloud system for
positioning

Real-time
autonomous cart
positioning,
seamless handover

Limited to Wi-Fi
coverage
environments

Cloudlet-based
architecture, RSSI

Factory
automation,
personnel, and
asset tracking

Edge computing
integration with
indoor Wi-Fi
systems

[129] UWB and Wi-Fi
integration for
indoor positioning

High precision,
robust against
environmental
interferences

Higher cost of
UWB systems

Differential Wi-Fi,
Multi-sensor
Fusion

Emergency
responder
navigation,
parking models

Fusion of diverse
localization
technologies for
robust solutions

[130] Augmenting visual
SLAM with Wi-Fi
sensing

Improved SLAM
accuracy by 11%,
reduced
computational
complexity

Reliance on
high-quality Wi-Fi
infrastructure

Integration of
Wi-Fi RSSI with
visual SLAM

Robotics in
navigation,
augmented
reality

Combining visual
and Wi-Fi data for
enhanced indoor
positioning

[131] Map/INS/Wi-Fi
integrated system

Enhanced accuracy
through cascaded
filtering, with low
computational
overhead

Dependency on
precise
pre-existing maps

Kalman Filter,
Map Matching

Mobile
device-based
location
services
(airports,
museums)

Multi-source data
integration for
continuous
navigation

[132] Wi-Fi radio map
construction with
smartphones

Cost-efficient
solution using
existing consumer
devices

Manual site
surveys remain
time-consuming

Factor Graph
Optimization,
k-Nearest
Neighbor

Public spaces
(malls, stations)

Affordable,
high-accuracy
solutions utilizing
prevalent consumer
devices

[133] Wi-Fi-based mobile
robot positioning

Effective in noisy
environments,
robust against
dynamic changes

Vulnerable to
RSSI fluctuations

RPCA-ELM,
Wi-Fi
Fingerprinting

Industrial
robotics,
autonomous
systems

Enhancing
robustness in
real-world dynamic
conditions

[134] Flexible Wi-Fi
communication in
robots

Addresses coverage
and latency issues
in industrial setups

Scalability
limitations with
mesh networks

Mesh Network,
Mixed
Architecture

Industrial
logistics,
automated
guided vehicles
(AGVs)

Industry 4.0
emphasizes
scalable and
reliable
communication for
mobile robotics

[135] Multi-sensor indoor
localization for
biped robots

Robust in harsh
industrial
environments,
adaptive to different
conditions

Complex
implementation,
high cost of
hardware

Cellular Automata
Particle Filtering,
Multi-Sensor
Fusion

Industrial
robotics, biped
robot
localization

Multi-sensor fusion
for reliable
localization in
dynamic industrial
environments

[136] Indoor positioning
system using Wi-Fi
and BLE in harsh
environments

Combines coarse
Wi-Fi and fine BLE
positioning, suitable
for noisy
environments

Limited BLE
beacon density,
multipath fading
issues

Wi-Fi and BLE
Fusion, Weighted
k-NN

Public
transportation
stations, smart
cities

Hybrid solutions
combining Wi-Fi
and BLE for robust
indoor positioning

[137] Fusion of RSSI and
magnetometer
fingerprints for 2D
positioning

Improved accuracy
in high variance
magnetic
environments,
lightweight
algorithm

Reliance on
environmental
magnetic field
variability

RSSI-
Magnetometer
Fusion, Multilayer
Perceptron

Mobile robot
navigation in
industrial
settings

Sensor fusion for
enhancing
accuracy in
challenging indoor
environments
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Figure 7. (A) RFID-guided robot prototype for structured environments, taken from ref. [140]. (B)
RFID-based standalone navigation method, taken from ref. [141], copyright IEEE. (C) RFID and odom-
etry for centimeter-level localization robustness in warehouse environments, taken from ref. [142],
copyright IEEE. (D) RFID-tagged items in dense environments, taken from ref. [143]. (E) RFID-based
indoor robot for detecting items localized in shelves, taken from ref. [144], copyright IEEE.

mobile agents to self-correct and synchronize locations without fixed infrastructure. In a unique appli-
cation, Naheem et al. [156] created a lighter-than-air helium robot with a wearable UWB sensor for
user-following and intent detection. The interactive system could successfully track pose in open indoor
spaces, providing opportunities for applications in entertainment, guidance, and user awareness. These
case studies illustrate the versatility of UWB, IMU, and Bluetooth technologies, especially when used
with advanced filtering and control algorithms. They offer a promising path toward scalable, accurate,
and adaptive indoor positioning systems, catering to diverse domains from robotics to human-interactive
applications.

