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We propose a numerical method for the simulation of a quasi-linear parabolic biofilm model

that exhibits three non-linear diffusion effects: (i) a power law degeneracy, (ii) a super

diffusion singularity and (iii) non-linear cross-diffusion. The method is based on a spatial

Finite Volume discretisation in which cross-diffusion terms are formally treated as convection

terms. Time-integration of the resulting semi-discretised system is carried out using an

error-controlled, time-adaptive, embedded Rosenbrock–Wanner method. We compare several

variants of the method and two variants of the model to investigate how details such as

the choice cross-diffusion coefficients, and specific variants of the time integrator affect

simulation time.
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1 Introduction

Bacterial biofilms are microbial communities attached to an immersed surface. Depending

on the context, they can be formed by one or multiple species. A characteristic of

biofilms is that they produce gel-like extracellular polymeric substances in which they are

embedded and which offers them protection against chemical and mechanical washout

and against antimicrobial agents [13, 17, 35]. Biofilms are prevalent in natural, industrial,

and hospital settings. Depending on the situation, they can be harmful or beneficial.

Biofilms can cause corrosion and clogging in drinking water pipelines [31]. Dental plaque,

which provokes tooth decay and gum disease, is a consequence of biofilm formation

on teeth. Biofilm formation in the body can lead to failure of medical implants and
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too difficult to eradicate bacterial infections [2, 5, 28]. On the other hand, the adsorption

and absorption properties and enhanced mechanical stability of biofilms are beneficially

applied in wastewater engineering to remove harmful components from contaminated

water [26].

Although the term biofilm suggests homogeneous film-like layers, biofilms on the meso-

scale (10 μm ∼ 1 mm, the actual biofilm scale) can be rather heterogeneous structures

formed by colonies that may merge as they grow and expand [18]. Biological factors

such as nutrient availability, maximum cell density, and specific growth rate determine

the architecture of biofilms [6, 18].

In addition to the architectural heterogeneity, many biofilms, in particular multi-species

systems, are also heterogeneous with respect to internal biomass distribution, for example,

anaerobic pockets within otherwise aerobic biofilms can be found, etc. Such properties

have been used for example in wastewater engineering to design biofilm reactors in which

processes can happen concurrently which in batch reactors would need to be performed

subsequently and often in different vessels; an example for this is simultaneous nitrification

and denitrification in biofilm reactors, e.g., [36].

A mesoscopic, multi-dimensional mathematical model for multi-species biofilms has

been proposed in [22]. It has been derived both from the view point of a biofilm as

a spatially structured population, and as a mechanical object. The model is a highly

non-linear diffusion–reaction system with three non-linear diffusion effects: (i) a power

law degeneracy as in the porous medium equation when the biomass vanishes, (ii) a

super-diffusion singularity where the biomass attains the maximum cell density, and (iii)

cross-diffusion. The interplay of effects (i) and (ii) is responsible for the formation of

a sharp biofilm/water interface that moves with finite speed and to ensure that the

maximum cell density is not exceeded. They have already been included in the single-

species model in [6], which this model generalizes. Cross-diffusion effects (iii) come into

play in multi-species systems and describe the resistance to spatial spreading of one due

to the presence of other components, and subsequent mixing of species.

Each of the three non-linear diffusion effects (i), (ii), and (iii) presents challenges for the

numerical simulation. Due to (i), at the biofilm/water interface, biomass gradients blow

up, an effect that is prone to introduce interface smearing or mathematically and physically

unrealistic oscillations in numerical schemes. Since this effect leads to solutions with only

very little regularity, it is not clear that methods that have been originally designed and

proved to be suitable for problems with sufficiently high regularity can be reliably applied.

The super-diffusion singularity (ii) leads to blow-up of the diffusion coefficients and the

associated numerical problems. Even if it can be proved that solutions never attain this

singularity, numerical approximations are prone to overshoot the singularity in its vicinity,

in particular if the time steps are chosen too large. Finally, (iii), cross-diffusion equations

do normally not have maximum principles, and positivity of solutions must be established

by different means. In the straightforward numerical discretisation of this type of problems

this can result in schemes that are not positivity preserving, for example, because in the

discretisation system matrices might be obtained that do not have M-matrix properties.

In [10], based on a regularisation approach, it was shown that a semi-discrete approx-

imation of the single-species biofilm model of [6] with properties (i) and (ii) [but not (iii)]

has sufficient regularity to allow the application of higher order, error controlled time
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adaptive schemes, such as embedded Rosenbrock–Wanner (ROW) methods. In [9], this

was generalized to a multi-species biofilm model without cross-diffusion. Our objective is

now to investigate whether the approach can be extended to the cross-diffusion biofilm

model from [22] that also includes effect (iii). This would overcome the restriction of the

semi-implicit numerical method that was introduced in [21], which requires small enough

fixed time-steps.

Although there have been several numerical methods for cross-diffusion problems

proposed in the literature, these cannot be readily adapted to the problem at hand

without further investigation. Most of these methods have been developed for problems of

Shigesada–Kawasaki–Teramoto type, i.e., models with polynomial fluxes, e.g., [1,3,4,11,12].

The biofilm model that we study is highly degenerate and the fluxes have singularities.

Very little is known about the numerical treatment of such equations and whether existing

methods can deal with these effects reliably requires additional investigation. To contribute

to this question is the overarching goal of our study.

The outline of the paper is as follows: In the next Section 2, we will state the model

problem. Subsequently, we propose in Section 3, a semi-discrete approximation that is

obtained from spatial discretisation with a Finite Volume method. In Section 4, we will

investigate the applicability of time-adaptive embedded ROW methods to solve the semi-

discrete problem; this includes a convergence study by grid refinement and a comparison

against a special solution of the model that is obtained from the single-species model.

The density dependent cross- and self-diffusion coefficients that we use here differ from

those that were introduced and used in [21, 22]. We conduct a comparative simulation

of both approaches with view on computational efficiency. As there are several ROW

methods, we compare three of them, of the same order and with the same number of

stages, with the goal to investigate how strongly the choice of a specific representative of

this class of methods can affect computation time performance. ROW methods require

repeated evaluation of the Jacobian of the underlying system. To provide these can be

a cumbersome task. Therefore, we include also a comparison of the performance of the

method with a numerical approximation of the Jacobian against the method with an

analytical expression.

The focus of our work is on practical computational aspects of the numerical method,

rather than on a thorough and rigorous theoretical analysis of the algorithm and the

underlying model.

2 Mathematical model

A cross-diffusion model for the competition of two biomass species in a biofilm for a

shared growth limiting substrate was introduced in [22]. It is an extension of the single-

species biofilm model in [6], in which competition for space between both species leads to

cross-diffusion terms that describe the resistance to the movement of one species due to

the presence of the other species. The model is a density-dependent degenerate diffusion–

reaction equation over domain Ω ⊂ �2. The dependent variables are the volume fractions

a and b occupied by biomass of the two species, and the concentration of nutrient, c.

