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Abstract

Existence criteria are presented for nonlinear singular initial and boundary value problems.
In particular our theory includes a problem arising in the theory of pseudoplastic fluids.

1. Introduction

This paper is motivated by the boundary value problem

y/"y" +nt=0, O0<t<l
y'(0)=y(1)=0

which arises in the theory of pseudoplastic fluids. In particular we present existence
theory for the mixed boundary value problem

SeyY +qOf 1, y) =0, 0<t<l
lim,+ p(1)y' (1) = y(1) =0

where f : [0, 1] x (0, 00) — Ris continuous. Notice f may be singular at y = 0.
Problems of the above form have been discussed extensively in the literature (see
[2-11]) usually when f is positone, that is, f : (0, 1) x (0, c0) — (0, 00). Only
a handful of papers (see [3-5] and the references therein) have appeared where the
nonlinearity f is allowed to change sign. This paper presents a new theory, with
the idea being to approximate the singular problem by a sequence of nonsingular
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problems each of which has a lower solution «,, and a upper solution 8, and then use
a limiting argument. This seems to be more natural and more general than the theory
presented in [3-5] since the study of lower solutions to nonsingular problems is well
documented. Also in this paper we discuss the singular initial value problem

Yy =q)f (t,y), 0<t< T(<o0)
y(©0) =0.

For the remainder of this section we describe the physical problem which motivates
our study. The boundary layer equations for steady flow over a semi-infinite plate [1]
are

U VB_U _lomyy
X Yy p avy’
b v
X adY ’

where the X and Y axes are taken along and perpendicular to the plate, p is the density,
U and V are the velocity components parallel and normal to the plate and the shear
stress Txy = K(dU/3Y)". The case n = 1 corresponds to a Newtonian fluid and for
0 < n < 1 the power law relation between shear stress and rate of strain describes
pseudoplastic non-Newtonian fluids. The fluid has zero velocity on the plate and the
flow approaches stream conditions far from the plate, that is,

UX,0)=V(X,0=0, U(X,o0)= Uy,

where U, is the uniform potential flow. The above results (if we use stream function-
similarity variables) [1, 9] in a third-order infinite interval problem

F" 4+ F(F*™" =0, F@0)=F@0)=0, F'(0)=1.
Now use the Crocco-type transformation u = F’ and G = F” to obtain
G'G'"+(n—-1DG'(G)+u=0, GO)=0, G1)=0.
Setting y = G" we obtain

y/"y" +nu=0, O<u<l
y'©0) = y(1) =0.
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2. Mixed boundary value problems

Motivated by the example in Section 1 concerning non-Newtonian fluids, we con-
sider the mixed boundary value problem

1 ne _
[p(py) +qOf t,y)=0, O0<rt<l o

lim,_o- p(1)y’ (1) = y(1) = 0.

We note also that we do nor assume fol ds/p(s) < oo. For our first result in this
section we will assume the following conditions are satisfied:

p € C[0,11NC'(0,1) with p >0o0n (0,1) 22
g€ C@O,1) with ¢ > Oon (0, 1) 2.3)
1 1 t
/ p(s)g(s)ds < oo and f L/ p(s)q(s)dsdt < o0 (2.4
()} o P(® Jo
f [0, 1] x (0, o0) — R is continuous (2.5)

Ing € {1, 2, ...} and associated witheachm € Ny = {ng,np + 1, ...},
3o, € C[0, 11N C*(0, 1), parl, € ACIO, 1],

with p(1)g()f (t, an()) + (p (D, (1)) =0 for 1 € (0, 1), (26)
[lirglp(t)ot:"(t) >0and O <a,(l)<1/m
doa € C[0,1],¢ > 0 on [0, 1) and a(r) < a,(1), 27)
t € [0, 1] foreach m € N, @

