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1. Introduction. Using the definition of a Riemann surface, as given for example by
Ahlfors and Sario, one can prove that all Riemann surfaces are orientable. However by
modifying their definition one can obtain structures on non-orientable surfaces. In fact non-
orientable Riemann surfaces have been considered by Klein and Teichmiiller amongst others.
The problem we consider here is to look for the largest possible groups of automorphisms of
compact non-orientable Riemann surfaces and we find that this throws light on the corre-
sponding problem for orientable Riemann surfaces, which was first considered by Hurwitz [1].
He showed that the order of a group of automorphisms of a compact orientable Riemann
surface of genus g cannot be bigger than 84(¢g—1). This bound he knew to be attained because
Klein had exhibited a surface of genus 3 which admitted PSL(2, 7) as its automorphism group,
and the order of PSL(2, 7)is 168 = 84(3—1). More recently Macbeath [5, 3] and Lehner and
Newman [2] have found infinite families of compact orientable surfaces for which the Hurwitz
bound is attained, and in this paper we shall exhibit some new families.

2. Riemann surfaces and NEC groups. By a Riemann surface in this paper we shall mean
a surface § together with an open covering by a family of sets % = {U;} with the properties

1. For each U;e% there exists a homeomorphism ¢;: U; — C, where C is the complex
plane.

2. If U, U;e% and U,nU; # 0 then ¢;0¢; ' is a conformal or anticonformal mapping
defined on ¢ (U;nU)).

A homeomorphism f: S — S is called an automorphism if ¢;o f o¢; ! is either a conformal
or anticonformal mapping in its domain of definition. If § is an orientable surface and fis
orientation preserving (reversing) then f'is called a +automorphism (—automorphism). (In
the papers of Macbeath, Lehner and Newman etc., their automorphisms are +automorphisms.)

+ Automorphisms of orientable Riemann surfaces have been studied by means of
Fuchsian groups. We shall study automorphisms of non-orientable Riemann surfaces by
means of the non-Euclidean crystallographic (NEC) groups introduced by Wilkie [7].

Let D denote the upper-half complex plane and ¢ the group of conformal and anti-
conformal homeomorphisms of D. The elements of ¥ are the transformations of the form

Q) z_)az+b

a,b,c dreal,ad—bc=1,

a, b, c,dreal, ad—bc = —1.

The elements of type (i), the conformal homeomorphisms, form a subgroup of index 2 in
% which we denote by 4.
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@ has a topology induced by the numbers a, b, ¢, d. It has two components, namely ¢*
and 9—¥*. An NEC group is a discrete subgroup of % and an NEC group contained in ¢*
is called a Fuchsian group. An NEC group which contains elements of ¥ — %™, i.e. orientation
reversing elements, will be called a proper NEC group. We shall only be interested in NEC
groups I' for which the orbit space D/T is compact, and in this paper the term NEC group
means a discrete subgroup of ¢ with compact orbit space. Similarly by a surface we shall
mean a compact surface.

Associated with an NEC group I' we have a I'-fundamental region which is defined in
exactly the same way as for Fuchsian groups. Moreover many of the basic results concerning
the fundamental region are the same for NEC groups as for Fuchsian groups. For example
the non-Euclidean area of a fundamental region of an NEC group depends only on the group
and not on the region chosen. Thus we can denote the non-Euclidean area of a fundamental
region for I by w(I'). Then if A is a subgroup of finite index in I" we have

A= M
|T:A| D) )
In particular, if I' is a proper NEC group, then it has a subgroup I'* of index 2 consisting of
the elements which preserve orientation (i.e. T'* =I'n@™*). T'* iscalled the canonical Fuchsian
group of I, and we have, from (1),

w(I*) = 2u(T). @

From a I'-fundamental region Wilkie obtained a presentation for I.  From his work we
deduce that there are two classes of groups which act without fixed points. The first type,
which we denote by A,, has presentation

{ah bl’ e ag, bg: lgl [aia bl] = 1} (g g 2)’ (31)

where [a;, b] = a;b;a; *b; !,

The orbit space DA, is an orientable surface of genus g. A, is called an orientable surface
group and is a Fuchsian group. The canonical projection IT: D — D/A,, which defines D as a
smooth covering of D/A,, induces an analytic structure on D/A, in such a way as to make
D/A, into a Riemann surface and IT an analytic map.

