149

Infinitesimal Analysis of an arc in n-space.
By RABINDRA NATH SEN.

(Received 5th March 1927, Read 4th June 1927.)
(Received in Revised Form 21st October 1927.)

1. EXTENSION OF SERRET-FREXET FORMULAE.

We may develop the idea of principal lines at any point on a
curve of (n — 1)-triple curvature geometrically in the following way:

Two consecutive points on the curve determine the tangent,
three consecutive points the osculating points, four consecutive
points the osculating 3-space and so on, at any point on the curve,
At the same point we have an (n — 1)-space perpendicular to the
tangent and we shall call this space the first normal space at the
point; the intersection of the first normal space with the osculating
plane is a line' which we shall name as the first normal at the point.
Similarly all lines perpendicular to the osculating plane determine an
(n — 2)-space, the second normal space at the point, and the inter-
section of this space with the osculating 3-space is the second normal
at the point. Proceeding thus we have lastly the (n — 1)th normal
which is perpendicular to the osculating (n — 1)-space at the point.
We thus see that the rth normal lies in the osculating (r 4- 1)-space
and is perpendicular to r consecutive tangents. These n — 1 normals
with the tangent constitute the » principal lines at the point which
are mutually orthogonal.

Secondly, let us define the positive directions of these lines.
Let the coordinates of any point on the curve be given as functions
of a variahle parameter:

xp=f1(8), xs=fa(8), ..... s &y = fo (8),

where s denotes the length of an arc of the curve measured from
some fixed point on it. We assume, as in the ordinary geometry,
that the positive direction of currency along the curve to be that as
given by increasing the values of s; we shall assume, moreover, the
functions f;, fo, . ..., f, with their derivatives up to the required order
to be regular, continuous and finite throughout the range of the par-

1 Cayley :—A Memoir on Abstract Geometry : Phil. Trans. Royal Soc., London,
160 (1870) :—**an (n— #)-fold linear relation determines an r-omal.”
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ameter considered. Then the positive direction of the tangent is
taken to be that in which s increases; the positive direction of the
rth normal (r =2, 3,...n — 1) is from the centre of the osculating
r-spheric to the centre of the osculating (r -+ 1)-spheric; (since the
osculating r-space intersects the osculating (r + 1)-spheric in the
osculating r-spheric,! therefore the line joining the centres of the two
spherics is perpendicular to this r-space and is, therefore, parallel
to the rth normal); and the positive direction of the (» — 1)th normal
is taken to be that in which this with the positive directions of the
other principal lines can be brought into coincidence, by orientation
in space, with the positive directions of the coordinate axes.

Lastly, let us define curvatures and find the inclinations of two
sets of principal lines at two consecutive points P, @ on the curve.
Two consecutive osculating r-spaces lie in the osculating (» + 1)-space
and the angle between these two r-spaces will be taken as the angle
between their normals in the same (r + 1)-space. Suppose, then,
diy, dipy, .. .. dy,_; are the angles between two consecutive tangents,
two consecutive osculating planes, ..... , two consecutive osculating
(n — 1)-spaces, and the successive curvatures are defined as:

1 Ay, 1 dy, 1 dgay®

pr ds’ py  ds’ T " pp-1 ds

This is an extension of the ordinary idea of curvature, viz., the rate
of deflection of an osculating space.

The normal to the osculating r-space at P in the osculating
(r 4+ 1)-space at the same point is the rth normal at the point, and
the 7th normal space at @ contains all lines perpendicular to the
osculating r-space at this point; the intersection of the osculating
(r + 1)-space at P with the rth normal space at @ is a line m, say, at
@. Hence the angle between the rth normal at P and m, measures
the angle between the consecutive osculating r-spaces. Again the
osculating r-space at @, the (r — 1)th normal at @, the rth normal at
P and m, all lie in the osculating (» + 1)-space at P, and in this space
the latter three lines are perpendicular to the osculating (r — 1)-space
at @. Hence, since in an (r 4+ 1)-space there can not be more than
two independent perpendiculars to an (r — 1)-space, the three lines lie
in a plane. Therefore, remembering the positive directions as defined

1 Veronese :— ** Fondamenti di Geometria etc.”, translated into German by

Adolf Schepp, *‘ Grundziige der Geometrie ete.”, §174, Stz. IIL
2 Pirondini : — ‘“ Sulle linee a tripla curvatura ete.”, Giorn. di Battaglini (1890).
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before, the angle between the rth normal at P and (r — 1)th normal
at @ is -721 — dih,.. In a similar way it may be seen that the angle
between the (r — 1)th normal at P and the rth normal at @ is
% —dip.. Thus the direction-cosines of the principal lines at @

referred to those at P may be given by the following table:

tangent 1 dyy 0 0 0..0 0 0 0 0
1st normal —~dy; 1 di, O 0. .0 0 0 0 0
2nd normal 0 —dy, 1 dy; 0..0 0 0 0 0

..............................................................