These case studies collectively demonstrate how indoor positioning technologies, whether based on
UWB, BLE, or hybrid sensor fusion, are evolving to meet the complex demands of real-world appli-
cations. From handling non-line-of-sight conditions to enabling real-time collaboration among mobile
agents, these systems reflect modern IPS research’s promise and intricacies. To further contextualize the
capabilities and trade-offs of various radio frequency-based IPS technologies, Table XI below presents
a comparative analysis of commonly used RF methods. This table evaluates each technology across
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Table X. Comparison of RFID-related research papers.

Ref.
Nos.

Focus Strengths Limitations Key techniques Applications Overarching
trends

[148] Localization and
navigation using
Petri Nets in
indoor
environments

Accurate
decision-making
via Petri Nets;
Suitable for
structured
environments

Depends heavily
on structured
paths and
specific layouts

Petri Net
dynamics,
RFID-based
localization

Industrial and
educational
robot
navigation

Emphasis on
combining RFID
with advanced
decision-making
frameworks

[146] HF-Band RFID
system for indoor
mobile robot
self-localization

Robust low-cost
localization; uses
fewer readers and
tags

Performance
depends on
optimal
tag-reader
arrangement

Monte Carlo
Localization,
likelihood
modeling

Indoor service
robots in
public
facilities

Cost-efficiency,
robustness in
localization with
fewer resources

[147] WiFi fingerprint
positioning for
indoor navigation

Improved WiFi
localization, 0.4m
accuracy
improvement,
navigation
error<0.8m

Still limited by
signal
inconsistencies
and real-time
challenges

WiFi signal
standardization,
adaptive
WKNN
algorithm

Indoor
navigation in
complex
environments

Enhanced signal
processing for
indoor
environments

[149] RFID and digital
compass for
visually impaired
navigation

Enhances
navigation for the
visually impaired;
accurate compass
calibration

Limited
scalability;
requires tactile
paving for
effectiveness

Digital
compass, voice
guidance,
passive RFID

Navigation aid
for the visually
impaired in
public spaces

Accessibility
enhancements via
RFID navigation
systems

[150] Indoor robot
navigation with
RFID and
shortest path
algorithms

Autonomous
navigation;
integration with
gyro and
pathfinding
algorithms

Limited RFID
range (∼5 cm);
dependent on
shortest-path
algorithm

Shortest path
algorithm,
Arduino, gyro
sensors

Emergency
navigation,
indoor
logistics

Integration of
RFID with
autonomous
robotics

[145] Smartphone-
based cooperative
localization using
RFID

Improved
cooperative
localization
accuracy to 1.6m
(with map)

Dependent on
the density of
anchor nodes
and PDR quality

Particle filter,
cooperative
Bayesian
localization

Personal and
group indoor
tracking

Collaborative
methods for
improving indoor
positioning

essential performance metrics such as accuracy, scalability, cost, latency, robustness, and environmen-
tal suitability, offering a concise yet informative summary for readers and practitioners exploring optimal
IPS design strategies.

5. Research gaps and future directions
IPS are critical to enabling autonomous mobile robots to navigate and perform tasks effectively in com-
plex indoor environments. While significant advancements have been made, many challenges hinder
the full realization of robust and scalable IPS solutions. This section identifies some key research gaps
and suggests some actionable solutions toward addressing them, paving the way for future innovations.
IPS are critical to enabling autonomous mobile robots to navigate and perform tasks effectively in com-
plex indoor environments. While many advancements have been made, several challenges will keep IPS
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Table XI. Comparative analysis of RF-based IPS methods [27, 29, 42, 155].