The second type of group, which we denote by A, has the presentation

{ay,a5,...a,; ataj...a2=1} (p23) 3.2

The orbit space DA, is a non-orientable surface of genus p (i.e. a sphere with p cross-caps).
A, is called a non-orientable surface group and is a proper NEC group, the a; being glide
reflections. The canonical projection I1: D — D/A,, which again defines D as a smooth
covering of D/A,, induces an analytic and anti-analytic structure on DA, so that D/A,
becomes a Riemann surface and IT an analytic or anti-analytic map.

(We shall reserve the suffix g for orientable surface groups and the suffix p for non-
orientable surface groups.)
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From the Gauss-Bonnet theorem we can deduce the following two formulae
Ay =4n(g—-1), wA,)=2n(p-2). 4

Now from (2) we deduce that the genus of the orientable surface D/A; is p—1. D/A;
is the orientable two-sheeted covering surface of D/A,,.

IfI'"is an NEC group, denote the I'-orbit of z by [z], so that [z]-€ D/[. Wecan now write
the canonical projection from D/A; — D/A, by

[1az = [2a,

and hence it is a smooth analytic or anti-analytic map.

Let S be any non-orientable Riemann surface of genus p = 3. Then its orientable two-
sheeted covering surface S* has genus g = 2 and hence, by uniformization theory, has D as
its universal covering space. Thus D is the universal covering space of S and we deduce that
there exists a non-orientable surface group A, such that

S = D/A,.

If f: § — S is an automorphism of S then by standard techniques, as described for instance in
[4], f may be written

f[Z]A,, - [gz]Ap

where ge ¥ and gA, = A g.

We deduce that any group of automorphisms of S is of the form I'/A, where I is a proper
NEC group. Conversely I'/A,, acts as a group of automorphisms of D/A,, because if geI"
then the mapping

[21a, = [921a,

is an automorphism and, if we vary g over its A, coset, it does not alter the automorphism.
The corresponding result for orientable Riemann surfaces is similar and well known. A
group G acts as a group of +automorphisms of D/A, if and only if G =T/A, where T is a
Fuchsian group. It is clear that G acts as a group of automorphisms of D/A,, if and only if
G =T'/A,, where I' is an NEC group.
The order of the groups I'/A,, T'/A, are calculated as follows:

uA,) _4n(g—1)

T/A,| = = , 5.1
TM = = G
A, 2n(p-2)
T/A|=—FX = . 5.2
T =@ = =D G2
Thus a group of automorphisms of a non-orientable (orientable) Riemann surface of

genus p = 3 (g = 2) is finite.

THEOREM 1. A necessary and sufficient condition for a finite group G to be a group of
automorphisms of a non-orientable Riemann surface of genus p 2 3 is that there exists a proper
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NEC group T and a homomorphism 0:T — G such that the kernel of 0 is a surface group and
or*)=0.

Proof. First we suppose that G is a group of automorphisms of a non-orientable Riemann
surface of genus p = 3. Then, from the above, G =I'/A,, where A, is a non-orientable surface

group and I is a proper NEC group. Hence there exists a homomorphism 8:I" —» G whose
kernel is a non-orientable surface group. Thus there exists

teker0n(C—-T").
Write T =I'* +1T'* and 6(T*) = G*. Then
G=0)=0T*+1I'*)=06")+0()6(T*)=G*+G* =G*.
Thus (I'*) = G.
For the converse, suppose that there exists a homomorphism §:I' —» G such that (T'*) = G

and ker 0 is a surface group A. Now, if A were an orientable surface group, A< I'*, so that
A is the kernel of the restriction of 8 to T'*. Thus

G=T"*A=TJA,
which is evidently impossible. Thus A is a non-orientable surface group and G is a group of

automorphisms of a non-orientable Riemann surface of genus p = 3.

