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SUMMARY

It is shown that the distribution of the sum of heterozygotes, due to
mutant gene(s), that appear in a finite population is invariant under
geographical structure, provided that the mutant gene has additive
effect on fitness and migration does not change the genetic constitution
as a whole population. The expected number of heterozygotes is 2N when
Ns = 0 and gradually rises to 4N as Ns increases provided s remains
small, where N = the total population size and s = selective advantage of
a mutant gene. The distribution of the heterozygosity summed over those
generations in which the gene frequency in the entire population is speci-
fied, is also shown to be invariant. In the case of a neutral mutant, the den-
sity is equal to 4(1 — Y) where Y is the frequency of the mutant in the
whole population, and in the selectively advantageous case, it is approxi-
mately equal to a constant function 4, provided that the population size
times selection coefficient is sufficiently large. These quantities conditional
on the fixation of the mutant are shown to be invariant and some special
cases are obtained explicitly.

It is well known that, if alleles are selectively neutral, the heterozygosity in a
random mating population of finite size (N) decreases by the rate 1/2N per genera-
tion, (Wright, 1931, and others). From this theory, we can easily show that the
expected sum of heterozygotes formed by a mutant between occurrence and final
fixation or loss is 2N. This assumes however, that any heterozygotes between this
and any subsequent mutation are not counted. This is an invariant property over
geographical structure of the population provided that the mating is locally random
and the migration does not change the gene frequency of the entire population,
though it may change locally (cf. Maruyama, 1971).

It is shown in this paper that the above invariant property holds for the selective
case of 'additive effect', i.e. the fitness of heterozygote is the exactly intermediate
of the two homozygotes. Of course the expected sum of heterozygotes depends on the
selection coefficient and it is no longer equal to 2N. I shall also derive the variance
of the sum of heterozygosity in the whole process and show that, if the gene is addi-
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tive or neutral, the variance, is also invariant over the geographical structure. Fur-
thermore, all the moments of the sum of heterozygosity are shown to be invariant,
and the heterozygosity summed over those generations in which the gene frequency
in the entire population is specified, that is also invariant, is obtained. Unless the
entire population is panmictic, the distribution cannot be calculated directly from
the gene frequency of the whole population.

We consider a population subdivided into colonies and let N^t) be the size of
colony i at time t. We assume that the total population size

is constant, and that selection and random mating are practiced independently in
each colony, and no part of the population is completely separated from the other.
We consider a locus at which two alleles A± and A2 are segregating and denote by
xt(t) the frequency of Ax in colony i at time t. Let the fitness oiAj^A-^, AXA2 and A2A2

measured in Multhusian parameter be 2s, s and 0 respectively.

Now let X(t)=±XNt{t)xt{t),

which is the gene frequency of the entire population at time t. We assume that
neither mutation nor migration from outside of the population occurs during the
time considered. The change of the X(t) is the stochastic process to be investigated
by the diffusion approximation of Wright's model (for the details of the model, see
Wright (1969) or Crow & Kimura (1970)). The diffusion process of X{t) is governed
by the two quantities: the variance (VAX(t)) and the mean (MAX(t)) of the change
in X(t) in one generation. (More precisely we need to compute these quantities for
infinitesimally small time interval At and divide them by the Ai, but it is custom to
use the mean and variance of one generation.) We shall now calculate the VAX(t)
and MAX(t). Note that

where the primes indicate the quantity after the random sampling of gamete and
Ai(<) is the fluctuation in xt(t) due to the sampling. By the assumption of independent
sampling in each colony,

£{Ai(f)Aj(<)} = 0 if » * j

in which E{.} stands for the expectation. Therefore we have

VAX{t) = E{[X(t)'-X(t)f} = 2^2>4(Q{l-*<(*)}2Vi(0. (1)

The assumption of independent selection in each colony implies

Aa^t) = x't(t)-x[t) =
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where the prime indicates the quantity after the selection. Thus

MAX(t) = X'(t)-X(t)=±

= ^ S *<(*){!-*<(*) W ) . (2)