Feature Wi-Fi Bluetooth low
energy

Ultra-
wideband

ZigBee RFID

Accuracy Low to Medium
(1–5 m)

Medium (1–3
m)

High (< 30
cm)

Low (> 5 m) Low to Medium
(1–4 m)

Scalability High High Medium Medium High
Cost Low Low High Low Low
Latency Medium Low Low Low Low
Robustness Medium Low to

Medium
High Low Medium

Environmental
suitability

Indoor/outdoor,
affected by
interference

Indoors,
susceptible to
interference
and signal
drop

Indoor, robust
in cluttered
environments

Short-range
indoors,
suffers in
noisy RF
environments

Indoor, suitable
for access
control and
asset tracking

Advantages Widely
available
infrastructure,
good range

Low power
consumption,
cost-effective

High
precision,
robust to
multipath
interference

Low power,
mesh
networking
capable

Low-cost,
passive tags
don’t require
power

Disadvantages Susceptible to
signal
fluctuation and
interference

Limited range,
sensitive to
obstacles

High cost,
complex
hardware

Lower
accuracy, not
suitable for
large-scale
precision
tasks

Limited range
and accuracy
require a
line-of-sight for
best
performance

solutions from being robust and scalable. In this section, research gaps will be identified, and potential
solutions will be proposed.

5.1. Signal interference and multipath effects – deep learning-based mitigation strategies
IPS, especially those that rely on RF with Wi-Fi, Bluetooth, and UWB as the fidelity, will face two basic
radio issues: signal interference and multipath effects. These challenges arise due to the inherent nature
of indoor environments, which are typically filled with metallic objects, thick walls, moving people,
and other electromagnetic barriers. When the RF signals meet obstructions, they will reflect, diffract,
or scatter (or in combination), leading to multipath. In this process, signals reach the receiver through
multiple paths with varying delays and attenuations, distorting the original signal. Additionally, electro-
magnetic interference from co-located devices such as smartphones, microwave ovens, routers, and even
other localization systems can further degrade signal quality and reliability [28, 157]. In addition, these
interferences vary with floor plans, materials, and ambient conditions; it is nearly impossible to develop
a universal interference mitigation technique that is robust across all use cases. Therefore, IPS systems
often require environment-specific calibration, limiting generalizability and plug-and-play deployment.

The degree to which these signal distortions jeopardize localization accuracy is significant.
Specifically, multipath propagation can cause incorrect distance estimation (e.g., delayed paths being
incorrectly registered as part of the travel distance). On the same note, the variable signal strengths
caused by interference produce variable RSSI (Received Signal Strength Indicator) readings on which
fingerprinting techniques rely. These challenges are particularly severe in densely populated or mission-
critical scenarios, like hospitals, warehouses, and manufacturing robots, in which robots must navigate
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accurately and promptly make decisions. In these cases, small errors in location estimation can mean
failures, inefficiencies, or risks to safety. Conventional signal processing methods have been widely
employed. Techniques like Kalman and particle filters smooth noisy signal trajectories by predicting and
correcting the robot’s position over time. Channel State Information (CSI) filtering aims to acquire a
stable reconstructed signal component from noisy multipath conditions. Meanwhile, frequency-hopping
spread spectrum techniques exploit several frequencies to avoid persistent interference. Despite these
advantages, these model-based approaches rely on relatively static conditions. Whether model-based or
not, they can’t generalize or become flexible in highly dynamic or non-linear indoor spaces, leading to
limited use over extended time [158].

To overcome these shortcomings, DL has obvious potential for real-time signal correction and multi-
path mitigation for indoor positioning systems. Moreover, DL models are data-driven, meaning they can
learn complex and nonlinear relationships between noisy input signals (such as raw CSI, ToA, and phase
differences) and true position outputs. They can work with high-dimensional input spaces and be trained
to find patterns in signal distortion that were impossible to model explicitly. More importantly, DL sys-
tems are flexible and can continually adapt to new environments or conditions. This unique property
makes them perfectly suited to dynamic indoor spaces where conventional models ultimately fail. The
task of performing denoising, feature extraction, classification, and regression together makes robust
end-to-end positioning pipelines possible. The following Table XII summarizes the relative use of the
different DL models for signal correction and multipath mitigation [159, 160].