COROLLARY. If G is a group of automorphisms of a non-orientable Riemann surface, then
G is a group of + automorphisms of its orientable two-sheeted covering surface.

Proof. By the theorem there exists a proper NEC group I' and a homomorphism
0:T = G such that 8(I'*) = G. Let 8™ be the restriction of §to I'*. Then 8*:I'* - G and it
1s easy to see that

(ker6*) = (ker6)*,

so that G is a group of +automorphisms of D/(ker8)*, which is the orientable two-sheeted
covering surface of Dfker 8.

3. Large groups of automorphisms of non-orientable Riemann surfaces. From (5) we see
that we obtain large groups of automorphisms by finding finite groups which are homomorphic
images of NEC groups with small measure of fundamental region.

The measure of a fundamental region of a Fuchsian group is bounded below by n/21 and
this bound is attained only for the (2, 3, 7) group, i.e. the group with presentation

{x,y;x2 =3 =(xy)’ = 1}. 6)

This group may be obtained as follows. Consider a non-Euclidean triangle with angles =/2,
n/3, n/7 and let A be the proper NEC group generated by the reflections ¢, ¢,, ¢; in the three
sides of the triangle. A has the presentation

{e1, €3, €33 Cf =c;= C§ = (¢, ‘—'z)2 =(c;¢3) = (¢, 03)7 = 1}- M

A* is the (2, 3, 7) group with presentation (6) (x = ¢, ¢,, y =c;¢3).
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u(A) = n/42 and A is the NEC group which has the smallest area of fundamental region.
It is easy to see that A is the only group up to isomorphism with this property.

As the measure of fundamental region of a Fuchsian group is bounded below by n/21,
Hurwitz’s result that the order of a group of +automorphisms of an orientable Riemann
surface of genus g cannot be bigger than 84(g— 1) follows by (5.1). Moreover, as u(I') = n/21
ifand only if I ~ A*, it follows from (5.1) that G is a group of 84(g— 1) +automorphisms of a
compact orientable Riemann surface of genus g, if and only if

G~ A¥[A,,

where A, is an orientable surface group. Now the only normal subgroups of A* are orientable
surface groups. For they are Fuchsian groups, and if they are not surface groups they must
possess elements of finite order. It is known that the only elements of finite order in A* are
conjugate to x, y, or xy. Thus a normal subgroup N containing elements of finite order must
contain x, y, or xy. Suppose that xe N. Then under the canonical homomorphism from

A" to A*/N, x must map to e, the identity. Suppose that y maps to y. Then, from (6),
JP=(ey) =1,
so that y = 1 and N = A*. Similarly, if N contains y or xy, N = A*. It now follows that G
is a group of 84(g—1) +automorphisms of an orientable Riemann surface of genus g if and
only if G is a finite factor group of A*; i.e. G is generated by two elements X, Y, which obey
the relations
X’=Y=XY) =1. (8)

This is another result of Hurwitz and we shall call such a finite group G a Hurwitz group.

Now let us consider the non-orientable case. If I is an NEC group, then u(I') = n/42
and u(I') = /42 if and only if I’ ¥ A. Hence, from (5.2), the order of a group G of auto-
morphisms of a non-orientable surface of genus p is bounded above by 84(p—2) and equality
holds if and only if

G~ A/A,,

where A, is a non-orientable surface group. Also, by exactly the same methods as before, we
can show that all normal subgroups of A of index greater than 2 are surface groups.

DEerINITION. A group of 84(p—2) automorphisms of a non-orientable Riemann surface of
genus p will be called an H*-group.

THEOREM 2. G is an H*-group if and only if it is finite and contains three generators
C,, C,, Cy, which obey the relations

Cl=C3=Ci=(C,C)" =(C,C3)* =(C,Cy) =1, )
and G is generated by C, C, and C, C;.