(n—3)th normal 0 0 0 0 0..0 ~dy,.; 1 dfa—, 0
(n—2)thnormal 0 0 0 0 0..0 0 —dp-, 1 d, ,
(n—1)th normal 0 0 0 0 0..0 0 0 —dif_, 1.
Therefore, if l;(¢=1,2,....7n;j=1,2,...n) be the direction-
cosines of the principal lines at P referred to the coordinate axes,

we have
li; + dly; = I +d lo;
ly; +dly; = —diprl A b Fdidals,
ln-1yi +dlnsnys = —dpn ol + L1y + dipp_1 1
L. + dl; = —difp1ln-1y¢ + lni
Accordingly,
dhy  biodl By L
ds—z,d—Lg:g—E, ............ , ' (1)
dlin-1y: Ly ln-2i dlw ln-1); 1 |
R el i et

t=12,....n)

2. Rapri oF CURVATURE.
It will be advantageous to employ the following notations?:

r

Let Dr = , where r is any positive integer,

dsr

! These formulae have been deduced for curves in four dimensional space, by Prof.
J. G. Hardie, in the American Journal of Math., 24. and also, from a different stand-
point, by Prof. 8. D. Mookerjee in the Bulletin of the Calcutta Math. Soc., 1. 1909.

2 These notations have been introduced by Prof. Mookerjee in paper I. on *‘ Para-
metric Coeflicients, ete.” in the above volume, and in a treatise published by the Calcutta
University.

https://doi.org/10.1017/50013091500013481 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500013481

152

and ZDm g, Dm2 2, = (mqym,),

() D™ ay DMy, |* )4

o o | f =t
m Zry 2%ry !

{  Dma, DMz, DMz, 1

fm; my my); and so on.

fil

-;2‘ Dr2x,, Dm2x,, D72 g,
' | Dm3x, Dmx,, Dmsa,, |
Further, let

Dz, DMy, ... DMy, , Dmwx, Dzry ... D iz,

D=2z, Dmax.e ... Dn2 r,, /\ Dr2 z,, D72 Ty« - Dny z,,

i Diup Try Dmy Xrg woe- Dy xrp | J! Dmp Xy Dy, Try o .. Dryp xrp
=[mymg...myinyng... nyl.
The following relations may be seen to exist among these quantities:
[my ma)? = (my my) (Mg mg) — (1) My)?

[my mg mg)? (1mq My) = [my my}2[my my)® — [my my, | my myJ2

[my g mg my )2 [y My}% = [Mmy My Mg)? [Mmy My my)?
— [my mymy | mymy my]%; and so on.

(myny) (myny) ... (m, n,)

-~ Also, (myny) (mymy) ... (mym,)
[MygMgy oo M| My e =1 o,
(Myng) (M, ny) (my 1y )

It x,, @5, ... 2, be the coordinates of any point on the curve, the
content V, of the simplex of the pth order, formed by the given
point and p points consecutive to it, is given by

dxy, da, de, - *
1 d?ay d2x,....d%a, | 1
2 z v Plae —Z-[12....p)2dsp(p+])
Vol = = . | e L Pl
Cdex, dra,. .. .dPay |
. plV,
or, [12...p]= —205
1 2
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Now, from the formulae of the last article, we have

szi:lﬁ"psxi=_&;_@2p,1_ lgi ’
P1 P1 P1 P1 P2
3lli ' lzi<1 ’;2P’12 P_l” 1 > lzi <gfi1 + é> + lu’

Dig, = 2 + —
’ pr’ P z P1Pz > P1 P2 P1 P2 p2

P1 1 P1 7%
and so on, when the accents will always indicate differentiation with

respect to s.
Substituting these values, it may be seen that

1 1
—=[12], =[123], - =[1234],....,
Pa (2 P1® P2 [ ] P1® p2? p1 : ]
1
=[12..n
pln—lpn~2 p:_2pn—1 [ ]
Thus, R o [zp [123]
Pi=mep PPT 123 PTrej[i2s4)
[12..(n—1)]2

Pror= 112  (m—2)][12..2]"
1z....n—1]
Therefore, P1P2es e Pn—3 = W—_n]— .