The total volume fraction occupied by the biofilm is denoted by m := a + b. Domain Ω

can be divided into sub-domain Ω1(t) =
{
(x, y) ∈ Ω ⊂ �2 : m(t, x, y) = 0

}
that describes
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the aqueous phase (bulk liquid, channels, and pores of a biofilm) without biomass, and

sub-domain Ω2(t) =
{
(x, y) ∈ Ω ⊂ �2 : m(t, x, y) > 0

}
, which is the actual biofilm with

positive biomass volume fraction. The independent variables t � 0 and (x, y) ∈ Ω

denote here time and spatial location, respectively. Both regions are separated by the

biofilm/water interface Γ (t) = ∂Ω1(t) ∩ ∂Ω2(t) that changes as the biofilm grows. Note

that neither Ω1 nor Ω2 need to be connected, and Γ can consist of several disjoint

segments. As is usual in mathematical models of biofilms, the extracellular polymeric

substances that is produced by the bacteria is subsumed in the biofilm volume fraction in

this biofilm model. The governing equations read [22]

∂a

∂t
= ∇

(
D11(a, b)∇a+ D12(a, b)∇b

)
+ μa

ca

κa + c
−Kaa, (2.1)

∂b

∂t
= ∇

(
D21(a, b)∇a+ D22(a, b)∇b

)
+ μb

cb

κb + c
−Kbb, (2.2)

∂c

∂t
= ∇

(
Dc(a+ b)∇c

)
− μaa

∞

γa

ca

κa + c
− μbb

∞

γb

cb

κb + c
, (2.3)

where a∞[gm−3] and b∞[gm−3] are the maximum cell densities, usually measured in

equivalents of chemical oxygen demand. In (2.1) and (2.2), μa,b[d
−1] are the maximum

growth rates of species a and b, the corresponding decay rates are Ka,b[d
−1]. Growth of

both components is described by standard Monod kinetics, where κa,b[gm
−3] are the half

saturation concentrations and the yield coefficients for nutrient uptake rates are given by

γa,b[−]. The self- and cross-diffusion coefficients Dij , [m
2d−1], i, j ∈ {1, 2} in (2.1), (2.2) are

defined as [21]

⎧⎪⎪⎨
⎪⎪⎩
D11(a, b) = p(m)q(m) + a

(
p(m)q′(m) − q(m)p′(m)

)
,

D12(a, b) = a
(
p(m)q′(m) − q(m)p′(m)

)
,

D21(a, b) = b
(
p(m)q′(m) − q(m)p′(m)

)
,

D22(a, b) = p(m)q(m) + b
(
p(m)q′(m) − q(m)p′(m)

)
,

(2.4)

where p(m) and q(m) are transfer functions describing the local movement of the species

a and b from one site to a neighbouring site.

The transfer function p describes the attractivity of the current site to incoming

individuals and q is a measure of the incentive for individuals to leave their current

position. Therefore, they typically have the following properties:

p′ � 0, p(1) = 0,

q′ � 0, q(0) = 0.

The first property encodes that biomass cannot be deposited into an already full site,

the second one that at current low biomass densities newly produced biomass is not

transferred into neighbouring sites. An additional requirement on the functions p and q

is that the non-linearities must be strong enough to avoid overcrowding, i.e., they must

guarantee that under equations (2.1)–(2.3), the biomass density a+ b is bounded by unity.

Furthermore, we require that in the absence of one species, the cross-diffusion model

reduces to the single-species biofilm model of [6] and, likewise, that if both species have
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the exact same growth behaviour, that a + b is a solution of that single-species model.

This leads to

D(m) = δ
m4

(1 − m)4
= p(m)q(m) + m

(
p(m)q′(m) − q(m)p′(m)

)
, (2.5)

where function D(m) is the density dependent diffusion-coefficient of the single-species

model in [6]. There are infinitely many pairs p and q that satisfy these requirements for

0 � m < 1. In [22], which follows the derivation for the single-species model in [15]

closely, instead of specifying p and q, the product Φ(m) = p(m) · q(m) and the function

Ψ (m) = p(m)q′(m)−p′(m)q(m) are determined, leading to terms involving Hypergeometric

Functions, see also Section 4.4. We aim here to establish instead a pair of functions

p, q that has the same monotonicity properties and satisfies (2.5), but is numerically less

expensive to evaluate. Prompted by equation (2.5), we make the ansatz

p(m) = c1(1 − m)γ, q(m) = c2
mα

(1 − m)β
,

where c1, c2, γ, α, and β are positive constants. These choices of p and q lead to

p′ = −c1γ(1 − m)γ−1,

q′ = c2
mα−1

(1 − m)β+1
(α+ m(β − α)) ,

D(m) = c1c2
mα

(1 − m)β−γ+1
(1 + α+ m(β + γ − 1 − α)) , (2.6)

Choosing α, β and γ such that β + γ = 1 + α results in

D(m) = c1c2(β + γ)
mβ+γ−1

(1 − m)β−γ+1
,

Comparing with D(m) = δ m4

(1−m)4
, we obtain

c1c2(β + γ) = δ, β + γ − 1 = 4, β − γ + 1 = 4.

A set of coefficients that satisfies this is

α = 4, β = 4, γ = 1, c1 =
δ

5
, c2 = 1.

The transfer functions are then

p(m) =
δ

5
(1 − m), q(m) =

m4

(1 − m)4
,

and we obtain ⎧⎪⎪⎨
⎪⎪⎩
D11(a, b) = δ

5

(
m4

(1−m)3
+ am

3(4+m)
(1−m)4

)
, D12(a, b) = δ

5
am

3(4+m)
(1−m)4

,

D21(a, b) = δ
5
bm

3(4+m)
(1−m)4

, D22(a, b) = δ
5

(
m4

(1−m)3
+ bm

3(4+m)
(1−m)4

)
.

(2.7)
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These self- and cross-diffusion functions are rational, involving only polynomial eval-

uations and divisions, but not the more costly Hypergeometric Functions, which were

required for the diffusion coefficients in [22]. We will compare the solutions obtained by

both approaches below in Section 4.4 in a simulation experiment.

The diffusion of substrate in a biofilm is slower than that in the surrounding aqueous

phase [32]. To account for this, we use for the substrate diffusion coefficient Dc in

(2.3) linear interpolation between the values of the diffusion coefficient of the dissolved

substrate in the fully developed biofilm, Dc(1), and in the liquid region, Dc(0), which

results in

Dc(m) = Dc(0) + m
(
Dc(1) − Dc(0)

)
= Dc(0)

(
1 + m(ρ− 1)

)
, (2.8)

in which ρ := Dc(1)
Dc(0)

is the ratio of diffusivity of nutrient in biofilm and liquid. Although

the nutrient diffusion coefficient depends on m, its boundedness from above and below

by constants, 0 < Dc(1) � Dc(m) � Dc(0) < ∞ , indicates that it behaves essentially

Fickian [22].

To study the mathematical model (2.1)–(2.3), we consider a rectangular domain Ω =

[0, L] × [0, H]. The substratum, on which biofilm colonies form is the bottom boundary,

y = 0. We assume that the substratum is impermeable to biomass and dissolved substrate.

A symmetry boundary condition at the lateral boundaries, x = 0 and x = L, is imposed

for all dependent variables. This allows us to view the domain as a part of a continuously

repeating, symmetrically mirrored larger domain, or alternatively as a small pocket in

which a biofilm forms. At the top boundary, y = H , a homogeneous Dirichlet condition

for both biomass species and a Robin condition for the nutrient supply is considered

that reflects that the substrate is added through the top boundary. Thus, the imposed

boundary conditions on domain Ω = [0, L] × [0, H] are defined as follows:

{
∂na = ∂nb = ∂nc = 0 at x = 0, x = L and y = 0,

a = b = 0, c+ λ∂nc = c∞ at y = H,
(2.9)

where c∞ is the bulk substrate concentration and ∂n denotes the outward normal derivat-

ive. Moreover in (2.9), λ is the concentration boundary layer thickness (i.e., essentially the

reciprocal of the external mass transfer coefficient) which is related to the bulk flow velo-

city. A small bulk flow velocity that brings less nutrient supply via convective transport in

the (not explicitly considered) bulk phase implies a thick concentration boundary layer,

while a thin concentration boundary layer that provides more substrate represents fast

bulk flow [7]. Default values of the model parameters and their description are shown in

Table 1.