38 € C[0, 11N C*(0, 1), pB’ € AC[O, 1] with
p(q@)f (¢, (1)) + (p(B'(1)) <0 for 1€ (0, 1), 2.8)
}ig}p(t)ﬂ’(t) <0and B(1)= 5 >0
and
a,(t) < B(1), te][0,1] foreach m € N. 29

THEOREM 2.1.  (I) Suppose (2.2)«2.9) hold and in addition assume the follow-
ing condition is satisfied:

[0 <f(ty) <g() on [0,1] x (0, a] with g >0 (2.10)

continuous and nonincreasing on (0, 00);

here ay = sup, o, B(t). Then (2.1) has a solution y € C[0,1] N C*(0, 1) with
y() = a(t) fort € [0, 1].
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(D) Suppose (2.2)«2.9) hold and in addition assume the following condition is
satisfied:

f@.x)y—f@,y)>0 for 0 <x <y, foreachfixed t € (0, 1). 2.11)
Then (2.1) has a solution 'y € C[0, 11N C2(0, 1) with y(t) > a(t) for t € [0, 1].

PROOF. Without loss of generality assume S, > 1/ne. Fix m € Ny and consider
the boundary value problem

Py +paf (t,y) =0, O0<t<l

{limo: p(DY' () =0 (2.12)"
ly(1) =1/m,

where
(f@BO)Y+rBB)—y), y>B®)
faty)=1f @), an(t) <y < B(1)
Lt am(0) +r(@n() =), ¥ < an(D)

with r : R — [—1, 1] the radial retraction defined by

r(u) = lu, lul <1

uflul, |ul > 1.

It is immediate from Schauder’s fixed point theorem (see [10]) that (2.12)™ has a
solution y,, € C[0, 1] (in fact y, € C[0,1] N C*(0, 1) with py, € AC[0, 1]). A
standard argument (see [10, Chapter 5]; note f, : [0, 1] x R — R is continuous)
guarantees that

on () < ym(r) < B(r) for t € [0, 1]. (2.13)
As aresult y,, is a solution of

Py +paf(t,y)=0, 0<t<l
lim, o+ p(1)y'(£) =0 (2.14)
y() =1/m.

In addition (2.7) guarantees that
a(t) < an(?) < ym(1) <B() for r€[0,1]. (2.15)

The proof is now broken into two cases.
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Case (A). Suppose (2.10) holds.
We first show

{¥m)men, is a bounded, equicontinuous family on [0, 1]. (2.16)

First notice from (2.10) that (py;)’ < 0on (0, 1), so py, < 0on (0, 1). In addition
-y, (1)) <p(®q()g(y.()) for t € (0, 1), so integration from O to ¢ yields

—-p )y, (1) < g(ym(t))/ p(s)q(s)ds for t € (0, 1).
0

As aresult

< ¥ <
~ glm() T

Now consider I (z) = f; du/g(u). For t, s € [0, 1] we have

' , _ .
fﬁ})—) = / m/o p(2)q(z) dzdx

{I (Ym)}men, is a bounded, equicontinuous family on [0, 1]. 2.17)

! /p(s)q(s)ds for t € (0, 1).
p® Jo

H (ym(0)) — I (Ym(s))| =

L]

SO

The uniform continuity of I~! on [0, I (ap)] together with (2.17) and

Ym(®) = ym(| = 17 T () = 17" (ym(5)))]

guarantees (2.16). A standard argument [2, page 90] using the Arzela-Ascoli theorem
(and (2.15)) completes the proof.
Case (B). Suppose (2.11) holds.