It may also be seen that
21 V,. 41V,

21V V.31 TV

and generally
(n—2)! Vp_y.n! ¥V,
A [ T A
nt T,
(n_' 1)! Vl anl .

Therefore, dify difs . . .. di,_y =

3. SpHERICS OF CLOSEST CONTACT.

Let the equation to the osculating n-spheric at a point on the
curve be X (a; —q;)?=R2  This spheric, of » — 1 dimensional
boundary, passes through n + 1 consecutive points on the curve.
Differentiating the equation n times:

Zlhi(wg—a;)=0 1)
Zly(xi—0i)=—p (2)
lei(ffi_ai):’Pzpll (3)
Zhilri—a;)=—p; ((Pz P+ %:) (4)

..............................
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, — 3 .
There are, lastly, % —1 or - 5 brackets at the end according as n

is even or odd. Or, if we denote the expressions on the right-hand

sides of (1) to (n) by a,, a,,....a,,
-, Ap—o < Ay, - 3>>, Ap -9
Ay = ~1\A n_ = - a —_— J=....
n = Pn 1( n-1+ Pn—2> Pn 1<<Pn 2 n-2 T on—3 + Pn—2>
' ' aZ ! a3 a'n—a ! an—-z
= Pn— g v e < +_"> +— +—_>+ .
Pn—1 <<P L—2 <<P3< P2 P 1> Da > p3>> Pn-3> Pn—2>
Squaring and adding, R? = X2 a, ?;
Jj=n
also, a; = ¥; — > lji aj .
J=2
Thus, for the osculating r-spheric a,4; = @4, =.. = @, = 0, since its

centre lies in the osculating r-space. This shews that the cenire of the
osculating (r + 1)-spheric lies on a line drawn through the centre of the
osculating r-spheric parallel to the rth mormal, and the length of the line
joining the centres of the two spherics is given, in magnitude, by — @, +,.

(1) Let us denote the radius of the r-spheric of closest contact by R,.

We have
dR
R,%2=a,? and a; = — —sz .
R=a,*+as?, ByR'y=a,0'y+aza';= a;%’
3
R; dR, dR, diy,

whevee av=", - 3g,= ~ 4y, - iR

Again, R2=az + a+ 4, R, R'y=a,a/y+ aga'y+ a,a’y = 228,
P4
R, dR, dR, dy; dR,

whenee b= a, " dpy T rdgy T dR, T Ay

O dR; dijy dR, diy
Similarly a¢ = — B, 5 @b, AR, " dp, " AR, and so on.

dR\?
)

Hence, R,? —_R2+<d¢
2

re-ag (n () 4 28
= £ +<€f£> (%%:y (Rz%% d¢2) and so on.
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We may also express these radii in terms of the quantities introduced
in the last article. We have (11)=1, differentiating (1 2)=0,
(22)= — (13) =[12]% Also

3(23)=—(14), [123]2=[23]2—[1 2e.

1, —[12]13] dR, —[12]13]
Bo=tigp Be="ep @y, " izmzs)
. 12132 (3]
Hence, Rx* = m5m + Mapiospe — [L237

Similarly it may be seen that
dRy  (23){[1 2]°[123)2—[123]134]}

djy [12]713][123][1234]
Thus R — [1342+[1 241 %13]2?42][21 212{12 3|13 4] . and so on.

(ii) Let ds, be the differential of the arc of the locus of the centres of
consecutive R,’s.
ds, \2
Then <ﬁ> = B2, as in the ordinary geometry.
dify
And, for the centre of the osculating r-spheric
a; =2 — (lys0s + lsas+ ... 4 L ar).

a’. + a? . <. .
Therefore X a';2= —7+——27+1 , by differentiating a;, using §1 (1) and
Pr
. , ay @y
the relations a’, = U e
pr Pr-1

ds,\?
Hence <0U:> =R2% ., — R _,forr=3,4,....n— 1,

Lastly, for the centre of the osculating n-spheric,

G-y
a,i = — lni (a,n + >

Pn-i
Ini Q- 1
’ n—2

= =\ @'n (an—1+ >an-1j

Ay, [

lni . Ay 3
= {analn + 100y ’f"(a’n—z + ),

a, Pn-3

lni ’ ’ ’ ’
== (an@'n+ @p-1@'n_1+ ...+ a0+ aya’y)

n

] R, R,
= ni an
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(BndR, )
R:— R

n—1

Hence, ds,?=

(i) Let de, be the angle between two consecutive R,’s.