In the future, DL can enable many new opportunities to improve indoor positioning systems. For
example, we could consider different types of deep learning frameworks, using CNNs to understand
the shape of signals and LSTMs to capture how those signals may change over time. This collaborative
modeling may yield more accurate and reliable positioning. Another challenge will be to shrink and
accelerate the models’ size sufficiently so that they can be operated directly on a robot or other small
device without direct access to a cloud data server. While this would put decision-making on the spot
for a robot, it would not eliminate the need for a sizeable data store to learn from in the first place.
Furthermore, it is tough to collect enough training data in many environments. Therefore, research in
this area will explore ways to reuse models trained in one building and use that model in a new space
(just as people quickly adjust to the layout of unfamiliar spaces). Lastly, creating data-sharing datasets
and benchmarking tools would allow researchers to compare and assess existing systems and accelerate
progress fairly. With all of these discussions and developments, we will undoubtedly see more appli-
cations of deep learning to ensure indoor navigation technology will be more innovative, quicker, and
reliable than ever [163].

5.2. Environmental variability and dynamic obstacles
The ever-changing nature of an indoor environment – a moving set of people, furniture, and equipment
– challenges the ability of IPS to achieve suitably consistent accuracy. Many systems cannot respond to
rapid environmental changes, degrading their localization and navigation performance. Real-time scene
understanding that accounts for semantic mapping and identifying dynamic objects using convolutional
neural networks with reinforcement learning may ameliorate the issues IPS systems face. Multi-sensor
fusion techniques integrating vision systems, LiDAR, and inertial measurement units can provide more
reliable localization. Predictive path planning algorithms can communicate with the navigation system
to dynamically adjust navigation strategies while overcoming obstacles in real time [5].

5.3. Scalability and deployment challenges
Scalability, in the context of IPS, can be understood as how an IPS continues to perform when deployed
in large spaces, populous environments, or different building contexts, without losing accuracy, speed, or
dependability. Though research has significantly progressed the IPS technological developments, scaling
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Table XII. Deep learning models for signal correction and multipath mitigation [161, 162].

Model Application Working
mechanism

Strengths Limitations

CNN
(Convolutional
Neural
Network)

CSI or
spectrogram
analysis

Treats signal data
as images to learn
spatial features and
suppress multipath
artifacts

Excellent spatial
feature extraction;
good for static
environments

Needs large„
labeled datasets;
less effective in
capturing time
series

RNN / LSTM Temporal
modeling of
RSSI, ToA

Captures
time-dependent
variations in
sequential signal
inputs

Effective for
dynamic path
estimation and
real-time tracking

Training can be
slow, prone to
vanishing gradients

Transformer Complex
environments
with long
dependencies

Uses self-attention
to capture global
dependencies
across signal
sequences

Scales well;
interpretable
attention
mechanisms;
state-of-the-art
accuracy

Computationally
heavy; requires
extensive data

Autoencoder/
denoising
autoencoder

Signal
denoising

Learns latent clean
signal
representations and
reconstructs them

Useful for
unsupervised
learning and data
compression

May retain artifacts
if not properly
tuned

GAN
(Generative
Adversarial
Network)

Signal
simulation and
augmentation

Generates synthetic
clean data from
noisy samples using
adversarial training

Helps in data
scarcity and
generalization

Difficult to train;
unstable
convergence

Graph Neural
Network

Node-based
IPS with
spatial
awareness

Learns on graphs
where nodes
represent anchors
or access points

Captures
relationships in
non-Euclidean
space; suitable for
multi-device
localization

Requires graph
structure and node
connectivity data

deployments in practice remains a frustrating barrier. One primary reason is that most IPS technologies
do not function the same way everywhere. For instance, a system tuned to work in a hospital with
long corridors and wide-open wards will not work the same in a shopping mall with glass storefronts,
multiple floors, and thick walls. IPS solutions are frequently based on specific layouts or infrastructure
(placing sensors, anchors, beacons, just the right way). However, in the real world, every single building
is different, so each configuration needs to be manually tuned, and that is just not feasible on such a large
scale [164].