We begin by showing

Yms1(8) < ya(2) for t € [0, 1] foreach m € N,. (2.18)

Suppose (2.18) is false. Then for some m € Ny, ymy1 — ym would have a positive
absolute maximum at say 7 € [0, 1). Suppose to begin with 7y € (0, 1), 50 (Ypmq1 —
¥m) (to) = 0 and (p (Ym+1 — Ym)') (to) < 0. On the other hand, (2.11) implies

@ ms1 = ym)) (1) = —p (16)q (1) [f (To» Ym+1(T)) — f (To, ym(T0))1 > O,

acontradiction. If 7p = O then lim,_, o+ p (t)[Ym+1 — Ym) (£) = 0 and there exists & > 0
With y,,41(8) — ym(s) > Ofors € (0, u). Thus for ¢ € (0, 1) we have from (2.11) that

P Omi1 = ym)' (1) = f PS)gLf (5, ym(5)) = f (5, Yms1(5)))ds > 0,
0
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a contradiction since y,,, — Y., has a positive absolute maximumat 0. As aresult(2.18)
holds.
Lets look at the interval [0, 1 — 1/n,). Let

Rn = sup {If (t, )| : 1 € [0, 1= 1/no] and a(r) <y < ao}; (2.19)

here ap = sup, o) B(¢). In addition

R, / !

2 (s)g(s)ds for t € (0,1 — 1/nyp).
oo J, PO /no
Thus {ym}men, is 2 bounded, equicontinuous family on [0, 1 — 1/ny]. The Arzela-
Ascoli theorem guarantees the existence of a subsequence N,, of Ny and a function
Zn, € Cl0, 1 — 1/ng] with y,, converging uniformly on [0, 1 — 1/n¢] to z,, as m — o0
through N,,. Proceed inductively to obtain subsequences of integers

[ym (D] <

NHQQN'I()-F'Q".QN/(Q“'

and functions z; € C[0, 1 — 1/k] with y,, converging uniformly on [0, 1 — 1/k]} to z;
as m — oo through Ny, and z;,, =z, on {0, 1 — 1/k].

Define a function y : [0, 1] — [0,00) by y(x) = z(x) on [0,1 — 1/k] and
y(1) = 0. Notice y is well-defined and «(#) < y(t) < ao for t € [0,1). Next
fixt € (0,1)and let k € {ng,np + 1,...} besuchthat 0 < r < 1 — 1/k. Let
N; ={n € N, : n > k}. Now y,, m € N, satisfies

i 1 5
ym(t)=ym(0)—/ —/ P(X)qgx)f (x, yn(x)) dx ds.
o P(s) Jo

Let m — oo through N} to obtain

t 1 s
y(l)=y(0)—/ ———f p(x)g(x)f (x,y(x))dx ds.
o P(s) Jo

We can do this argument for each ¢t € (0, 1), so (py')Y' (1) + p(Oq(O)f (4, y(@®)) =0
for ¢t € (0, 1) and lim,,o+ p(2)y'(z) = 0.

It remains to show y is continuous at 1. Let € > 0 be given. Now since
lim;, 0 ym(1) = O there exists n; € Ny with y, (1) < €/2. Also since y,, € C[0, 1]
there exists 8,, > O with y, (1) < ¢/2fort € [1 —§,,, 1]. From (2.18) for m > n, we
have y.(t) < y,, (1) < €/2fort € [1 — §,,, 1]. As aresult for m > n, we have

0<a(t) < ya(t) <e/2 for te[l-34,,1)
Consequently
O<a()<y(t)<e/2<e for te[l-6,,1),

so y is continuous at 1.
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REMARK 2.1. In Theorem 2.1 (I) we can replace (2.10) with

If (£, y)1 < g(y) on [0, 1] x (0, ap} with g > 0 220
continuous and nonincreasing on (0, 00) -20)
and
1 5
/ ;/ p(x)g(x)gla(x))dx ds < oo; (2.21)
o P(s) Jo

here ay = sup,o ) B(1). Notice we only used (2.10) to show (2.16). If we assume
(2.20) and (2.21) then (2.16) is immediate since

£(p()y, (1)) < p)g)gym()) < p(g(t)gla(t)) for r € (0,1),

SO
'

1
ly, (O] < o) p(s)q(s)gla(s))ds for t € (0, 1).