2
Then (R,de.)? = ds? + <%> ds,% as in the ordinary geometry.
'3

J=rla;
The direction-cosines m,; of R, at the point is given by — X ’—Ra—' .
j=1 &
’ 1 l(rw'-l)iar + Ar4+1 R, j=r
Or, m'p; = — ”}Tr <llz‘+ pr > -+ E’TZ . jE‘] Iy a;,

for r =3, 4, ....n—1;

1 lm’ RnR/n Rln j=m
and = — —“ <lh‘+ —an—> + 1‘{:2 7'52 lji ay, for r = n.
1 ’rz - R,r 2
Therefore, X m’.2 = iﬁr_z—
Hence! (R, de.)? =ds? - ds?. — dR,.2forr=3,4 .... n.

4. OscULATING CONES.

As we have considered osculating spherics of different dimensions
determined by consecutive points of the system, we may consider
osculating right cones of different dimensions determined by con-
secutive osculating spaces of the system. The right cone of the nth
order? having as its vertex the point of intersection of n consecutive
osculating (n — 1)-spaces and which is generated by these spaces will
evidently osculate the given curve. We may, otherwise, imagine
that an =n-spheric is described having as its centre the point of inter-
section of these osculating spaces; these spaces will intersect the
spheric in a spherical simplex of the nth order,® and we may imagine

1 A number of formulae of similar kind for curves of double curvature are given in
a memoir by M. Saint-Venant, Journal de U Ecole Polytechnique, Cahier XXX.

2 Veronese. loc. cit., secs. 179, 180.

3 A remarkable treatment of the subject isto be found in Theorie der Vielfachen
Kontinuitat by L. Schlafli, where we have the following definition of a spherical
simplex : ‘“Das (n—1)-fache hohere Kontinuum, welches alle auf der Polysphire
befindlichen Losungen enthilt, ... heisst totales sphérisches Kontinuum ; ein Stiick
desselben, welches von (n —1)-fachen durchs Centrum gehenden linearen Kontinuen
begrenzt wird, sphirisches Polyschem, und in Besondern Plagioschem, wenn die Zahl
der begrenzenden Kontinuen n ist,” §19.
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an (n — 1)-spheric inscribed within the simplex. Then the cone
under consideration has its vertex at the centre of the n-spheric and
stands on the (» — 1)-inscribed spheric.

Since the (n—1)th normal is normal to the osculating (n—1)-space,
the axis of the cone will be equally inclined to = consecutive
(n — 1)th normals. If A; be the direction-cosines of the axis and ¢
the vertical angle of the cone, we shall have

2 Xilp;=sin . (1)
Differentiating n — 1 times
S Ailin_1)i =0 (2)
£ Xl oy = 022 sin g (3)
Pn-2 ’ .
ZAil(n—3)i:_Prn—3 <pn_1> . sm¢ (4)
prn-2\\ 1 pn-2\ . «
X l(n—4)i=P7L—4<<P"—3<;)_n:> ) t o Pn-1> sin ¢, (5)
and so on.
If we denote the coefficients of sin ¢ on the right-hand side expressions
of (1) to (n) by by, by, .... b, we shall have
’ bu—s ’ b -5\ bn- o
bn=P1<_bn—1+ p2>:P1<‘P2<_b"*2+ Ps >> + pe >:
Pn-2 ’ by VY by \Y bn—s
= — s—_— e\ ™ Pp— —\ = + I « . T .
(= o= (- (=pus( <pn_l> pn_)) - pH)) Tt )

Squaring and adding, cot?¢ = b2+ b2+ .. .. 4+ b2

Also A; = (lm' —+ l(n_z ibg ...l by ) sin é.

(i) Let ¢, be the vertical angle of the osculating right cone of the rth
order for a curve of (r — 1) tuple curvature.!

Then it may be seen, on reduction, that

P1\? pz\? [ P2\ \*
cot2d, ={—), cot?d,=\—") + L5 , and so on.? 6
bs (,,) iz <p3> \P1<p3> J (6)
It is to be understood, however, that in calculating ¢, for example,

for a curve given by x; =f,(8), 2y =f5(8), .... 2¢ =f5(3), ¢3is to be
determined from x, = f; (8), x, = f, (8), &3 = f3 ().

1 Since an osculating right cone of the »th order (3 =+ =n) is determined by r con-
secutive osculating (r — 1)-spaces, 27— 1 consecutive points on the curve must lie in an
r-space, and so we should regard the curve as of (» — 1)-tuple curvature.