Proof. If G isan H*-group, there exists a homomorphism 8:A — G such that #(A*) = G,
and so G has generators as described in the theorem. Conversely, if G has these generators,
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there exists a homomorphism 0:A — G such that 6(A*) = G and the kernel of 6 must be a
surface group, as all normal subgroups of A of index greater than 2 are surface groups. By
applying Theorem 1 we deduce that G is an H*-group.

CoROLLARY (a). If G acts as an H*-group on a non-orientable surface S, then G acts as a
Hurwitz group on the orientable two-sheeted covering surface of S. In particular, every H*-group
is a Hurwitz group.

Proof. This follows from the corollary to Theorem 1.

COROLLARY (b). A Hurwitz group G generated by X, Y, which obey the relations (8), is an

H*-group if and only if there exists Z € G such that
2 =(ZX)Y=(ZY) =1 (10)

Proof. If such a Z exists, then G is generated by C, = ZX, C, = Z, C, = ZY obeying
the relations (9) and also C,C, = X, C,C; = Y. Thus, by the Theorem, G is an H*-group.
Conversely, if G is an H*-group generated by C,, C,, C; obeying (9) and also generated by
X=C,C,, Y=C,C;, then Z = C, obeys the relations (10).

4. The existence of H*-groups. In Corollary (a) of Theorem 2 we showed that an
H*-group is a Hurwitz group. Thus, when looking for H*-groups, we need only look
amongst Hurwitzgroups. Macbeath [5] has determined all thelinear fractional Hurwitz groups.
We state his result: .

PSL(2, q) is a Hurwitz group if and only if (1) q = p, where p is prime andp = £ 1 (mod 7),
or (ii) g = p3, where p is prime and p £ 0, +1 (mod 7), or (iii) g = 7.

In case (i) there are three distinct orientable Riemann surfaces upon which the group acts
as a Hurwitz group. In cases (ii) and (iii) there is only one such Riemann surface.

The two smallest Hurwitz groups are PSL(2, 7) and PSL(2, 8), which act on surfaces of
genus g = 3, g = 7 respectively.

THEOREM 3. (i) PSL(2, 7) is not an H*-group, (ii) PSL(2, 8) is an H*-group.

Thus the smallest value of the genus for which a non-orientable Riemann surface admits
84(p—2) automorphisms is p = 8.

Proof (i). |PSL(2,7)| = 7x24 so that Z, is a Sylow 7-subgroup of PSL(2,7). By the
Sylow theorems there are eight Z,’s and they are all conjugate; therefore the normalizer of a
Z; has order 168/8 = 21. If PSL(2, 7) were an H*-group, then by the relations (9) we would
deduce that PSL(2,7) contains a dihedral group of order 14, which in turn contains a Z,
normal in the dihedral group. Thus the dihedral group is a subgroup of the normalizer, which
is a contradiction because 14 does not divide 21.

(ii). It has been shown by Macbeath [5] that two elements X, Y of a linear fractional
Hurwitz group, which obey the relations (8), generate the group. We thus look for two such
elements X, Y in PSL(2, 8). It is known that two elements of PSL(2, 8) are conjugate if and
only if they have the same trace (Newman [6]). Elements of PSL(2, q) of order 2 have trace 0,
elements of order 3 have trace 1 and elements of order 7 have trace ¢ where

E4-26-1=0.
(In GF(2%) we can write this last equation as £34+¢2+1=0.)
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As X has order two we may assume that

()

Let

where xw—yz = 1, so that
Y=<x+z y+w>.
z w

x+wt+z=1, x+w=¢ xw—yz=1,

Thus we want x, y, z, w to satisfy

and we see that x = &, y = &2, z = 1 + &, w = 0 are solutions.

By Corollary (b) of Theorem 2 we need to find Ze PSL(2, 8) such that
Z’=(ZX)* =(ZY)* = 1.