Cost and complexity are also issues. High-accuracy systems like LiDAR or radar can yield good
results, but these systems can be costly, power-hungry, and bulky. Perhaps these systems are fine for
research labs or high-budget projects, but they are not practical for typical environments like schools,
retail stores, or homes. Even more "affordable" solutions like Bluetooth or infrared sensors can be unre-
liable in crowded, noisy environments or if other devices occupy the same frequency. Finally, there is the
matter of computational load and real-time performance. Determining precise location and movement
(some IPS functions) requires a lot of processing. We can send that data to the cloud, but it doesn’t just
require a stable internet connection, and it causes latency. Even with an edge computing approach, we

https://doi.org/10.1017/S0263574725101872 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101872


30 Rushikesh A. Deshmukh et al.

have to find the right hardware to process the data on the device. The cost may be a concern, plus it drains
their battery life; this is especially problematic for small robots or mobile sensors. The use of inexpen-
sive sensors, such as RGB-D cameras or passive infrared sensors, even as a concept, isn’t guaranteed to
solve the problem either. Although these devices may be cheaper, they may not provide reliable accu-
racy, for example, in conditions where lighting changes, dynamic motion with people walking through
the scene, or in a scene with many furniture or structural occlusions [165, 166].

Interoperability is another real and important bottleneck. IPS offerings from various vendors often
don’t play nicely together [167]. Because of this, it’s challenging to construct a cohesive system across
a whole campus or a smart building. It’s like mixing up puzzle pieces from different boxes without
common standards. So, with all the development and research, why haven’t we solved this? IPS is not just
about a clever algorithm but about making sense of problems that cross physical space and boundaries,
hardware, human behaviors, financial constraints, and privacy laws. And all of this varies significantly
by location. Nonetheless, progress has been made. One avenue of exploration is with the use of cloud-
edge hybrid models (where processing is done on-device, and heavier computation is offloaded to the
cloud); another is in modular system design, where different functions (for example mapping, tracking,
storage) can be tailor-fit to a specific environment; another is with systems that self-calibrate, tools
that automate installation, or redundant sensors, which all seek to reduce the workload of installation.
Regarding it, scalability within IPS is not a technological problem but a contextually bound, real-world
problem. Finding a solution will take more than better hardware or more innovative software; it requires
building systems that are flexible, cost-effective, easy to deploy, and change, resilient systems across an
unlimited number of unique and changing indoor spaces [5].

5.4. Accuracy in low-light and texture-less environments
Visual-based IPS has difficulty supporting SLAM algorithms in environments where lighting is con-
strained and distinctive visual features are lacking. Such hindrances substantially restrict the range of
applicability of IPS in various areas, such as warehouses or tunnels. Enriched sensors, like infrared
cameras integrated with thermal imaging, can enhance the operability of vision-based systems in situ-
ations of poor light. Generative adversarial networks could enhance image quality and extract features
from texture-less areas. Combining visible light communication with infrared technology should also
assist in increasing positioning accuracy in environments where visual identification is demanding
[168, 169].

5.5. Long-term autonomy and adaptability
Most IPS solutions lack the ability to adapt to long-term changes in the environment, such as struc-
tural modifications or sensor degradation. This results in reduced reliability and increased maintenance
requirements. Self-learning algorithms that continuously adapt to evolving environmental conditions
can address these challenges. Autonomous map updating systems can integrate new data into existing
maps without manual intervention. Incorporating redundancy mechanisms in sensor systems can ensure
robustness against individual sensor failures [170].

5.6. Ethical and privacy concerns
IPS are quickly becoming part of every setting, from hospitals to factories, offices, and homes – essen-
tially every place that should protect privacy. As these systems advance with AI and machine learning
capabilities, we must consider their ethical privacy issues with the same level of care as their technical
abilities. This section explores practical privacy risks, ethical obligations, and challenges with advanced
methodologies such as federated learning (FL) when working with IPS-driven robotics.
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5.6.1. Privacy risks in sensitive environments
IPS solutions and their relevance to health, health care, elder care, and workplaces usually rely on real-
time location information from people or mobile agents. Often, the intent is safety (or the effort to
plan for things, like dispatching a robot to someone to refill supplies or, more simply, tracking what
a nurse is doing). Nevertheless, data that monitors people continuously becomes a surveillance con-
cern depending on the context and situation in which the data is being collected. To illustrate this in
context: In elder care homes, monitoring a patient’s movements in the event of a fall is beneficial;
however, if monitoring is done without a straightforward process, transparency, options, or communica-
tion, there are ethical issues. Furthermore, assessing location information that could be misinterpreted,
misused, or leaked into the real world can have serious ramifications. Some examples would include
Stalking or harassment based on location, Revelation of employee habits (in the workplace), engag-
ing with fixes, implementing improvements, and saving during a time-sensitive procedure, while being
tracked by a competitor in another organization who wants to see how you behave, etc. These are
a few situations that underscore the need for end-to-end encryption of data as a best practice, not
only regarding the transfer of data but also after you have collected the data, as a best practice, to
offer sustainability of your ethical commitment and confidence in data security to those represented
[171, 172].