The Partial Differential Equation (PDE) model in (2.1)–(2.2) shows three non-linear

diffusion effects: (i) degeneracy as in the porous medium equation, i.e., Dij , i, j ∈ {1, 2}
vanish as the dependent variables a, b vanish, (ii) a super diffusion singularity as a + b

approaches to unity, and (iii) cross-diffusion. The effects (i) and (ii) have already been

present in the underlying single-species prototype biofilm growth model of [6], and in

an earlier multi-species model without cross-diffusion effects [14,20]. The porous medium

degeneracy (i) guarantees that the biofilm does not spread notably if there is locally

space available for biomass to accumulate new biomass, and it is also responsible for

the formation of a sharp interface Γ (t) between biofilm and surrounding liquid, i.e.,
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Table 1. Model parameters in the simulation of model (2.1–2.3)

Parameter Symbol Value Unit Source

Maximum specific growth rate of species a μa 6 d−1 [22]

Maximum specific growth rate of species b μb 9 d−1 [22]

Half saturation concentration for species a κa 0.4 gm−3 [22]

Half saturation concentration for species b κb 0.8 gm−3 [22]

Lysis rate Ka,Kb 0.4 d−1 [22]

Maximum biomass density a∞, b∞ 104 gm−3 [22]

Yield coefficient γa, γb 0.63 − [22]

Bulk substrate concentration c∞ 40 gm−3 [22]

Substrate diffusion coefficient in water Dc(0) 10−4 m2d−1 [22]

Substrate diffusion coefficient in biofilm Dc(1) 0.8 × 10−4 m2d−1 [22]

Biomass motility coefficient δ 10−12 m2d−1 [6]

initial data with compact support lead to solutions with compact support. The super-

diffusion singularity (ii) forces the total biomass fraction to be bounded by a constant

strictly less than 1. To see that this behaviour carries over to the dual-species model with

cross-diffusion (2.1)–(2.2) assume that a, b, c is a non-negative solution. Then, due to the

comparison principle, 0 � c � c∞. We have

∂(a+ b)

∂t
= ∇(D11(a, b)∇a+ D12(a, b)∇b) + μa

ca

κa + c
−Kaa

+ ∇(D21(a, b)∇a+ D22(a, b)∇b) + μb
cb

κb + c
−Kbb

� ∇([D11(a, b) + D22(a, b)]∇a+ [D12(a, b) + D21(a, b)]∇b)

+ μ
c(a+ b)

κ+ c
−K(a+ b),

where μ := max{μa, μb}, κ := min{κa, κb}, K := min{Ka,Kb}. Defining now m := a + b

and considering the definitions (2.4) and (2.5), this inequality can be rewritten as

∂m

∂t
� ∇(D(m)∇m) + μ

cm

κ+ c
−Km. (2.10)

Thus, the solution of the single-species biofilm model

∂m̃

∂t
= ∇(D(m̃)∇m̃) + μ

c∞m̃

κ+ c∞
−Km̃. (2.11)

is an upper solution for total biomass fraction m := a+b. The results of [8] on the single-

species model imply that m̃ and therefore m remains separated from the fast diffusion

singularity, i.e., a + b � 1 − ξ for some constant 0 < ξ � 1. Moreover, initial data with

compact support lead to solutions with compact support, i.e., to a finite speed of interface

propagation.
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3 Numerical methods

3.1 Preliminaries

Each of the non-linear diffusion effects (i)–(iii) brings its own numerical challenge. Due

to the power law degeneracy (i), biomass gradients blow up at the biofilm/water interface

Γ (t). This effect is prone to introduce interface smearing or mathematically and physically

unrealistic oscillations in numerical discretisation schemes. Since this effect leads to

solutions with only very little regularity, it is not clear that methods that have been

originally designed and proved to be useful for problems with sufficiently high regularity

can be reliably applied. The super-diffusion singularity (ii) leads to blow-up of the

diffusion coefficients if a + b = 1 and the associated numerical problems if the biomass

comes close to this singularity, a+ b ≈ 1. Although it can be proved that solutions of the

continuous model never attain this singularity, numerical approximations might overshoot

the singularity in its vicinity, in particular if the time steps are chosen too large, leading

to a breakdown of the method. This is in particular a problem for methods with fixed

time-steps, and also for explicit time-adaptive methods because of the stiffness induced

by the singularity, cf. [10] and the discussion therein for the single-species case.

In [10], using regularisation techniques, a semi-discrete approximation of the underlying

single-species biofilm model was analysed, which is obtained by spatial discretisation with

a Finite Volume method. It was shown that adaptive, error controlled implicit solvers for

the resulting initial value problem reliably keep the numerical solution separated from

the singularity, i.e., prevent its overshooting. Furthermore, it was shown that the interface

smearing effects introduced are negligibly small, i.e., the method was found suitable for

problems with properties (i) and (ii). In [9], this was extended to the multi-species model

without cross-diffusion. Per (2.10) the single-species model provides an upper bound on

the solution of the cross-diffusion model, which suggests the application of the same

time-integration approach to the problem at hand.

For cross-diffusion problems, i.e., problems with effect (iii), maximum principles do

not exist. This is reflected in the numerical treatment by instabilities that arise if the

cross-diffusion terms are discretised by the same second-order approximations that are

routinely applied for the self-diffusion terms. One approach to overcome this difficulty,

which was employed in [21] for the cross-diffusion biofilm model at hand together with

a semi-implicit, time-integration scheme with fixed time-steps, is to formally treat the

cross-diffusion terms as convection terms and apply upwinding techniques. It was shown

that this spatial treatment avoids spurious oscillations, keeps interface smearing effects

low and describes the biomass gradient blow-up effect with acceptable accuracy.

In order to obtain an improved numerical method for the cross-diffusion biofilm model

(2.1)–(2.3), we propose to combine the spatial discretisation strategy of [21] with the

time-integration method of [10]. To this end, we rewrite the model as

∂a

∂t
= ∇

(
D11(a, b)∇a− ωaa

)
+ μa

ca

κa + c
−Kaa, (3.1)

∂b

∂t
= ∇

(
D22(a, b)∇b− ωbb

)
+ μb

cb

κb + c
−Kbb, (3.2)
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∂c

∂t
= ∇

(
Dc(a, b)∇c

)
− μaa

∞

γa

ca

κb + c
− μbb

∞

γb

cb

κb + c
, (3.3)

where ωa,b are the cross-diffusion velocities

ωa = −ψ(m)∇b, ωb = −ψ(m)∇a,

with function ψ(m) defined via (2.5) as

ψ(m) := p(m)q′(m) − q(m)p′(m).

For the numerical treatment, we first derive a dimensionless version of the model using

the scalings

x̃ =
x

L
, t̃ = tμa, c̃ =

c

c∞
,

where L is the length of the computational domain and 1
μa

is the characteristic time scale

of biomass growth of type a. Note that the biomass fractions a and b are originally

defined as non-dimensional variables. By these choices, the non-dimensionalized model

reads

∂a

∂t̃
= ∇̃(D̃11(a, b)∇̃a− ω̃aa) +

c̃a

κ̃a + c̃
− K̃aa,

∂b

∂t̃
= ∇̃(D̃22(a, b)∇̃b− ω̃bb) + μ̃b

c̃b

κ̃b + c̃
− K̃bb,

∂c̃

∂t̃
= ∇̃(D̃c(m)∇̃c̃) − νa

c̃a

κ̃a + c̃
− νb

c̃b

κ̃b + c̃
, (3.4)

with

κ̃a =
κa

c∞
, κ̃b =

κb

c∞
, K̃a =

Ka

μa
K̃b =

Kb

μa
,

μ̃b =
μb
μa

νa =
a∞

γac∞
, νb =

μbb
∞

μaγbc
∞ ,

D̃ii =
Dii

μaL
2
, i ∈ {1, 2} ω̃a,b =

ωa,b

μaL
2

D̃c =
Dc

μaL
2
.