« B
Z= ,
(v 5)
where a6 —fy = 1. Then

x2
ZX=(“ a+ﬁ)’ ZY=(a+ﬂ(l+é) agz .
7 y+6 Y+o(1+8)  ¥E
As the traces of Z, ZX, ZY are all zero we have the equations

a+d=0, a+y+6=0, a+f(1+&=0, ad—Py=1,

and a solution of these equationsisa =1, B =¢2,9y=0,6 = 1. We deduce that

(o 1)
01

obeys the equations (10) so that PSL(2, 8) is an H*-group.
By similar methods we can show that PSL(2, 13) is an H*-group, whilst PSL(2,27) is a
Hurwitz group which is not an H*-group.

Let

5. Infinite families of groups. We have shown that H*-groups exist and that Hurwitz
groups exist which are not H*-groups. In this paragraph we show that there are infinitely
many H*-groups. These considerations lead us to find new infinite families of Hurwitz
groups.
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Let A, be a non-orientable surface group such that D/A, admits an H*-group as its auto-
morphism group. This exists, by Theorem 3(ii) and we know that A,<t A. The commutator
subgroup [A,, A,] is a characteristic subgroup and is a Fuchsian group, as every commutator
preserves orientation. The subgroup A} of A, generated by the mth powers of elements of
A, is also a characteristic subgroup and is a proper NEC group if and only if m is odd. Thus
for odd m the product

M(m) = AJ[A, Al

is a characteristic subgroup of A, which contains orientation reversing elements. A_/M(m)
is a finitely generated abelian group in which every element has finite order. Hence it is finite,
so that M(m) has finite index in A, and is thus a non-orientable surface group. Also, as M(m)
is characteristic in A,, M(m) is normal in A. Thus D/M(m) is a non-orientable Riemann
surface of genus p’ which admits a group of 84(p’ —2) automorphisms. We now calculate p’.
A, has the presentation given by (3.2), so that A/M(m) will have the presentation

(@), 8z, ...3,; mMa; =miy=...=mad,=2a+d,+... +ad,) =0}, (11)

where @, is the image of a, under the canonical homomorphism. As m(a,+a,+ ... +a,)=0
and mis odd, a,+a,+ ... +a, =0. Hence A,/M(m) has the presentation
{a,,a,,...a,_y; ma,=ma,=...ma,_,; =0}
Therefore A,/M(m) =~ Z5™" and so |A,/M(m)| =m"~". Hence
M) _2m(p'=2) _
wA)  2n(p—-2) ’

and thus p' = m*~'(p—2)+2. This gives us the following result.

THEOREM 4. If there is a non-orientable Riemann surface of genus p which admits a group
of 84(p—2) automorphisms, then there is a non-orientable Riemann surface of genus p', where

p=m""Y(p-2)+2
Jor every odd positive integer m which admits a group of 84(p' —2) automorphisms.

We know that there is a non-orientable Riemann surface of genus 8 which admits a group
of 504 automorphisms, so that we can deduce

COROLLARY. For each odd positive integer m there is a non-orientable Riemann surface of

genus
p=6m"+2,
which admits a group of 84(p’' —2) automorphisms.

By combining Corollary (a) of Theorem 2 with Theorem 4 we see that if there is a non-
orientable Riemann surface of genus p, which admits a group of 84(p—2) automorphisms,
then there is an orientable Riemann surface of genus g’, which admits a group of 84(g'—1)
+automorphisms, where

g'=mg-1+1, g=p-I (12)
for each odd positive integer m.
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Now consider m to be even. M(m) will be an orientable surface group and M(m)<a A.
Hence M(m)<a A*. Thus D/M(m) is an orientable Riemann surface of genus ¢’ admitting a
group of 84(g'—1) +automorphisms. Now, as we saw above, A ,/M(m) has the presentation
(11). Puta,+a,+...+a,=>b; then A,/M(m) has the presentation

{a,,a,...a,.,,b; ma,=ma,=...=ma,_, =2b=0}
Thus A, /M(m)~Z,xZ%~" and so |A,,/M(m)| =2mP~'. Therefore
w(M(m)) 4n(g’'—1)

= =2m?!
A 2n(p-2)

and so

g =m" p=)+1=mg—1)+1,
where g = p—1 is the genus of the orientable two-sheeted covering surface of D/A,. Noting
(12) we deduce the following result.