5.6.2. Ethical responsibility and informed consent
Many IPS deployments experience what could be described as “invisible surveillance.” For example,
individuals under surveillance do not necessarily know: (1) their location data is being recorded, (2) by
whom it is being recorded, (3) how long it will be stored, and (4) if it can be deleted. Furthermore, a
lengthy privacy policy document cannot bury proper informed consent. Having in-app notifications in
the moment, using very simple language, and allowing them to opt in/ opt out is necessary to facilitate
informed consent. Transparency and trust can also be achieved by giving users a dashboard or an app
to allow them to control their consent. An example from healthcare: if a patient were to walk into a
hospital that uses an IPS for navigation and safety purposes, a kiosk at the entrance or a user wristband
with an app could inform the patient about the data that is going to be collected from them, and they
can even control it. These micro-consent formats allow people to consent and have greater congruency
with global data protection regulations [173, 174].

5.6.3. AI bias and fairness in IPS
AI-ML-powered IPS could mistakenly introduce bias, both in coverage and in accuracy. For example, a
model-trained imitative of western hospital use in western hospital environments may suffer when used
in hospitals in India and Japan, with different physical designs and layouts for rooms and hallways. This
could create bad outcomes such as wrongly routed robots, poor localization performance, and a higher
rate of errors for certain populations or geographical locations. Bias could be further compounded when
utilizing historical data that reflects previously existing systemic biases. As such, the ethical design of
AI in IPS must focus on utilizing diverse training data in its use cases and consider fairness criteria.
Furthermore, algorithms should routinely be audited for bias and periodically retrained using new bal-
anced datasets that represent inclusivity of geography, demographics, and physical layout of the built
environment [20, 175, 176].

5.6.4. Advanced privacy-preserving techniques
Modern privacy engineering offers several promising technology options that can help organizations
ensure the privacy of IPS data. The most relevant examples are: (1) Differential Privacy: introduces
mathematical noise into datasets so that aggregate patterns can be identified but individuals can-
not be identified; (2) Homomorphic Encryption: allows for computations to occur while the data is
encrypted meaning that raw data is never exposed; and (3) Blockchain-Based Audit Logs: creates
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log entries for each access or update of a dataset in a tamper-proof manner that holds the organi-
zation accountable. These technologies support organizations in meeting privacy standards like the
GDPR (EU) and HIPAA (U.S.) while making the data available for potentially useful services based on
IPS data.

5.6.5. FL in IPS: opportunities and challenges
FL is often characterized as a privacy-preserving ML method because the data stays on edge devices
(like a robot or mobile agent) and only model updates are sent to an edge server. This means that the
raw location data never leaves the space in which it is locally based, providing more privacy to a user.
There are, however, some technical reasons why FL is not simply translatable to IPS. (1) Non-IID
Data: IPS devices deployed in different contexts (like hospitals and malls) will collect different data
types. This data non-uniformity (the non-IID distribution between the data) can lead federated models
to be slow to converge or less effective. (2) Communication Overhead: FL often entails regularly tak-
ing updates of the models between edge devices and the server, whereby strong communication and
consistency in that communication must exist. In situations involving edge devices, such as robots that
are continuously moving (such as in a warehouse), it may be impractical to ensure communication. (3)
Device Limitations: IPS nodes are either embedded systems in the device itself or robots that do not
have access to significant data processing or battery. This limited capability is exacerbated by running
tasks/users of on-device training, limiting their subsequent abilities. (4) Privacy Is Not Guaranteed: Even
though raw data is not privy to sharing, there are still types of model update-based attacks that make
it possible to leak raw data from being able to utilize a type of model inversion or gradients (gradient
leakage).

