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SINGULAR PROBLEMS MODELLING PHENOMENA IN THE
THEORY OF PSEUDOPLASTIC FLUIDS
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Abstract

Existence criteria are presented for nonlinear singular initial and boundary value problems.
In particular our theory includes a problem arising in the theory of pseudoplastic fluids.

1. Introduction

This paper is motivated by the boundary value problem

I yl/ny" + nt = 0, 0 < t < 1
y'(0) = y(l) = 0

which arises in the theory of pseudoplastic fluids. In particular we present existence
theory for the mixed boundary value problem

\ ,y) = o, o<t<i

where/ : [0, 1] x (0, oo) -» R is continuous. Notice/ may be singular at v = 0.
Problems of the above form have been discussed extensively in the literature (see
[2-11]) usually when / is positone, that is, / : (0, 1) x (0, oo) -> (0, oo). Only
a handful of papers (see [3-5] and the references therein) have appeared where the
nonlinearity / is allowed to change sign. This paper presents a new theory, with
the idea being to approximate the singular problem by a sequence of nonsingular
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problems each of which has a lower solution am and a upper solution ft, and then use
a limiting argument. This seems to be more natural and more general than the theory
presented in [3-5] since the study of lower solutions to nonsingular problems is well
documented. Also in this paper we discuss the singular initial value problem

t,y), 0<t<T(<oo)
[y(0) = 0.

For the remainder of this section we describe the physical problem which motivates
our study. The boundary layer equations for steady flow over a semi-infinite plate [1]
are

udu vdu _ldTxY

8X dYv _
8X dY p dY '

du dv
0

where the X and Y axes are taken along and perpendicular to the plate, p is the density,
U and V are the velocity components parallel and normal to the plate and the shear
stress xXY = AT(9 U/d Y)n. The case n = 1 corresponds to a Newtonian fluid and for
0 < n < 1 the power law relation between shear stress and rate of strain describes
pseudoplastic non-Newtonian fluids. The fluid has zero velocity on the plate and the
flow approaches stream conditions far from the plate, that is,

U(X, 0) = V(X, 0) = 0, U(X, oo) = C/oo,

where (/<» is the uniform potential flow. The above results (if we use stream function-
similarity variables) [1,9] in a third-order infinite interval problem

F'" + F(F")2-" = 0, F(0) = ^'(0) = 0, F'(oo) = 1.

Now use the Crocco-type transformation u = F' and G = F" to obtain

G" G" + (n - 1) G"-x (C)2 + H = 0, G'(0) = 0, G(l) = 0.

Setting y = G" we obtain

I yl/ny" + nu =0, 0 < u < 1
/(0) = y(l) = 0.
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2. Mixed boundary value problems

Motivated by the example in Section 1 concerning non-Newtonian fluids, we con-
sider the mixed boundary value problem

\ 0<t<i

O

We note also that we do not assume fQ ds/p(s) < oo. For our first result in this
section we will assume the following conditions are satisfied:

p e C[0, 1] n C'(0, 1) with p > 0 on (0, 1) (2.2)

q e C(0, 1) with q > 0 on (0, 1) (2.3)

fl fl 1 f
I p(s)q(s)ds < oo and / / p(s)q(s)dsdt < oo (2.4)

Jo Jo P(0 Jo
f : [0, 1] x (0, oo) ->• R is continuous (2.5)

3«o ^ (1. 2, . . .} and associated with each m e No = [n0, nQ + 1,. . .},

3am e C[0, 1] n C2(0, l),pa'm e AC[0, 1],

with p(t)q(t)f(t, am(t)) + (p(t)a'm(t))' > 0 for t e (0, 1), (2>6)

lim p(O<(r) > 0 and 0 < am(l) < 1/m

J 3a € C[0, 1], a > 0 on [0, 1) and a(t) < am(t),

[ t e [0, 1] for each m € No

3$ 6 C[0, 1] n C2(0, 1 ) , ^ ' e AC[0, 1] with

P(t)q(t)f (t, P(t)) + (p(t)P'(t))' < 0 for t e (0, 1), (2.8)

lim p(t)p"(t) < 0 and )3(1) > /30 > 0
<-c0+

and

««(0 < P(Q, t 6 [0, 1] for each m 6 yV0. (2.9)

THEOREM 2.1. (I) Suppose (2.2H2-9) fcoW a«£? w addition assume the follow-
ing condition is satisfied:

| 0 < / (r, y) < ^(y) O/J [0, 1] x (0, «,] w/rA g > 0

I continuous and nonincreasing on (0, oo);

o = sup,e(01)^(/). 77ien (2.1) has a solution y € C[0, 1] D C2(0, 1) with
y(t)>a(t) forte [0,11
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(II) Suppose (2.2)-(2.9) hold and in addition assume the following condition is
satisfied:

f(t,x)-f(t,y)>OforO<x<y, for each fixed t 6 (0,1). (2.11)

Then (2.1) has a solution y e C[0, 1] D C2(0, 1) with y(t) > a(t)for t € [0, 1].