For the numerical study and computer simulation, we will consider the non-

dimensionalized model and drop the (˜) for simplicity.

3.2 Spatial discretization

In order to discretize the PDE model (3.4), we define a uniform grid of size N×M for the

rectangular domain [0, 1]× [0, H/L], i.e., we make implicitly the assumption H = L ·M/N.

Integrating the first equation of (3.4) over each grid cell and using the Divergence Theorem

gives for i = 1, . . . , N, j = 1, . . . ,M

d

dt

∫
vi,j

a dxdy =

∫
∂vi,j

Jnds+

∫
∂vi,j

Fnds+

∫
vi,j

R(c) a dxdy, (3.5)
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where vi,j denotes the domain of the cell with grid index (i, j), Jn = D11(a, b)∂na and

Fn = D12(a, b)∂nb = −ωaa denote the outward normal self- and cross-diffusive fluxes

across the grid cell boundary, and R(c) = c/(κa + c)−Ka represents the reaction term. To

find the area integral in (3.5), the dependent variables are evaluated at the centre of the

grid cells,

Ai,j := a(t, xi, yj) ≈ a

(
t,

(
i− 1

2

)

x,

(
j − 1

2

)

x

)
,

Bi,j := b(t, xi, yj) ≈ b

(
t,

(
i− 1

2

)

x,

(
j − 1

2

)

x

)
,

and similarly for the shared nutrient concentration

Ci,j := c(t, xi, yj) ≈ c

(
t,

(
i− 1

2

)

x,

(
j − 1

2

)

x

)
.

for i = 1, . . . , N and j = 1, . . . ,M with 
x = 1/N = H/LM. For later usage, we define also

Mi,j := Ai,j +Bi,j . Integrals in (3.5) are thus approximated by the midpoint rule, including

the line integral which is obtained by considering every edge of the grid cell separately. To

compute the self-diffusive flux between cells (i, j) and (i+1, j), the self-diffusion coefficient

D11(a, b) needs to be evaluated in the midpoint of the cell edge, for which we use the

arithmetic averaging from the neighbouring grid cell centre points. The derivative of a

and b across the cell edge are approximated by a central finite difference. Consequently,

the self-diffusive flux across the edges of cell (i, j) for biomass fraction a, accounting for

the boundary conditions is obtained as

Ji,j+ 1
2

=

{ 1
2�x

(D11(Ai,j+1, Bi,j+1) + D11(Ai,j , Bi,j))(Ai,j+1 − Ai,j) for j < M,

− 2
�x
D11(0)Ai,M for j = M,

(3.6)

Ji,j− 1
2

=

{
0 for j = 1,

1
2�x

(D11(Ai,j , Bi,j) + D11(Ai,j−1, Bi,j−1))(Ai,j−1 − Ai,j) for j > 1,
(3.7)

Ji+ 1
2 ,j

=

{
1

2�x
(D11(Ai+1,j , Bi+1,j) + D11(Ai,j , Bi,j))(Ai+1,j − Ai,j) for i < N,

0 for i = N,
(3.8)

Ji− 1
2 ,j

=

{
0 for i = 1,

1
2�x

(D11(Ai−1,j , Bi−1,j) + D11(Ai,j , Bi,j))(Ai−1,j − Ai,j), for i > 1.
(3.9)

Similarly, we can obtain the expressions for the self-diffusive flux for species b.

For the cross-diffusion terms, which we represented in (3.4) as a convection term, the

velocity component v in the y-direction of velocity vector ωa at the edge between cells

(i, j) and (i, j + 1) is computed using the arithmetic averaging from the neighbouring grid
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cell centre points as

vi,j+ 1
2

=

{ 1
2�x

(
ψ(Mi,j+1) + ψ(Mi,j

)
(Bi,j+1 − Bi,j) for j < M,

− 2
�x
ψ(0)Bi,M for j = M.

(3.10)

The velocity component of ωa in y-direction at the edge between cells (i, j − 1) and (i, j)

can be obtained as

vi,j− 1
2

=

{
0 for j = 1,

1
2�x

(
ψ(Mi,j) + ψ(Mi,j−1

)
(Bi,j−1 − Bi,j) for j > 1,

(3.11)

The velocity components of ωa in x-direction, u, at the edges between cells (i+1, j) and

(i, j) and (i− 1, j) and (i, j) are calculated in the same manner as

ui+ 1
2 ,j

=

{
1

2�x

(
ψ(Mi+1,j) + ψ(Mi,j

)
(Bi+1,j − Bi,j) for i < N,

0 for i = N,
(3.12)

ui− 1
2 ,j

=

{
0 for i = 1,

1
2�x

(
ψ(Mi−1,j) + ψ(Mi,j

)
(Bi−1,j − Bi,j), for i > 1.

(3.13)

Similarly, we compute the velocity components of ωb in x- and y-directions.

Applying the first-order upwind scheme to discretise the cross-diffusion flux results

Fi+ 1
2 ,j

=

{
ui+ 1

2 ,j
Ai,j if ui+ 1

2 ,j
� 0,

ui+ 1
2 ,j
Ai+1,j if ui+ 1

2 ,j
< 0,

(3.14)

Fi− 1
2 ,j

=

{
ui− 1

2 ,j
Ai−1,j if ui− 1

2 ,j
� 0,

ui− 1
2 ,j
Ai,j if ui− 1

2 ,j
< 0,

(3.15)

Fi,j+ 1
2

=

{
vi,j+ 1

2
Ai,j if vi,j+ 1

2 ,j
� 0,

vi,j+ 1
2
Ai,j+1 if vi,j+ 1

2
< 0,

(3.16)

Fi,j− 1
2

=

{
vi,j− 1

2
Ai,j−1 if vi,j− 1

2 ,j
� 0,

vi,j− 1
2
Ai,j if vi,j− 1

2
< 0.

(3.17)

The cross-diffusion flux for b is approximated in the same way.

Putting the above together, we get the following ordinary differential equation for the

biomass species a in the grid cell centre

d

dt
Ai,j =

1


x
(
Ji+ 1

2 ,j
+ Ji− 1

2 ,j
+ Ji,j+ 1

2
+ Ji,j− 1

2

)

− 1


x
(
Fi+ 1

2 ,j
+ Fi− 1

2 ,j
+ Fi,j+ 1

2
+ Fi,j− 1

2

)
+ Ri,jAi,j , (3.18)

in which Rij =
Ci,j

κa+Ci,j
−Ka stands for the reaction term in the equation for a.
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The equation for the nutrient concentration can be discretized in space following the

same principle. The major difference in spatial discretization of nutrient is that we have

a Robin boundary condition at the top boundary instead of homogeneous Dirichlet

condition. We have then

d

dt
Ci,j =

1


x
(
Ĵi+ 1

2 ,j
+ Ĵi− 1

2 ,j
+ Ĵi,j+ 1

2
+ Ĵi,j− 1

2

)
− R1i,j Ai,j − R2i,j Bi,j , (3.19)

with

R1i,j = νa
Ci,j

κa + Ci,j
, R2i,j = νb

Ci,j

κb + Ci,j
, (3.20)

and

Ĵi,j+ 1
2

=

⎧⎨
⎩

1
2�x

(Dc(Mi,j+1) + Dc(Mi,j))(Ci,j+1 − Ci,j) for j < M,

Dc(0)
�x

(
2�x

2λ+�x
− Ci,M

(
1 + �x−2λ

�x+2λ

))
for j = M,

(3.21)