2 It will be seen that the expression for cot® ¢, will contair cot® ¢, cot’e,, ...
cot’ ¢, ,; and if cot ¢,_, is a function of p._,, p, s ... py, cOb P,y ... cot ¢y, then
cot ¢, will contain the same function of p, ,, p, o, ... pp, COL P, s, ... COL P,

https://doi.org/10.1017/50013091500013481 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500013481

158

(ii) Let dn,. be the angle -between the axes of two consecutive
osculating cones of the rth order for a curve of (r— 1)-tuple
curvature.
The direction-cosines p,; of the axis of the osculating cone at the
point are given by sin ¢, (Iri + lir_2):b3 + Lo 8ys b, +. ...+ Ly by),
where b, = ;‘»: , by = — p,-_3<£r_:> y eeaan

On differentiating p,;, simplifying by §1(1) and using (6) we have

,  cot?d,. cosec? ¢,

Spt= 5 &'y + cos?d, cosec P, 2
— 2 cos? ¢,cosec? ¢, . P’ 2
cosec? ¢, ,
= <—br—27 - 1) cot? ¢,- L2
cosec? ¢,
Hence, dn,? = (—b—2—¢ — 1) cot? ¢, dg, .
R
cosec? ¢, -
Thus, dn? = dé,?; dy? = | ———F—,—1 | cot?¢,d¢,?; and so on,

{Pl <%Z> }

If the two r-spaces containing the two consecutive osculating
cones lie in an (r + 1)-space, i.e. if the curve be of r-tuple curva-
l i lp-1)s
ture, we shall have, since I',; = Artli Hr-1)s

Pr Pr-1 ’
cosec? ¢,
dn, % = sin? ¢, dip,. 2 +- <—‘b—2¢ﬁ —_ 1> cot ¢, deé,.2, for r=3,4,..n — 1.
r

Corollary. Let the curvatures of a curve be in constant ratios,

P1iPaiPgiee..t Pr—1=C11Ca1Cq% o ... tCn-q.
It follows at once that ¢, is constant and consequently dn, = 0.
Hence, along the curve the axis of the osculating cone has a con-
stant direction and the envelope of this direction is a cylinder of
the nth order®.
By the formulae
| Dy dly; <l3z' lu'>

ds p1’ ds ~ p1 \ca ¢y
dlin-1): _ﬂ< bni l(n—2)i> dhi e -y
ds p1L \Cn—1 Cn-2 ds Pl Cn-1

If p, be an arbitrary function of s, then, for the range of variation of
this function, we have a family of curves intrinsically distinct from
one another.

1 Veronese, loc. cit., sec. 180.
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(i) If » be odd, it may be seen that
Cs c €3Cqes v Cno
Z1i+c 3z+ 24l5z+ +_§—4— llm—ku

€y CgevesCnog

where k’s are constants.

Therefore Tk; ly; =1, Bk, ly; =0, Bk ly; =2, Bk l,; =0, Zk; 1y, _C 04,' .
01 €13

Thus the principal lines at any point on the curve make constant

angles with a fixed direction.

Co Cq
If, for example, . = tan 6, cos 6,, . = tan 6, cos b;, ....,
1 3
Cp— Cn-1
—— = tanf,_; cos 0, -,, =tan6,_,, where 0,, 6,, .... are con-
Cn—q = = Cn-2 3

stants, then the direction-cosines of this fixed direction with respect
to the principal lines are cosf;, 0, sinf, cosb,, 0, ....,
sin 0, sin §,. .sin 0, _; cos 8, _4, 0, sin 6, ¢in ;... .sin b, _,;
T2 T2 T2
in other words 7, 6;, 8,, .. 6,_, are the polar coordinates of a point
Tz

on the axis with respect to the tangent, the 2nd normal, the 4th
normal, .... the (n — 1)th normal.

(ii) If » be even, we shall have

I c c €y Cs. .Cp
—<j~“ds—ki>—m+ Sl "’lm+..+-3—1l
P1 C2 €€y -Cn—y
k
Let p, = (s)’ where f(s) is any arbitrary function of s, and k%
J

constant.
Then, j Lif(s)ds =&, where £ are the coordinates of a point on a

curve whose principal lines at a point are respectively parallel to
those of the given curve at the corresponding point, and

V ZdE® = f(s)ds.

Squaring and adding the above relations it is seen that the
radius of the spheric of closest contact along the curve is constant.
In particular, if p, is constant =7 cosf,, and % — tan 8, cos 8,,
Co

65 cn—l

h =tanéb, cos b,, .., c—-:tan On_q, where r, 8, 6, .. are constant,
1 n-2 5

the radius is 7.
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