PROOF. Without loss of generality assume f}0 > l/n0. Fix m e No and consider
the boundary value problem

(2.12)"1

where

: t , y ) = o, o < t < i
P (')/(') = 0

- y ) , y

(r, am(r)) + r(am(r) - y), y < am(r)

with r : R -> [—1, 1] the radial retraction defined by

u,

It is immediate from Schauder's fixed point theorem (see [10]) that (2.12)m has a
solution ym e C[0, 1] (in fact ym e C[0,1] D C2^, 1) with py'm e AC[0, 1]). A
standard argument (see [10, Chapter 5]; note / j : [0, 1] x R -> R is continuous)
guarantees that

am(t) < ym(t) <

As a result ym is a solution of

for t e [0, 1].

= o, o<t<i

(2.13)

(2.14)

In addition (2.7) guarantees that

«(0 < am(r) < ym(r) <

The proof is now broken into two cases.

for r 6 [0, 1]. (2.15)
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Case (A). Suppose (2.10) holds.
We first show

[ym}msN0 is a bounded, equicontinuous family on [0,1]. (2.16)

First notice from (2.10) that (py'mY < 0 on (0, 1), so py'm < 0 on (0, 1). In addition
-(p(t)y'm(0)' < P(t)q(t)g(ym(t)) for t e (0, 1), so integration from 0 to / yields

-P(t)y'm(t) < g(ym(t)) f P(s)q(s)ds for t e (0, 1).
Jo

As a result

0 < - = ^ - < - ) - f P(s)q(s)ds for t € (0, 1).

Now consider /(z) = f* du/g(u). For t, s e [0, 1] we have

Js g(ym(x)) \JS p(x) Jo
\i(ym(t))-i(ym(s))\ =

so

{I(ym)}meN0 is a bounded, equicontinuous family on [0,1]. (2.17)

The uniform continuity of / " ' on [0, /(ao)] together with (2.17) and

l - rl(i(ym(s)))\

guarantees (2.16). A standard argument [2, page 90] using the Arzela-Ascoli theorem
(and (2.15)) completes the proof.
Case (B). Suppose (2.11) holds.

We begin by showing

ym+i(0 < ym{t) for t € [0, 1] for each m e N0. (2.18)

Suppose (2.18) is false. Then for some m £ No, ym+\ - ym would have a positive
absolute maximum at say r0 e [0, 1). Suppose to begin with r0 £ (0, 1), so (>>m+i -
ym)'(r0) = 0 and (p(ym+l - ;ym)')'(r0) < 0. On the other hand, (2.11) implies

(p(ym+i - >m)')'(ro) = -p(ro)q(ro)[f(ro, >>m+i(r0)) - / ( r 0 ) ^m(r0))] > 0,

a contradiction. If r0 = 0 then lim,_0
+ p (t)[ym+\ — ym]'(t) = 0 and there exists /z > 0

with ym+\ (s) — ym(s) > 0 for s e (0, fi). Thus for t £ (0, n) we have from (2.11) that

-l ~ ym)'(t) = / p(s)q(s)[f(s, ym(s)) -f(s, ym+l(s))]ds > 0,
Jo
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a contradiction since ym+\ —ym has a positive absolute maximum at 0. As a result (2.18)
holds.

Lets look at the interval [0, 1 - l//r0]. Let

i?(lo = s u p { l / ( r , y ) | : » € [ 0 , 1 -1 /no ] and a(r) < y <<*>}; (2.19)

here ao = suP(e[o n PO)- In addition

\y'm(t)\ < - % f P(s)q(s)ds for t € (0, 1 - l/n0).
PiO Jo

Thus lym}meN0 is a bounded, equicontinuous family on [0, 1 — l/n0]. The Arzela-
Ascoli theorem guarantees the existence of a subsequence Nno of No and a function
zno e C[0, 1 - l/«o] with ym converging uniformly on [0, 1 — l/n0] to zno as m ->• oo
through Nno. Proceed inductively to obtain subsequences of integers