We next state and prove a more general result motivated from Theorem 2.1 (II).

THEOREM 2.2. Suppose (2.2)—(2.7) hold and in addition assume the following con-
ditions are satisfied.

for each m € Ny, 3B € C[0, 11N C*(0, 1), pB., € AC[O, 1]

with p()q()f (¢, Bn(1)) + (p(1)B,, (1)) <0 for t € (0, 1), (2.22)
lim p(0)B,, (1) <0 and (1) 2 1/m
an(t) < Ba(t), te€l0,1] foreach m € Ny (2.23)

and

Jor each t € {0, 1] we have that {Byn(t)}men, isa
(2.24)

nonincreasing sequence and lim B,(1) =0.

Then (2.1) has a solution y € C[0, 11N C*(0, 1) with y(t) > a(t) for t € [0, 1].
PROOF. Fix m € N,. Proceed as in Theorem 2.1 with B, replacing B in f,;. The
same reasoning as in Theorem 2.1 guarantees that there exists a solution y,, € C[O0, 1]
to (2.14) with a(t) < a,(t) < y.(t) < Bn(2) fort € [0, 1]. Also as in Theorem 2.1
(from (2.19) onwards) there exists y € C[0, 1) (as described in Theorem 2.1 (II)) with

a(t) < y(t) < ap = sup B, (1) for t €0, 1), (2.25)
t€(0,1)

with (py'Y () + p()g(@®)f (¢, y(t)) = 0,0 < ¢t < 1 and lim,_o+ p(2)y'(t) = 0.
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It remains to show y is continuous at 1. Let € > O be given. Now since
lim,, 00 Bm(1) = O there exists n; € Np with B (1) < €/2, and so there exists
8,, > O with 8, (1) < e/2fort € [1 —§,, 1]. From (2.24) for m > n, we have

a(t) S an(t) < ym(t) < Bn(t) < Bn (1) <€/2 for t €[l —6,,1].

Thatis, form > n; wehave 0 < a(f) < y,(¢) < €/2fort € [1-6,,, 1]. Consequently
O<a(t) <y(t) <e/2 <eforte[l—-4,, 1), soyiscontinuous at 1.

EXAMPLE (Fluid problem). Consider the boundary value problem

"ty =0, 0<t<l
{y + vt/y <t< (2.26)

y(©0)=y(1)=0

where 0 < v < 1. We will show using Theorem 2.1 (part (I) or (II)) that (2.26) has a
solution.
First we choose ng € {1,2, ...} so that

v 1 v 1
—t —<1 d - -1 — <. 2.27
6+no_ an <6 )v+1+no_ (2.27)

Let p = 1, g(t) = 2r and clearly (2.2)—(2.5) hold. Also let

() =v(l—12)/6+ 1/m,
a(t) =v(l -1)/6 (2.28)

and B(t) = 1 — v3/(v + 1). To check (2.6), form € Ny = {ng, no + 1, ...}, notice
an(l) =1/m,a (0) = 0 and

o, +qf (1, 0m) = —vt > —vt+vt=0 for te(0,1),

+ vt
[an ()]

since o, (1) < v/6+ 1/ng < 1, ¢t € [0, 1] from (2.27). Thus (2.6) holds and (2.7) is

immediate. To check (2.8) notice 8(1) =1 —v/v + 1 = B, B/(0) = 0 and

” _ —6vt vt —6vt v
B"+aqf (1,B) = o + T < 1 +vt(v+1)