Nowlet ^(XWJs^Sa^Kl-MOW) (3)

and

where E{.} stands for the expectation taken over a collection of populations with
X(0) = X. Then h(X(t)) gives the average heterozygosity at time t, and Hix\X) gives
the expected sum of heterozygosity in the whole process, and NH°\X) gives the ex-
pected sum of beterozygotes. Tt is important to note that all the three quantities
given in (1), (2) and (3) have the same factor

and this is what leads us to the invariant property claimed.
Let P(t, X, Y) be the probability density that the X(t) moves from X to Y in

time interval t. For the migration may change the local distribution of genes, colony,
number and colony size, it may change MAX{t) and VAX(t). Thus VAX{t) andilfAX(<)
are time dependent. However, by assumption, the X(t) is not altered by the migra-
tion. Thus the P = P(t,X, Y) satisfies the following Kolmogorov backward equation

_AX() dP
dt ~ ~ ~ + MAx(t

This is a diffusion process with time dependent coefficients. Let

G _ VAX(t) d* d

Then general theory of stochastic processes tells us that the H(X) is the unique solu-
tion of the differential equation

GHW(X) + h(X) = 0, (4)

with boundary condition 27(1)(0) = H^{1) = 0 (cf. Dynkin, 1965, chapter 10;
Maruyama & Kimura 1971). Because the same factor

Sa^*) {1-^(0)^(0 in G and in h(X(t))

can be cancelled, we have
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in which the time dependent factor disappeared. Therefore the HW(X) is indepen-
dent of the geographical structure. The appropriate solution of (5) is

where S(X) = 1 — exp ( — 4NsX). Formula (6) is the same as that for a panmictic
population of size N and initial frequency X, (cf. Kimura, 1969). If s = 0, the H{X)
is reduced to

= 4JSTX(l-X) and H^(1/2N) as 2.

The above argument incidentally implies that, since the solution of GH(X) = 0 is
the ultimate fixation probability, it is also an invariant property under the assump-
tion of this paper (cf. Maruyama 1970).

Let us now investigate the nth. moment of the sum of heterozygosity defined by

W(I) = El\ f "

Then it can be shown that the H^n)(X) is the solution of

GB™{X) +nh(X(t))H<n-V(X) = 0 for n>2,

with boundary condition Z?(7t)(0) = 27(7l)(l) = 0. As in (4), the time dependent factor
in the above equation can be cancelled and we have

Therefore all the moments H&XX) are independent of the geographical structure,
and therefore the distribution of the sum of heterozygosity that appears in the whole
process is also invariant. The second moment is given by

rm(x\ -
88(1) \B8{1) B* 2B B* B3

s [ BS(1) B*S(1) 2B + B* B3 )' ( '

where B = ±Ns. If s = 0,

As far as the first moment is concerned the invariance of the sum of heterozygosity
can be demonstrated very simply by an alternative way. Equation (2) asserts that
the expected change in gene frequency in any generation is equal to the selection
coefficient times the half of heterozygosity, i.e. MAX(t) = sh(X(t))l2. Therefore,
summing both sides of this equation over generations, we have

as is shown in equation (6), where u(X) = (1 — e~BX)/(l — e~B) is the fixation proba-
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bility of the mutant gene, and it has been shown to be invariant to population struc-
ture (cf. Maruyama, 1970). (This derivation was given by one of the referees.)

We shall next consider the following quantity defined by

, Y) = El f mh{X(t))S(X{t)- Y)dt\

where S(.) is Dirac's delta function. The O(1)(X, Y) gives the heterozygosity summed
over those generations in which the gene frequency in the entire population is Y.
Then <&v>(X, Y) satisfies

, Y) + S(X-Y)h(X) = 0.

This equation can be integrated and

= for Y < x ( g )

If s = 0, this is reduced to

<D(«(X, Y) = 8N(1 - Y)X for Y > X,

= 8N(1-Y)X-8N(X-Y) for Y<X

and the particular case of X = 1/2N is

^{W' Y) = 4(1" 7) f°r ^N<Y<L (9)

With s 4= 0 and X = l/2iV,

M ( l - P ( 1 - T « ) for J _ < 7 < 1

If s in the above formula is small but positive, and 4Ns > 1, it becomes the following
very simple distribution

*( 1>(4 T) « 4. (10)

It is worth noting that, if 4ZVs is large, the expected sum of heterozygotes is 4tN and
the expected conditional sum of heterozygosity for all given Y = 1/2N, 2/2N,...,
is 4/2iV and this quantity is independent of Y, while if s = 0 the expectation is 2N
and the conditional heterozygosity is given by the density 4(1— Y)/2N. If 4Ns <̂  — 1
and |s| <̂  1,