Nno 2 M,o+. D • • • 2 yvt 2 • • •

and functions zt e C[0, 1 — I/A:] with ym converging uniformly on [0, 1 — l/k] to zk

as m -> oo through A t̂, and zi+i = zt on [0, 1 - I/A:].
Define a function y : [0, 1] -*• [0, oo) by y(x) = zt(j:) on [0, 1 — l/k] and

y ( l ) = 0. Notice v is well-defined and a(t) < y(t) < ao for t e [0, 1). Next
fix t e (0, 1) and let A: e [n0, n0 + 1,...} be such that 0 < t < 1 — l/k. Let
N^ — [n e Nk : n > k}. Now ym, m e Nf, satisfies

y«(0=y»(0)- f -yr f P{x)q(x)f(x,ym(x))dxds.
Jo P CO Jo

Let m —> oo through ^ to obtain

/ 7 /
Jo P(J) Jo

We can do this argument for each r e (0,1), so (py')'(O + p(t)q{t)f (t, y(t)) = 0
for r e (0, 1) and lim,_>0+ p(0y ' (0 = 0.

It remains to show y is continuous at 1. Let € > 0 be given. Now since
limm_oo ym(l) = 0 there exists nx € Â o with yn,(l) < e/2. Also since yn, e C[0, 1]
there exists Sn, > 0withyn,(r) < e/2foxt 6 [1 — Sn,, 1]. From (2.18) for m > n, we
have ym(r) < yBl (r) < e/2 for / 6 [1 — <5n,, 1]. As a result for m > nx we have

0 < a(r) < ym(t) < e/2 for r € [1 - *„„ 1].

Consequently

0 < «(/) < y(r) <€/2<e for r e [1 - <Sni, 1),

so v is continuous at 1.
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REMARK 2.1. In Theorem 2.1 (I) we can replace (2.10) with

f 1/ ('- y)\ < g(y) on [0, 1] x (0, a0] with g > 0

I continuous and nonincreasing on (0, oo)

and

[ -7T [ P(x)q(x)g(a(x))dxds < oo; (2.21)
JO P\A) JO

here OQ = supr6(0 ,j /J(0- Notice we only used (2.10) to show (2.16). If we assume
(2.20) and (2.21) then (2.16) is immediate since

±(p(t)y'm(t))' < p(t)q(t)g(yn(t)) <p(t)q(t)g(a(t)) for t 6 (0, 1),

so

\y'm(t)\ < - J - / p(s)q(s)g(a(s))ds for t 6 (0, 1).
P(t) Jo

We next state and prove a more general result motivated from Theorem 2.1 (II).

THEOREM 2.2. Suppose (2.2)-(2.7) hold and in addition assume the following con-
ditions are satisfied:

for each m e No, ipm e C[0, 1] n C2(0, 1), pft, e A C[0, 1]

withp(t)q(t)f (r, 0m(t)) + (p(t)P'Jt))' <0forte (0, 1), (2.22)

lim p(0ft(0 5 0 and £m(l) > \/m

<Xm0) < Pm(0, t e [0, 1] for each m e No (2.23)

and
(for each t e [0, 1] we have that {&,(/) }meM) wa

I nonincreasing sequence and lim /?m(l) = 0.
I m->oo

7/î n (2.1) fta^ a solution y € C[0, 1] D C2(0, 1) with y(t) > a(t)for t e [0, 1].

PROOF. Fix m e No- Proceed as in Theorem 2.1 with fim replacing f} i n /^ . The
same reasoning as in Theorem 2.1 guarantees that there exists a solution ym 6 C[0, 1]
to (2.14) with a (0 < am{t) < ym(t) < fim(t) for ( e [0, 1], Also as in Theorem 2.1
(from (2.19) onwards) there exists y e C[0, 1) (as described in Theorem 2.1 (II)) with

a(t) < y(t) < ao = sup 0no(t) for t e [0, 1), (2.25)
'£[0,11

with ipy')'(t) + p(t)q(t)f (t, y(t)) = 0, 0 < t < 1 and lim,_0+ p ( 0 / ( 0 = 0.

https://doi.org/10.1017/S1446181100013249 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013249


174 Ravi P. Agarwal and Donal O'Regan [8]

It remains to show y is continuous at 1. Let e > 0 be given. Now since
limm_>0Oy3m(l) = 0 there exists n\ € No with fin,(l) < e/2, and so there exists
Sn) > 0 with #,, (t) < e/2 for t e [1 - $„,, 1]. From (2.24) for m > n, we have

«(0 < ocm(t) < ym(t) < Pm(t) < /?„,(') < e/2 for t e [1 - «„„ 1].