Ĵi,j− 1
2

=

{
0 for j = 1,

1
2�x

(Dc(Mi,j−1) + Dc(Mi,j))(Ci,j−1 − Ci,j) for j > 1,
(3.22)

Ĵi+ 1
2 ,j

=

{
1

2�x
(Dc(Mi+1,j) + Dc(Mi,j))(Ci+1,j − Ci,j) for i < N,

0 for i = N,
(3.23)

Ĵi− 1
2 ,j

=

{
0 for i = 1,

1
2�x

(Dc(Mi−1,j) + Dc(Mi,j))(Ci−1,j − Ci,j), for i > 1.
(3.24)

Introducing the lexicographical grid ordering

π : {1, . . . , N} × {1, . . . ,M} → {1, . . . , NM} , (i, j) �→ p = (i− 1)N + j, (3.25)

and the vector notation A = (A1, . . . , ANM), B = (B1, . . . , BNM), and C = (C1, . . . , CNM)

with Ap := Aπ(i,j) = Ai,j , Bp := Bπ(i,j) = Bi,j and Cp := Cπ(i,j) = Ci,j for i = 1, . . . , N,

j = 1, . . . ,M, we obtain the coupled system of 3 ·N ·M ordinary differential equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dA
dt

= DAA + FAA + RA(C)A + bA,

dB
dt

= DBB + FBB + RB(C)B + bB,

dC
dt

= DCC − R1C (C)A − R2C (C)B + bC.

(3.26)

Remark 3.1 Matrices DA and DB are symmetric, and weakly diagonally dominant with

non-positive main diagonals and non-negative off-diagonals that contain the contribu-

tions of the self-diffusion terms. Matrices FA and FB are weakly diagonally dominant

matrices with non-positive main diagonals and non-negative off-diagonals that carry the

cross-diffusion contribution. The matrices RA(C),RB(C), R1C (C), and R2C (C) are diagonal

matrices that contain the contribution of the reaction terms. Vectors bA, bB , and bC are

obtained from the boundary conditions. For bC , its entries are zero for all grid cells (i, j)

with j < M, and bπ(i,j) = Dc(0)
�x

2
2λ+�x

> 0 for grid points with j = M. Entries of bA and bB
are zero for all grid cells (i, j) with j < M and for grid points with j = M can be obtained
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by (3.6), (3.10), and (3.14). These properties ensure non-negativity of the solution of the

semi-discrete system, by standard invariance arguments.

3.3 Time integration: Embedded Rosenbrock–Wanner methods

We have shown in Section 2 that the solution of the PDE system (2.1)–(2.3) is separated

from unity i.e., the singularity in the diffusion coefficients is not attained. This, together

with the simulation experiments in [9, 10], suggests that using error controlled adaptive

time-stepping methods for (3.26) should prevent the numerical solution from reaching or

overshooting the singularity, which is a breakdown scenario for fixed time-step methods,

such as the semi-implicit method [21]. Among the error-controlled time adaptive initial

value problem solvers, we use embedded ROW methods. More specifically, we use for the

bulk of our work ROS3PRL, a third-order method with four stages [25], which we will

compare against similar variants below in Section 4.5.

In each time step of a ROW method several linear systems need to be solved, the matrix

of which requires the Jacobian of the right-hand side of the ODE system (3.26), see also

Appendix A. For our problem, these matrices are sparse and non-symmetric. To solve this

linear system, we use the stabilised bi-conjugate gradient method [33]. More specifically,

we use a routine from the SPARSKIT library [27], that is prepared for parallel execution

using OpenMP as in [19].

4 Results

The results presented in this section can be grouped as follows: In Section 4.1, we illustrate

the use of the method that we described in Sections 2 and 3 by documenting a typical

simulation. In Sections 4.2 and 4.3, we provide as quantitative tests of the method a

grid convergence study, and the application of the method in a special case where the

solution of the cross-diffusion model can be compared against the solution of a simpler

single-species model, that we solve with a previously established method for that simpler

problem. Finally in Sections 4.4–4.6, we compare variants of the method, with a focus on

computation times. This includes a comparison of different choices of biomass transfer

functions p and q, of embedded ROW methods for time integration, and of two different

approaches to compute the Jacobian that is needed for that.

Most of the simulations reported here, including all for which timing data are provided,

were carried out on a Lenovo P700 ThinkStation with a single Intel Xeon E5-2667 v3

Processor (20MB Cache, 3.20 GHz, 8 cores/16 threads).

4.1 Illustrative simulation

For a first illustrative numerical simulation, we assume that the substratum is initially

inoculated by two semi-spherical colonies, one of species a, the other one of species b, both

with an initial volume fraction of 0.9. The colonies are arranged symmetrically around

the centre of the substratum. The parameter values used are listed in Table 1. We assume

that species b has higher maximum growth rate and half saturation concentration, which

gives it a growth advantage over species a. Nutrients are supplied from the top boundary.

https://doi.org/10.1017/S0956792518000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000554


1048 M. Ghasemi et al.

Figure 1. Biofilm formation and interaction between two different species of biofilm with cross-

diffusion at different times. The colour coding refers to the relative fraction of the biomass of type

a, R = A
A+B

, and the grey-scale isolines are drawn to depict the substrate concentration C .

The computational domain is square of size [0, 1] × [0, 1], uniformly discretised by a

mesh with N ×M = 256 × 256 grid cells. The simulation was terminated when the final

time t = 3.5 is reached.

Snapshots of biofilm structure at different times are shown in Figure 1. Initially, the

individual colonies grow and expand, which leads to the distance between them decreasing.

At t = 0.5, the colonies start merging and mixing of the species begins, leading to a region

in the centre of the biofilm where both species are present. Species b, due to its growth

advantage occupies more space than its competitor, cf. the biofilm structure at t = 1.

The layer in which both species overlap increases, i.e., the biomass gradients in the inner

regions of the colony become less steep, as the biofilm grows with time. Since both species

have different growth parameters symmetry is broken, both in the biofilm structure and

in the substrate concentration field. In this simulation substrate does not become severely

limiting, i.e., the colony that forms after merging remains rather compact.

Whereas Figure 1 shows the structure of the biofilm colony that forms after merging

and the relative distribution of biomass in the colony, we include Figure 2 to illustrate

the mixing of both species in the colony, and to provide information about the biomass

density levels. To this end, we plot for the same time instances as in Figure 1 the

biomass volume fractions as well as the substrate concentration in the grid cells along the

substratum. In the first two time instances after merging, at t = 1, t = 1.5, we observe that

the outer layers of the colony are still occupied by the original inhabitant only. At t = 2.5

species b with growth advantage has completely penetrated the colony, at t = 3.5 also

species a. Due to its growth advantage species b begins to build up faster in the overlapping
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Figure 2. Biofilm formation and interaction between two different species including cross-diffusion

effect at different times. Plotted are the biomass densities A, B, and substrate concentration C along

the line y = 0.03.

domain. Although the substrate concentration in the inner core of the colony becomes

very small, hollowing effects due to starvation are not observed, and the biomass density

remains close to the maximum density throughout the simulation.