—6
=vt{ + v+ 1)'/"] <0 for te(0,1),
v+1

since B(¢) = 1/(v+ 1) fort € [0,1],and (v + NP+ <4 < 6for0 < v < 1 (note
with f (x) = (x + 1)**DY/* we have f (0*) = e, f (1) =4 and f'(x) > O on (0, 1)).
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Thus (2.8) holds. In addition (2.9) is true since (2.27) implies for m € Ny that

v 1 v v 1
am(’)=g(1—t3)+;53(l—v+lt3)+;;

v 1 1 v
= gﬂ(’)'f'n—o =B+ [n—o-f-(g— l)ﬂ(t)}
5‘8(’)+{ni+(§_1)ﬁ1_1} <B@) forte (0,1)
0

since v/(v+ 1) < land (v/6 — 1)/(v + 1) + 1/ny < 0. Finally (2.10) with g(y) =
1/y"* (or (2.11)sinceif 0 < x < ythenx!”” < y'/”)holds. The existence of asolution
y to (2.26) follows from Theorem 2.1 (I) (or (II)). Note as well that y(r) = a(¢) for
t € [0, 1] where «a is given in (2.28).

3. Initial value problems

In this section we consider the initial boundary value problem

y=gf(t,y), 0<t< T(<00)

3.1
y(0) = 0. G-

Our results in this section differ from those in [4], that is, instead of assuming the
existence of a lower solution to the singular problem (which is difficult to construct
in practice) as in [4] we assume only the existence of a lower solution to the “ap-
proximating nonsingular problem”. For our first result in this section we assume the
following conditions are satisfied:

f [0, T] x (0, 00) = R is continuous (3.2)
T
qe C0,T], g>0on (0,T] and / gx)dx < o0 3.3)
0

Ing € {1,2,...} and associated witheach m € Ny = {ng,no + 1, ...},
Ja,, € C[0, T1N C'(0, T] with 34)
qOf (t,an(@®)) = a, (¢) for t € (0,T) and 0 < ¢, (0) < 1/m

[aa € C[0, T], @ >0 on (0, T] and a(t) < an(t), 35
t€[0,T] foreach m € Ny
[35 € C[0, TIN C'(0, T) with q(5)f (¢, B(1)) < B'(1) (6)
for t € (0, T) and B(0) > B >0
and
a,(t) < B@t), tel0,T] foreach m € Ng. €N))
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THEOREM 3.1. (I) Suppose (3.2)~3.7) hold and in addition assume the follow-
ing condition is satisfied:

[ If (t. )| < g(y) on [0, T] x (0, a9] with g >0

continuous and nonincreasing on (0, 00);

(3.8)

here ay = sup,co 1) B(#). Then (3.1) has a solution y € C[0, T] N C' (0, T with
y() = a(t) fort € [0, T

(1) Suppose (3.2)+3.7) hold and in addition assume the following condition is
satisfied:

f@,x)y—f(,y)=0 for 0<x <y, foreachfixed t € (0, T). 3.9)
Then (3.1) has a solution y € C[0, T1 N C'(0, T with y(¢t) > a(t) fort € [0, T].
PROOF. Without loss of generality assume 8y > 1/no. Fix m € N, and consider

[y’ =qf(t,y), O0<t<T (3.10)"
y(©) =1/m,
where
fF@B@), y>p@®
fat,y) =1 f (), an(t) <y < B(1)

f@an(®), y<an().

It is immediate from Schauder’s fixed point theorem (see [10]) that (3.10)™ has
a solution y, € C[0, T]. A standard argument (see [11, Chapter 3]; note f; :
[0, 1] x R — R is continuous) guarantees that

ap(t) < ym(t) < B(t) for t €[0, T]. 3.11)

As aresult y,, is a solution of

= t,y), O0<t<T
Yy =q () <t< (3.12)
y(0)=1/m
with
a(t) < an(t) < yn(t) <B() for t €0, T] (3.13)
The proof is now broken into two cases.
Case (A). Suppose (3.8) holds.
We first show
{¥m}men, is a bounded, equicontinuous family on [0, T]. (3.19)

https://doi.org/10.1017/51446181100013249 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013249

[11] Singular problems in pseudoplastic fluids theory 177

To see this notice (3.8) guarantees that |y, (£)|/g(y=(t)) < q(t) fort € (0, T), and so
+v,, (1) < g() for t € (0, T); here