That is, form > «, we have 0 < a(r) < ym(0 < e/2 for r e [1-<$„,, 1]. Consequently
0 < a(t) < >>(r) < €/2 < e for t € [1 - 6n,, 1), so y is continuous at 1.

EXAMPLE (Fluid problem). Consider the boundary value problem

iy" + vt/y^ = O, 0<t<l

j/(0) = yd) = 0

where 0 < v < 1. We will show using Theorem 2.1 (part (I) or (II)) that (2.26) has a
solution.

First we choose n0 € {1, 2, . . .} so that

\ + — < 1 and ( 7 - 1 ) —l— + — < 0. (2.27)
6 «o ^0 / v + 1 «o

Let /? = 1, q(t) = 2t and clearly (2.2)-(2.5) hold. Also let

am(t) = v(l-t3)/6+l/m,

a(r) = u(l - r3)/6 (2.28)

and ^ ( 0 = 1 - vt3/(v + 1). To check (2.6), for m e No = {n0, n0 + 1, . . . } , notice
am(l) = l/in, <,(<)) = 0 and

vt
<+qf it, am) = -vt + >-vt + vt = 0 for r e (0,1),

since am(t) < v/6 + l/n0 < I, t e [0, 1] from (2.27). Thus (2.6) holds and (2.7) is
immediate. To check (2.8) notice j9(l) = 1 - v/v + 1 = /30, £'(0) = 0 and

< 0 for r e (0,1),

since /3(r) > l/(v + 1) for t e [0, 1], and (v + l)(w+1)/w < 4 < 6 f o r O < v < l (note
with f(x) = ix + 1)<*+1V* we have/(0+) = e, f (1) = 4 a n d / ' ( ; t ) > 0 on (0, 1)).
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Thus (2.8) holds. In addition (2.9) is true since (2.27) implies for m e No that

v , 1 v ( v A 1
6 m 6 \ v + 1 / n0

jfi(t) + - = 0 (0 + ( -
6 n0 I "o

for r e (0,1)

since v/(v + 1) < 1 and (v/6 - l)/(v + 1) + l/n0 < 0. Finally (2.10) with g(y) =
1/>'I/I'(or(2.11)sinceif0 < x < ythenx]/v < yl/v)ho\ds. The existence of a solution
y to (2.26) follows from Theorem 2.1 (I) (or (II)). Note as well that y(t) > a(t) for
t e [0, 1] where a is given in (2.28).

3. Initial value problems

In this section we consider the initial boundary value problem

\y' = qf(t,y), 0<t<T(<oo)
[y(0)=0.

Our results in this section differ from those in [4], that is, instead of assuming the
existence of a lower solution to the singular problem (which is difficult to construct
in practice) as in [4] we assume only the existence of a lower solution to the "ap-
proximating nonsingular problem". For our first result in this section we assume the
following conditions are satisfied:

/ : [0, T] x (0, oo) -> R is continuous (3.2)

q 6 C(0, T], q > 0 on (0, T] and / q(x) dx < oo (3.3)

3n0 € {1, 2, . . .} and associated with each m € No = {n0, n0 + 1,.. .},

3am 6 C[0, T] D C'(0, T] with (3.4)

q(t)f(t,am(t)) > a'Jt) for t 6 (0, T) and 0 < am(0) < l/m

3a € C[0, T], a > 0 on (0, T] and a(t) < am(t),

t e [0, T] for each m e No

30 e C[0, T] n C1 (0, T] with q(t)f (r, 0(0) < 0'(r)

for r 6 (0, T) and 0(0) > 0O > 0

and

««(0 < 0(0 , * 6 [0, 7] for each m e No. (3.7)
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THEOREM 3.1. (I) Suppose (3.2)-(3.7) hold and in addition assume the follow-
ing condition is satisfied:

f \f (t, y)\ < giy) on [0, 7] x (0, OQ] with g>0

I continuous and nonincreasing on (0, oo);

here an = sup/e[0 T] Pit). Then (3.1) has a solution y e C[0, 7] n C'(0, 7] with

y{t) > a(t) forte [0,T]-
(II) Suppose (3.2)-(3.7) hold and in addition assume the following condition is

satisfied:

fit,x)-fit,y)>0 for 0 < x < y, for each fixed t € (0, 7). (3.9)

Then (3.1) has a solution y e C[0, 7] D C'(0, 7] with yit) > ait) for t € [0, 7].

PROOF. Without loss of generality assume p0 > l/n0- Fix m € No and consider

\y -vm0,y), o<t<T (3.io)m

(y(0) = l/m,

where

'fit, P(t)),

fit.y), amit)<y<Pit)

fit,amit)), y<amit).