In Figure 3, we show how the time step h(t) changes over time. The time-step size

initially increases, indicating that the initial guess for the time-step could have been

chosen larger. After a short plateau phase, it begins to decrease. Around the time at

which both colonies merge the time step size oscillates briefly. Afterwards, starting from

time t ≈ 0.6 the time-step undergoes a steady increase again, although it is occasionally

disrupted by sudden drops, from which the method recovers quickly. This demonstrates

not only the adaptability of the numerical method, but also suggests that the time-adaptive

method allows simulations with significantly larger time steps than the one required by a

fixed-time step method to achieve the same accuracy.

4.2 Grid refinement

We perform a grid refinement study to show the convergence of the numerical method. For

this purpose, we consider a special case of the considered model in which both biomass

types have the same reaction kinetics, namely μa = μb =: μm = 6[d−1], κa = κb =: κm =

0.4[gm−3], Ka = Kn =: Km = 0.4[d−1], γa = γb =: γm = 0.63[−], a∞ = b∞ =: m∞. The

initial condition and tolerance for the ROW method are the same as those in Section 4.1.

We use grids of size N ×M with N = M = 2κ, κ is an integer. We compute the least

square norm of the difference between two subsequent solutions. The least square errors

are defined as EκA =
‖Aκ−Aκ−1‖2

22(κ−1) , EκB =
‖Bκ−Bκ−1‖2

22(κ−1) , and EκC =
‖Cκ−Cκ−1‖2

22(κ−1) , where subscript κ

indicates the grid size. These errors which are reported in Table 2 are computed at t = 2.

This is the time at which the gap between colonies is closed, the two biomass species
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Table 2. Results for grid refinement: Least square norms of the difference between

solutions for grids with 2κ × 2κ and 2κ−1 × 2κ−1 cell resolution, EκA,B,C , at t = 2

κ Eκ
A Eκ

B Eκ
C

5 0.13554882 × 10−2 0.13554882 × 10−2 0.79305360 × 10−3

6 0.12369284 × 10−2 0.12369284 × 10−2 0.57804700 × 10−3

7 0.12924492 × 10−3 0.12924492 × 10−3 0.27762389 × 10−4

8 0.91885915 × 10−4 0.91885915 × 10−4 0.21128131 × 10−4

9 0.33678108 × 10−4 0.33678108 × 10−4 0.38231383 × 10−5

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.5  1  1.5  2  2.5  3  3.5

h(
t)

t

Figure 3. Time course of the value of time-step size.

penetrate into each other and the overlapped region is formed. The computed data shows

a steady decrease in errors EκA, E
κ
B , and EκC as the grid is refined.

A key question for degenerate problems like the one at hand is how the method performs

at interface Γ (t), where biomass gradients blow-up. To illustrate this, we show for the

grid resolutions with N = M = 2κ, κ = 4, . . . , 9 the profile of the biomass fractions in the

grid layer y = 0.03 adjacent to the substratum at time t = 2. This is the time for which

also the results in Table 2 were reported. As expected, the simulations show symmetry

since the same reaction kinetics are assumed for both species. For coarse resolutions,

N = 16, 32, substantial interface smearing occurs, which however vanishes for finer grids

with N � 128. This suggests that the method is able to describe gradient blow-up effects.

The location of the interface, and thus the size of colony, converges quickly as the grid
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Table 3. Least square norms of difference between the solution of the cross-diffusion problem,

A+ B, and the solution of the single-species problem M, Eκ, at t = 2 for different number

of grid cells N ×N = 2κ × 2κ

κ Eκ

4 0.25638711 × 10−3

5 0.49430582 × 10−4

6 0.18812184 × 10−4

7 0.86763930 × 10−5

8 0.27333315 × 10−5

9 0.63403576 × 10−6

Figure 4. Profiles of biomass volume fractions A, B, and substrate concentration C at t = 2 for

different grid resolutions. Plotted are the biomass densities A, B, and substrate concentration C

along the line y = 0.03.

is refined, suggesting that a grid resolution of N = 256 suffices for the simulation of this

problem to achieve a good trade-off between accuracy and computational time.

4.3 Comparison against a solution of the single-species model

If identical reaction parameters are specified for both species, as in Section 4.2, the total

biomass m := a+ b is a solution of the corresponding single-species biofilm model

∂m

∂t
= ∇(D(m)∇m) + μm

cm

κm + c
−Kmm,

∂c

∂t
= ∇(Dc(m)∇c) − μmm

∞

γm

c

κm + c
, (4.1)
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with D(m) = δmα(1 − m)−β . In the absence of a non-trivial analytical solution to the

cross-diffusion model, against which we could compare our numerical solution we use

the single-species model as a test case. We compare the numerical solution of the cross-

diffusion equations A,B,C against the numerical solution M of the single-species model

obtained by the adaptive method in [10] which our method generalizes. We compute

the least square errors between A + B and M for different number of grid cells n as

En = ‖(A+B)−M‖2

n2 . The initial condition and tolerance of the ROW method are the same as

those in Section 4.1 and again the difference in solutions is reported for t = 2. The value

of En for coarse grids is relatively small and decreases steadily further by refining the

number of grid cells, see Table 3. This shows that the solution of the method which uses

first-order upwinding for cross-diffusion terms converges to the expected solution as the

grid is refined, i.e., that the discretisation errors introduced by treatment of cross-diffusion

terms by simple first-order upwinding become negligible for sufficiently fine grids. In

particular, the characteristic smearing by numerical diffusion is kept small around the

interface.

4.4 Comparison of the newly obtained diffusion coefficients against those based on

Hypergeometric Functions

The self- and cross-diffusion coefficients that we derived in Section 2 are different from

those previously used in [21, 22]. We compare here the solutions obtained by both

approaches. In [21, 22], the coefficients were written as{
D11(a, b) = Φ(m) + aΨ (m), D12(a, b) = aΨ (m),

D21(a, b) = bΨ (m), D22(a, b) = Φ(m) + bΨ (m),
(4.2)

where Φ(m) and Ψ (m) are defined via the density dependent diffusion coefficient of the

underlying single-species model, D(m), as

D(m) = δmα(1 − m)−β = Φ(m) + mΨ (m),

Φ(m) =

(
1 −

∫ m

0

D(s)ds

) ∫ m
0
D(s)ds

m
. (4.3)

For general exponents α and β, the integral is expressed as∫ m

0

D(s)ds =
mα+1

α+ 1
2F1(α+ 1, β; α+ 2, s), (4.4)

where 2F1 is a Hypergeometric Function. For specific values of α and β, in particular

integers as in our case, these integrals can be expressed in terms of elementary func-

tions [30], but still require in addition to polynomials and divisions the evaluations of

logarithms. For comparison, we assume that the initial condition is the same as in Section

4.1. The least square difference between solutions obtained by these two methods are

defined as: EA = ‖AH−A‖2

N2 , EB = ‖BH−B‖2

N2 , and EC = ‖CH−C‖2

N2 where index H stands for

using the Hypergeometric Function as in (4.3) and (4.4). The differences between the

solution and a comparison of the CPU time for each method to find the solution at t = 2

are shown in Tables 4 and 5 for different number of grid cells. The differences between
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Table 4. Least square norms of the difference between solutions obtained by using Hypergeo-

metric Function and the proposed scheme in Section 2 for grids with 2κ × 2κ cell resolution,

E, at t = 2

κ EA EB EC

5 0.649999 × 10−4 0.649998 × 10−4 0.178283 × 10−3

6 0.326207 × 10−4 0.326206 × 10−4 0.864977 × 10−4

7 0.251905 × 10−4 0.251905 × 10−4 0.425207 × 10−4

8 0.183171 × 10−4 0.183171 × 10−4 0.211366 × 10−4

The tolerance of each ROW method is TOL = 1e− 7.