Ym (1) du
Um(t) = / —_— = G(ym(t))
0

gw
[ g0 dx

f v, (t)dt

This together with the uniform continuity of G~! on [0, G(ap)] and

Fort, s € [0, T] we have

[Um(t) — V()] = <

[Ym (1) = Ym(8)] = 1GT(CGm () = G (G(ym (]

immediately guarantees (3.14). A standard argument [4, page 53] using the Arzela-
Ascoli theorem completes the proof.
Case (B). Suppose (3.9) holds.

We begin by showing

Yme1(8) < ym(t) for t € [0, T] foreach m € N,. (3.15)

Suppose (3.15) is false. Then for some m € N, there exists 7, < 7, with y, (1)) =
Y (T1)s Yms1(T2) > ym(72) and ym41(2) > yn(1) for ¢ € (1), 12). As aresult from (3.9)
we have

0 < ym1(12) — ym(2) = / gL (5, Yma1(5)) — f (s, ym(s))]ds <0,

a contradiction. As a result (3.15) holds.

Essentially the same reasoning as in Theorem 2.1 guarantees that there exist subse-
quences of integers Ny 2 Ny 41 2--- 2 N, 2 --- and functions z, € C[T/k, T] with
¥m converging uniformly on [T/ k, T] to z; as m — oo through N, and 7,1 = z; on
[T/k, T].

Define a functiony : [0, T] — [0, 00) by y(x) = zx(x) on [T/k, T] and y(0) = 0.
Notice y is well-defined and a(¢) < y(t) < aqo fort € (0, T]. Next fix t € (0, T) and
letk € {ng,ng+1,...} besuchthat T/k <t < T. Let N; ={n € Ny : n > k).
Now y,, m € N¢, satisfies

T
Yu(t) = yu(T) = / 4)f (5. yn(s)) ds.

Let m — oo through N; to obtain y(¢) = y(T) — f,T q(s)f (s, y(s))ds. We can do
this argument for each ¢ € (0, 7). It remains to show y is continuous at 0. Let € > 0
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be given. Then there exists n; € Ny with y,, (0) < €/2, so there exists §,, > 0 with
yn, (t) < €/2fort € [0,6,,]. From (3.15) for m > n; we have

a(t) < yu(2) < yu,(t) <€/2 for t €[0,36,]

Asaresult0 < a(r) < y(t) < €/2 < e fort € (0, 8, ], so y is continuous at 0.

In fact one can obtain a more general result motivated from Theorem 3.1 (II).

THEOREM 3.2. Suppose (3.2)~(3.5) hold and in addition assume the following con-
ditions are satisfied:

[ for each m € Ng, 3B, € C[0, T]N C' (0, T] with (3.16
q()f (¢, Bn(1)) < B, (1) for te (0, T) and B,(0) = 1/m
o, (1) < Bu(t), te€l0,T) foreach m e N, 3.17)
and
Joreach t € [0, T] we have that {By(t)}men, isa
[ nonincreasing sequence and "!1_5.10 B.(0) =0. (.18)

Then (3.1) has a solution y € C[0, TN C' (0, T] with y(t) > a(t) for t € [0, T).

PROOF. Fix m € Ny. Proceed as in Theorem 3.1 with B, replacing B in f,:. The
same reasoning as in Theorem 3.1 guarantees that there exists a solution y,, € C[0, T]
to (3.12) with ¢ (#) < (1) < ya.(t) < B,(t) for t € [0, T]. Also as in Theorem 3.1
there exists y € C(0, T] (as described in Theorem 3.1 (II)) with

a(t) <y(t) <ag= sup B, (t) for te (0, T],
t€[0,T]

with y' = gf (¢, y) for 0 < t < T. Itis easy to see (using (3.18)) that y is continuous
at 0.
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