These challenges are not just theoretical; they have been observed in real-world pilot implementa-
tions:

• FL-PMI for Smart Healthcare [Arikumar et al.]: This system used FL with wearables to monitor
patient movement. While highly accurate, it faced difficulties in training on unlabeled data and
adjusting for varied body sensor placements [177].

• Drone-Based Hospital Perimeter Surveillance [Gokulakrishnan et al.]: FL helped preserve
privacy during visual monitoring but introduced latency and required significant edge-side
computation [178].

• Smart Wheelchair System for Pilgrims [Mohammed et al.]: FL supported distributed learning
across wheelchairs with secure IoT connectivity. Despite improved real-time adaptability, data
aggregation bottlenecks and privacy threats from model inversion were reported [179].

Together, these examples validate that FL offers promise for privacy in IPS but is not a plug-
and-play solution. Its effectiveness depends on how well it is tailored to the deployment environ-
ment’s computational limitations, connectivity constraints, and data characteristics. As such, hybrid
approaches combining FL with secure aggregation, differential privacy, and blockchain-based audit
trails may offer more viable, robust privacy protection for IPS systems in real-world deployments
[180, 181].

5.6.6. Ethical outlook
Privacy in IPS cannot be a box ticked; it must be a fundamental underpinning for ethical acceptance
and trust. Regardless of whether it is an AI delivery robot in a hospital or a retail tracking system using
UWB, transparency, control, and data minimization should be guiding factors. FL is still in its infancy,
and while it holds promise, it will face challenges in the IPS context that will require further research. The
IPS community can work towards innovative, fair, secure, and respectful systems by integrating techno-
logical safeguards with human-centered consent mechanisms and continuous ethical audits. Ultimately,
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Figure 8. Challages and future direction.

ethical design in IPS is not just about compliance with laws and regulations; it is about respecting the
individual in all the choices made by the system [182, 183].

5.7. Integration with emerging technologies
Limited exploration exists regarding integrating IPS with emerging technologies such as the Internet
of Things, 5G networks, and quantum sensing. This gap restricts IPS from achieving its full poten-
tial in modern applications. IoT-compatible IPS solutions can leverage IoT devices for enhanced
localization and context-aware navigation. 5G networks’ high bandwidth and low latency can be
exploited to improve real-time positioning accuracy. Quantum sensors offer the potential for achieving
unprecedented accuracy and reliability in indoor positioning [184, 185].

5.8. Standardization and interoperability
The lack of standardized protocols and interoperability across different IPS technologies limits
widespread adoption and integration. This fragmentation results in inefficiencies and compatibility
issues in multi-system environments. Unified protocols developed through industry-wide collaboration
can ensure compatibility between different IPS technologies. Open-source tools and frameworks can
accelerate innovation and adoption. Interoperability frameworks that integrate multiple IPS technologies
can enable seamless operations across diverse platforms [186].

Addressing the outlined research gaps requires a multidisciplinary approach combining sensor tech-
nology advancements, artificial intelligence, and system integration. By overcoming these challenges,
future IPS can achieve higher accuracy, robustness, and scalability, unlocking their full potential across
diverse applications such as industrial automation, healthcare, and public safety. The proposed solutions
address current limitations and pave the way for innovative applications, ensuring that IPS remains a
cornerstone technology in the era of autonomous mobile robotics (as shown in Figure 8).
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6. Conclusion
Based on the detailed exploration of IPS in mobile robotics, this manuscript highlights the field’s trans-
formative advancements, challenges, and future potential. IPS technologies such as LiDAR, Visual
SLAM, ultra-wideband, and hybrid systems enable robots to navigate complex indoor environments
precisely. Despite advancements, issues like cost, signal interference, and dynamic environmental con-
ditions persist. The manuscript emphasizes the role of interdisciplinary innovation, integrating artificial
intelligence and the Internet of Things, to overcome these barriers. Practical applications span health-
care, industrial automation, and public safety, showcasing IPS as a cornerstone for advancing robotic
autonomy. By addressing current gaps and prioritizing privacy and ethical considerations, this study
provides a roadmap for researchers and industry stakeholders to foster innovation and redefine the
capabilities of indoor localization systems.
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