Table 5. Elapsed CPU time of the simulation with diffusion coefficients of [22] according

to (4.2), (4.3), (4.4), relative to the simulation time of the model with diffusion coefficients

according to Section 2, evaluated at t = 2 for different grid resolutions N ×N = 2κ × 2κ

κ rel. CPU time

5 1.1412

6 1.1550

7 1.2068

8 1.2882

The tolerance of the ROW method is TOL = 1e− 7.

the solutions are small and decrease slowly as the grid is refined. This indicates that the

solutions obtained depend not strongly on the specifics of the choices of functions p and

q, as long as they have the properties laid out in Section 2. However, the simulations with

the self- and cross-diffusion coefficients that were derived in Section 2 appear faster than

the previous coefficients of [22], by approximately 15∼30% for all grid sizes.

4.5 Comparison of different ROW embeddings

In this section, we compare the numerical solution obtained by ROS3PRL with the

solutions obtained by two other embedded ROW methods of the same order, namely

ROS34PW2 and ROS34PRW. ROS34PW2 is a strongly A-stable method which is obtained

by assuming that the ROW method satisfies the stiffly accurate condition [23]. ROS34PRW

is based on a new order condition for the small local error in solving the Prothero–

Robinson equation [24]. We refer to Appendix A for the Butcher tableaus of these three

methods. While we expect that all three time integrators will give similar results for the

problem at hand, our focus will be on the variability of compute times achieved.

For our comparisons, we assume that the initial condition is the same as in Section 4.1

and the computational domain is uniformly discretised by a mesh with N×M = 256×256

grid cells. For proper comparison, we set the tolerance of all methods to the same value,

namely TOL = 1e − 7. Assuming, therefore, that all methods achieve similar accuracy,
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Table 6. Elapsed CPU time for ROS34PW2, ROS34PRW relative to ROS3PRL for

solving ODE system (3.26), evaluated at t = 2

ROS34PW2 ROS34PRW

relative CPU time vis-a-vis ROS3PRL 1.1101 1.2927

The cell resolution is N = M = 256 and the tolerance of each ROW method is TOL = 1e− 7.
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Figure 5. Time-step size, h(t), for three different types of ROW method: ROS34PW2,

ROS34PRW, and ROS3PRL.

the comparison criterion is the compute time required. The value of time-step size and

a comparison of CPU time for these three types of ROW methods for solving ODE

system (3.26) are shown in Figure 5 and Table 6. The time-step initially increases for

all three methods indicating that the initial value of h(t) could have been chosen larger.

After a plateau phase, which is longest for ROS3PRL, at about the time that merging of

colonies takes place, time-step oscillation occurs in all three methods, but the oscillation

phase in ROS34PW2 and ROS34PRW last longer than for ROS3PRL. Afterwards, the

time-step reaches a plateau phase at a higher level and remains on there until the end

of the simulation, whereas for ROS34PW2 and ROS34PRW time-step fluctuations are

observed. While the CPU time for the three methods are of the same order of magnitude,

ROS3PRL is about 10% faster than ROS34PW2, which in turn is about 10% faster than

ROS34PRW.
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Table 7. Least square error between solutions obtained with an analytical expression of the

Jacobian (obtained using Maple) and a finite difference approximation, EANA,B,C , for different

grid sizes 2κ × 2κ at t = 2

κ EAN
A EAN

B EAN
C

5 0.57219704 × 10−8 0.57513159 × 10−8 0.35210175 × 10−8

6 0.93127701 × 10−8 0.93106705 × 10−8 0.51523097 × 10−8

7 0.79606632 × 10−8 0.79604554 × 10−8 0.24516744 × 10−8

8 0.10302779 × 10−7 0.11174099 × 10−7 0.10777266 × 10−8

For the numerical approximation, a step size is chosen relative to the value of the dependent variable i.e for

derivatives with respect to a the step size is max{Δ · a, 10−10} and similar for b and c.

4.6 Comparison of analytical Jacobian versus finite difference approximation

ROW methods need in every time step the evaluation of the Jacobian matrix of the

right-hand side of the underlying ODE system. For highly non-linear systems like ours

this can be cumbersome, even if computer algebra systems are used. An alternative is to

approximate the Jacobian numerically, e.g., by finite differencing. The latter approach is

easy to implement but can become computationally expensive.

To compare both approaches, we compute the least square norm of the difference

between solutions obtained by analytical and finite difference approximations of the

Jacobian matrix for various number of grid cells, and various finite difference step sizes.

The initial condition in these tests is the same as in Section 4.1 and the tolerance of ROW

method is set at TOL = 1e− 7 and results are computed at t = 2.

The difference between solutions obtained by analytical and numerical schemes to

compute the Jacobian matrix is computed as EANA = ‖AANA−ANUM‖2

N2 , EANB = ‖BANA−BNUM‖2

N2

and EANC = ‖CANA−CNUM‖2

N2 , where indices ANA andNUM stand for analytical and numerical

scheme, respectively. We use for the numerical approximation of the Jacobian a step size

that is chosen relative to the value of the dependent variable. Where the dependent

variable vanishes, we use a small absolute step size, i.e., we have for derivatives with

respect to a the step size max{Δ · a, 10−10} and similar for b and c. We first choose the

value of Δ to be 10−4. Later on we will vary Δ.

For all grid resolutions the differences between the solutions obtained with analytical

and numerical Jacobians are small. The quality of the approximation appears independent

of the grid resolution in the sense that finer grids do not necessarily lead to better

agreement, cf. Table 7. Using the numerical approximation is computationally more

expensive than using the analytical expression of the Jacobian, cf Table 8. The difference

in compute time increases faster than the spatial step-size. For the smallest grid with

N = 32, the simulation with numerical approximation of the Jacobian requires twice as

long as the simulation with the analytical expression. For the finer grid, the difference

between both approaches is approximately factor 10.

The finite difference approximation of the Jacobian introduces an additional degree of

freedom in the numerical method, namely the step-size Δ used for the approximation.

To study how this parameter affects accuracy, we compute the least square norm of
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Table 8. Elapsed CPU Time of the simulation of the solution of ODE system (3.26) using a

finite difference approximation of the Jacobian, relative to an analytical expression (obtained

using Maple), for different numbers of grid cells N ×N = 2κ × 2κ at t = 2

κ rel. CPU time

5 1.9179

6 4.7335

7 10.770

8 8.7405

Table 9. Least square error between solutions obtained by finite difference approximation of

the Jacobian with different values of step-size Δ, and the ones obtained with the analytical

expression, EΔA,B,C , for N ×M = 256 × 256 as the grid resolution at t = 2

Δ EΔ
A EΔ

B EΔ
C

10−2 0.33782351 × 10−6 0.33782618 × 10−6 0.96109200 × 10−8

10−3 0.56486691 × 10−7 0.56482495 × 10−7 0.25513969 × 10−8

10−4 0.10302779 × 10−7 0.10301568 × 10−7 0.10878556 × 10−8

10−5 0.22194184 × 10−8 0.22270281 × 10−8 0.10424320 × 10−8

10−6 0.29534966 × 10−8 0.29590839 × 10−8 0.99652974 × 10−9

differences between the solutions obtained by finite differencing for various values of Δ

and the one resulted by using the analytical expression. It is defined as EΔA = ‖AANA−AΔ‖2

N2 ,

EΔB = ‖BANA−BΔ‖2

N2 , and EΔC = ‖CANA−CΔ‖2

N2 . The error decreases steadily by decreasing Δ up to

Δ = 10−5, but further decreases in Δ increase the error, cf Table 9. This suggests that too

small step sizes for the finite difference approximation can introduce numerical artefacts,

e.g., via cancellation.