THEOREM 5. Suppose that we have an orientable Riemann surface of genus g which admits

a group of 84(g—1) +automorphisms and which is the orientable two-sheeted covering surface
of a non-orientable Riemann surface of genus p = g+ 1, which admits a group of 84 p—2) auto-
morphisms. Then for every positive integer m there is an orientable Riemann surface of genus

g'=mig—1)+1,
which admits a group of 84(g’' — 1) +automorphisms.
This improves a result of Macbeath [3] and Lehner and Newman {2], who showed that

if there is an orientable Riemann surface of genus g, which admits a group of 84(g—1) +auto-
morphisms, then there is an orientable Riemann surface of genus

g’ =m*g—1)+1,
which admits a group of 84(g’—1) + automorphisms. Thus, for example, the infinite family

of integers of the form 6m'* + 1 has been extended to the infinite family of integers of the form
6m’ +1.

THEOREM 6. For infinitely many values of g, there exists an orientable Riemann surface of
genus g which admits a Hurwitz group as its + automorphism group and which is not the orientable
two-sheeted covering surface of a non-orientable Riemann surface of genus p = g+ 1, which
admits an H*-group as its automorphism group.

Proof. By Theorem 3(i) we know PSL(2, 7) is a Hurwitz group, which is not an
H*-group. PSL(2,7)is a group of 168 +automorphisms of an orientable Riemann surface of
genus 3, so that there exists an orientable surface group A<a1 A* such that DJA is this surface.
We now claim that A<t A. For, if this were not true, there would exist ceA—A™ such that
cAc™ ! is different from A. If cAc™! were not conjugate to A in ¢, then D/A and DJcAc™!
would be two distinct Riemann surfaces of genus 3, which admit PSL(2, 7) as their +auto-
morphism group. This would contradict the theorem of Macbeath stated at the beginning of
Section 4. If cAc™'is conjugate to A in @*, then there exists ge % * such that geAc™ g™ ' = A.
Thus gce N(A), the normalizer of Ain 4. But A™ = N(A), and so N(A) = A as this is the only
proper NEC group containing A*. Thus we have shown that A <1 A.
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Let T be a characteristic subgroup of finite index in A. An infinite number of these exist,
as for each positive integer m, A"[A, A} is one. We now show that for each such subgroup
I, DT is a Riemann surface with the required properties. The proof is by contradiction.
If D/T" did not have the properties of the theorem, then there would exist a non-orientable
surface group I'* such that (F'*)* =T and I'* < A. Write

I =T+yI, where yel*—T cA,
and hence
yAy™' =A and y’el cA.

Let A* = A+yA. Then A* is a proper NEC group and (A¥)* = A. Let teA. Then
IA* T = (A +pANT = AT AT = At AT = Ayt AL

But I'* <1 A, and therefore tyt ™' eI'* =T +yI.
As tyt~ ! is orientation reversing, there exists '€= A such that tyt~! = yy’. Thus

IN*T = A4ty A = A4+99'A = A+yA = A%

Thus A* <1 A and hence must be a non-orientable surface group. This, however, would imply
that AJ/A* =~ PSL(2, 7) would be an H*-group contradicting Theorem 3(i).

A calculation similar to that used in the proof of Theorem 4 shows that, for g’ = 2mé+1,
there exists an orientable Riemann surface of genus g’, which admits 84(¢’'—1) +auto-
morphisms but which is not the orientable two-sheeted covering of a non-orientable Riemann
surface admitting 84(p’ —2) automorphisms (p' = g’ +1).

I would like to thank Professor A. M. Macbeath for his advice and encouragement. This
paper forms part of a Ph.D. thesis which I wrote under his supervision at the University of
Birmingham.
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