The second moment (®<®(X, Y)) of the quantity given by the formula O^X, Y)
of (8) is also invariant under the geographical structure and is the solution of the
differential equation

GO<2>(X, Y) + 2S(X- Y)h(X) O(«(X, Y) = 0,
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where <DW(Z, Y) is given in (8). Thus

, Y) - lsmi-Y)e-»xS(l X^Y, Y) ^ ^
£6(1)

7)m-7)e-*zSV-X)_

(12)

Assuming steady situation, formulae (9) ~ (12) may be applied to existing data of
protein polymorphisms. Namely, if the majority of them are maintained, in popula-
tions, due to mutation and random drift or selectively advantageous mutants, the
sum of heterozygosity for each gene frequency class should be approximately equal.
Yamazaki & Maruyama (1972) have examined data of some 400 protein polymor-
phisms from several organisms and have obtained exactly this pattern of the dis-
tribution of heterozygosity. However, since the invariant property is not valid for
non-additive genes, this kind of test will not exclude other possibilities. Ewens
(1972) has given a different statistical method to examine the neutrality of protein
polymorphisms.

The above analyses give the sum of heterozygotes including both eventually
fixed and lost cases. However, we can obtain these quantities on the assumption that
the allele under consideration is eventually fixed in the population (excluding the
cases where the extinction of the allele occurs). The above method can be extended
to this conditional situation (cf. Maruyama and Kimura, 1971). Let

X(oo) = l } .

Then H^ (X) is the nth moment of the sum of heterozygosity in those cases where
the fixation of Ax occurs. Still considering the same population model as above and
assuming the additive fitnesses, it can be shown that the Hln\X) is the solution of
differential equation

GHin\X)u(X)+nh(X)Hln~1\X)u(X) = 0,

where H^{X)u(X) = u{X) = S(X)/S(1) = the ultimate fixation probability of Alt

and the boundary condition is H{n)(0)u{0) = Hln)(l)u(l) = 0 provided n > 1.
Therefore we see immediately that like in (4) and (5) all the moments H^ (X) are
invariant under the geographical structure. As a special case, if s = 0, we have
H^X) = 4iV(l-X2)/3 and H12\X) = 112iV2/45 + 32iV2(Z4/10-Z2/3)/3. Thus,
regardless the population structure, if a neutral mutant is fixed by random drift, it
produces 4i\̂ 2/3 heterozygotes on the average. We can also obtain the expected sum
of heterozygotes for the extinction cases by solving equation

(4iV2/3) (1/2N) + (1 - l\2N)x = 2N,

which turn out to be x w 4iV/3. Therefore we can conclude that of the expected sum
(2N) of heterozygotes due to a single mutant, one-third (1/2N x &N2/3) will occur in
populations in which it is eventually fixed, and two-thirds ((1 — 1/2N) x 4iV/3,
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Fig. 1. The distribution of heterozygosity $<U(X, Y), formula (8), with X (initial
frequency) = 1/2JV and Y (the gene frequency in entire population) = 1/2N,
2/2N, ..., (2N—1)I2N. The dots indicate simulation results. The simulation data
were taken from those presented in Table 1. • = sim. no. 1; • = sim. no. 2;
• = sim. no. 3; • = sim. no. 4; A = sim. no. 5; • = sim. no. 6. The broken
curve indicates the theoretical expectation for simulations nos. 1-3, and the solid line
indicates the expectation for simulations nos. 4-6.

approximately) in those in which it is lost. We can also obtain similarly the condition-
al distributions analogous to <3>W(X, Y) and 0<2>(.X, 7).

In order to show the validity of the analyses, I have carried out several computer
simulations using the following three different models of population structure.
Model I consists of circularly arranged ten colonies of equal size and geogra-
phically adjacent colonies exchange their members at the rate m; Model II consists
of ten colonies of variable size (but the total size is fixed) and an individual moves
from one colony to any other colony with probability m per generation; Model III
is a random mating population. The generations are discrete in all the three models
and a mutant gene is introduced into the population when and only when it
becomes homallelic. The simulation results agreed well with the theoretical expecta-
tion. Six examples of such comparisons are presented in Table 1 and in Fig. 1.
In the table, the mean and the second moment of the sum of heterozygosity due to a
single mutant gene are compared with the theoretical expectations under various
conditions, and in order to show the structural difference, the mean fixation time
of mutants is also given. In Fig. 1 the distributions of the sum of heterozygosity
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