5 Conclusion

The main objective of our study was to investigate the applicability of a time-adaptive,

error-controlled method to solve a highly non-linear partial differential equation system

that arises in biofilm modelling. This PDE system has three non-linear diffusion effects,

all of which bring their own numerical challenges: (i) porous medium degeneracy as the

dependent variables vanish, m := a+ b = 0 vanishes, (ii) super-diffusion singularity as m

approaches to unity, and (iii) non-linear cross-diffusion. A semi-discrete ODE approxim-

ation is obtained by spatial discretisation using a standard Finite Volume Method. Since

the solutions to the PDE have low regularity, previously only low-order time integration

schemes have been used, typically with fixed time steps.

The method for the cross-diffusion biofilm model generalizes an earlier method for the

single-species biofilm model and inherits many of its properties with respect to (i) and

(ii) above. The method is able to describe biomass gradient blow-up at the biofilm/water
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interface well. It keeps interface smearing effects small, despite the low-order treatment

of cross-diffusion terms by first order upwinding. This first-order upwinding, despite its

proneness to numerical diffusion, was employed to ensure the preserving of non-negativity.

We demonstrated practically that error controlled adaptive methods can prevent the

numerical solution from overshooting the singularities of the equation. Nevertheless, a

rigorous proof of the boundedness of solutions of the spatially discretized system by unity,

a+ b � 1, is an open problem. For the single-species case and for a simpler multi-species

model without cross-diffusion this was previously shown in [9, 10] by regularization. We

could not carry this over to the cross-diffusion problem studied here.

In our study, we compared several variants of the model and method with respect to

simulation times:

• We proposed a new set of transition functions that describe the spatial behaviour of

biomass. It gives the same results that one obtains with previously proposed self- and

cross-diffusion coefficients, but the numerical simulations are approximately 20% faster,

due to the simpler arithmetic operations involved. This suggests that from a modelling

perspective the actual choice of the transition functions is not essential, as long as they

satisfy certain properties that we described above.

• Among three different embedded ROW methods of the same order and with the same

number of stages, we found computing time variations of up to 30%. This suggests that

simulation time is relatively sensitive to the choice of time integrator, even within one

class of methods.

• ROW methods require in every time step the computation of the Jacobian of the system.

Obtaining those analytically, even with the help of computer algebra systems, can be

cumbersome. The alternative is to approximate the Jacobian numerically, which is

straightforward but can be computationally expensive, due to the non-linearities in the

diffusion coefficients. While the differences in simulation results are small, computation

times vary greatly. The actual difference depends on the grid size, and becomes larger

as the grid is refined. For the smallest grid size tested, the difference was by a factor 2,

for the largest one by a factor 10. This suggests that for simulation experiments that

may consist of dozens or hundreds of simulations, the extra effort to form the Jacobian

analytically, may pay off.

The numerical treatment of the biofilm cross-diffusion model that we discussed here is

rather generally applicable and it should be straightforward to extend it to more involved

multi-species degenerate cross-diffusion systems.
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Appendix A Rosenbrock–Wanner method

Consider the initial value problem

u’(t) = f(u(t)) u(t0) = u0. (A 1)

A s-stage ROW method to solve equation (A 1) is defined as [25]

ki = f(tm + αit, u
m + τ

i−1∑
j=1

αijkj) + τfu

i∑
j=1

γijkj + τγift i = 1, . . . , s (A 2)

um+1 = um + τ

s∑
i=1

biki, (A 3)

where αij , γij , and bi are the parameters of the method, fu = fu(tm, u0) is the Jacobian

matrix, ft = f’(tm, u0) and αi =
∑i−1

j=1 αij [25]. In order to find the coefficients ki, i = 1, . . . , s,

a linear system needs to be solved in each time-step which is sparse and non-symmetric

for our problem. To solve this linear system, we use the stabilised bi-conjugate gradient

method [33]. More specifically, we use a routine from the SPARSKIT library [27], that is

prepared for parallel execution using OpenMP as in [19].

The embedded method which is used to control the error has order p− 1 and gives the

embedded solution as follows:

ûm+1 = um + τ

s∑
i=1

b̂iki, (A 4)
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Table A 1. Set of coefficients for ROS3PRL [25]

γ = 0.43586652150845900

α21 = +0.50000000000000000 γ21 = −0.50000000000000000

α31 = +0.50000000000000000 γ31 = −0.79156480420464204

α32 = +0.50000000000000000 γ32 = +0.35244216792751432

α41 = +0.50000000000000000 γ41 = −0.49788969914518677

α42 = +0.50000000000000000 γ42 = +0.38607515441580453

α43 = +0.00000000000000000 γ43 = −0.32405197677907682

b1 = +0.00211030085481324 b̂1 = +0.50000000000000000

b2 = +0.88607515441580453 b̂2 = +0.38752422953298199

b3 = −0.32405197677907682 b̂3 = −0.20949226315045236

b4 = +0.43586652150845900 b̂4 = +0.32196803361747034

Table A 2. Set of coefficients for ROS34PW2 [23]

γ = 0.43586652150845900

α21 = +0.87173304301691801 γ21 = −0.87173304301691801

α31 = +0.84457060015369423 γ31 = −0.90338057013044082

α32 = −0.11299064236484185 γ32 = +0.054180672388095326

α41 = +0.00000000000000000 γ41 = +0.24212380706095346

α42 = +0.00000000000000000 γ42 = −1.22325058390451470

α43 = +1.00000000000000000 γ43 = +0.54526025533510214

b1 = +0.24212380706095346 b̂1 = +0.37810903145819369

b2 = −1.22325058390451470 b̂2 = −0.096042292212423178

b3 = +1.54526025533510200 b̂3 = +0.50000000000000000

b4 = +0.43586652150845900 b̂4 = +0.21793326075422950

Table A 3. Set of coefficients for ROS34PRW [24]

γ = 0.43586652150845900

α21 = +0.87173304301691801 γ21 = −0.87173304301691801

α31 = +0.14722022879435914 γ31 = −0.12855347382089872

α32 = −0.31840250568090289 γ32 = +0.50507005541550687

α41 = +0.81505192016694938 γ41 = −0.48201449182864348

α42 = +0.50000000000000000 γ42 = +0.21793326075422950

α43 = −0.31505192016694938 γ43 = −0.17178529043404503

b1 = +0.33303742833830591 b̂1 = +0.25000000000000000

b2 = +0.71793326075422947 b̂2 = +0.74276119608319180

b3 = −0.48683721060099439 b̂3 = −0.31472922970066219

b4 = +0.43586652150845900 b̂4 = +0.32196803361747034
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The advantage of the embedded ROW method is that it controls the time-step size to

prevent unnecessary computational effort for small time-steps and less accurate results

when the time-step is large. Furthermore, solving non-linear systems that occurs in other

types of Runge–Kutta method can be omitted. In order to control the time-step size, the

numerical error is defined as follows:

r =
1

N
‖û − u‖2, (A 5)

where N is the number of grid cells. The standard controller coefficient is computed as

follows:

rt = ρ(
TOL

r
)

1
p , (A 6)

where ρ ∈ (0, 1] is a safety factor, TOL > 0 is a given tolerance that determines the

accuracy of the method and p is the order of the method. We compute the new time-step

as follows: {
r � TOL

10
→ hnew = min(rt, 4) × hold,

r � TOL → hnew = max(rt, 0.3) × hold.
(A 7)

For TOL
10

< r < TOL the time-step is accepted and the ROW method continues with the

previous time-step. The Butcher tableau of the three types of ROW methods considered

in Section 4.5, ROS3PRL, ROS34PW2, and ROS34PRW, is shown below.
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