It is immediate from Schauder's fixed point theorem (see [10]) that (3.10)"1 has
a solution ym e C[0, 7]. A standard argument (see [11, Chapter 3]; note / ^ :
[0, 1] x R —> R is continuous) guarantees that

otmit) < ymit) < Pit) for t e [0, 7]. (3.11)

As a result ym is a solution of

P ~ 0<f < 7
[y(0) = l/m

with

ait) < amit) < ymit) < Pit) for t e [0, 7]. (3.13)

The proof is now broken into two cases.
Case (A). Suppose (3.8) holds.

We first show

{ym)m<=N0 is a bounded, equicontinuous family on [0,7]. (3.14)
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To see this notice (3.8) guarantees that \y'm(t)\/g(ym(t)) < q(t) for t e (0, T), and so
±v'm(t) < q(t) for t e (0, 7); here

w«(0 = /
Jo

du

~g(M)~~

For t, s e [0, 7] we have

\vm(0 - vm(s)\ = \J v'Jz)dz < J q(r)dr

This together with the uniform continuity of G"1 on [0, G(a0)] and

\ym(t) - ym(s)\ = \G-\G(ym(t)))-

immediately guarantees (3.14). A standard argument [4, page 53] using the Arzela-
Ascoli theorem completes the proof.
Case (B). Suppose (3.9) holds.

We begin by showing

ym+i(t) < ym(t) for t € [0, T] for each m e No. (3.15)

Suppose (3.15) is false. Then for some m € No there exists Ti < r2 with ym+i(Ti) =
ym(ti), >>m+i(f2) > ym(r2) and ym+\(t) > ym(t) for I e (t, , r2). As a result from (3.9)
we have

0 < ym+i(r2) -ym(r2) = f * q(s)[f (s,ym+ds)) - f (s,ym(s))]ds < 0,

a contradiction. As a result (3.15) holds.
Essentially the same reasoning as in Theorem 2.1 guarantees that there exist subse-

quences of integers N^ 2 A^no+i 2 • • • 2 W* 2 • • • and functions Zk € C[T/k, T] with
ym converging uniformly on [T/k, T] to zt as m -*• oo through Nk, and Zk+i = Zk on
[T/k, T].

Define a function y : [0, T] -+ [0, oo) by y(x) = zk(x) on [T/k, T] and y(0) = 0.
Notice y is well-defined and a(t) < y(t) < OQ for t e (0, 7]. Next fix / 6 (0, T) and
let it € [n0, n0 + 1,...} be such that 7 / i < t < T. Let N{ = {n € Nk : n > k}.
Now ym, m € Nt*, satisfies

ym(t) =
- / •

Let m ^- oo through Â t* to obtain y(t) = y(T) - jj q(s)f (s, y(s)) ds. We can do
this argument for each t e (0, T). It remains to show y is continuous at 0. Let € > 0
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be given. Then there exists n\ e No with yni(0) < e/2, so there exists <5ni > 0 with
yn, (0 < e/2 for t 6 [0, Sni]. From (3.15) for m > nx we have

«(0 < y«(0 < y«,(0 < 6/2 for / € [0, «„].

As a result 0 < a(t) < y(t) < e/2 < e for r e (0, <5nJ, so >> is continuous at 0.

In fact one can obtain a more general result motivated from Theorem 3.1 (II).

THEOREM 3.2. Suppose (3.2)-(3.5) hold and in addition assume the following con-
ditions are satisfied:

[for each m e No, 3/3m e C[0, 7] n C1 (0, 7] with
{ (3.16)

(t, 0m«)) < 0'm(t) for t e (0, T) and >8m(0) > 1/m

««(0 < ^ B (0 , * € [0, 7] /oreac/i /n 6 No (3.17)

I for each t € [0, 7] we have that {Pm(t)}meNo is a
(3 IS)

nonincreasing sequence and lim f}m(0) = 0.
m-*oo

(3.1) has a solution y € C[0, 7] n C'(0, T] with y(t) > a(t)for t e [0, 7].

PROOF. Fix m e No- Proceed as in Theorem 3.1 with fim replacing fi in /^ . The
same reasoning as in Theorem 3.1 guarantees that there exists a solution ym e C[0, 7]
to (3.12) with a(f) < am(t) < ym(t) < /3m(r) for t e [0, 7]. Also as in Theorem 3.1
there exists y e C(0, 7] (as described in Theorem 3.1 (II)) with

a(t) < y(t) <ao= sup p^t) for t 6 (0, 7],

with y' = qf (t, y) for 0 < t < T. It is easy to see (using (3.18)) that y is continuous
atO.
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